
Persistency: writing
information on an external file

Luciano Pandola
INFN-LNGS

Based on a presentation by G.A.P. Cirrone (INFN-LNS)

Queen’s University, Belfast (UK), January 24, 2013

Introduction: data analysis
with Geant4

  For a long time, Geant4 did not attempt to provide/
support any data analysis tools
  The focus was given (and is given) to the central mission

as a Monte Carlo simulation toolkit
  As a general rule, the user is expected to provide her/his

own code to output results to an appropriate analysis
format

  A few basic classes for data analysis have recently been
implemented in Geant4 (version 9.5)
  Support for histograms and (very limited) ntuples
  Output in ROOT, XML, HBOOK and CSV (ASCII)
  Appropriate only for easy/quick analysis: for advanced

tasks, the user must write his/her own code and to use
an external analysis tool

Introduction: how to write
simulation results

  Formatted (= human-readable) ASCII files
  Simplest possible approach is comma-separated values

(.csv) files
  The resulting files can be opened and analyzed by tools

such as: Gnuplot, Excel, OpenOffice, Matlab, Origin,
ROOT, PAW, …

  Binary files with complex anlysis objects (Ntuples)
  Allows to control what plot you want with modular choice

of conditions and variables
  Ex: energy of electrons knowing that (= cuts): (1) position/

location, (2) angular window, (3) primary/secondary …

  Tools: Root , PAW, AIDA-compliant (PI, JAS3 and
OpenScientist)

ASCII files

Output stream (G4cout)
  G4cout is a iostream object defined by Geant4.

  The usage of this objects is exactly the same as the
ordinary std::cout except that the output
streams will be handled by G4UImanager

  G4endl is the equivalent of std::endl to end a
line

  Output strings may be displayed on another
window or stored in a file

  One can also use the file streams
(std::ofstream) provided by the C++ libraries

Output on screen – an
example

  a

 G4cout << "Energy deposited--->" << " " << edep << " "
 << ”Charge--->" << " " << particleCharge << " "
 << ”Kinetic Energy --->" << " " << kineticEnergy << " "

 << G4endl;

Output on screen – an
example

To write a new ASCII file: a
recipe - 1

  Add to the include list of your class the <fstream>
header file
  This will allow to use the C++ libraries for stream on file

  Put into the class declaration (file .hh) an ofstream
(=output file stream) object (or pointer):
std::ofstream myFile;
  In this way, the file object will be visible in all methods

of the class
  Open the file, in the class constructor, or into a

specific method:
 myFile.open(“filename.out”,
std::ios::trunc);
  To append data to an existing file, you must specify
std::ios::app

To write a new ASCII file: a
recipe - 2

  Inside a regularly called method (e.g. inside a virtual
method of an User Class), where appropriate, write
your data (i.e. G4double, G4int, G4String,…) to
the file, in the same fashion of G4cout:

  This could be for instance the EndOfEventAction()
of the G4UserEventAction user class

  Finally close the file, in the class destructor, or into a
specific method: myFile.close();

if (myFile.is_open()) // Check that file is opened
	
{
	
 myFile << kineticEnergy/MeV << " " << dose << G4endl;
	
 …
	
}

Plotting with tools
EXCEL

GNUPLOT

OPENOFFICE

MATLAB

ROOT files

ROOT

  ROOT is an Object Oriented Data Analysis Framework.
  It is heavily used in High Energy and Particle Physics
  Advanced support for data analysis, storage and

display
  Freely available

  http://root.cern.ch/

How to compile ROOT in a
Geant4 application - 1

  First of all, the compiler must know where to find
the ROOT includes (.hh) and the ROOT libraries

  Easily managed by the cmake build
  The CMakeLists.txt file must be edited like

find_package(ROOT)
if(ROOT_FOUND)
 include_directories(${ROOT_INCLUDE_DIR} ${Geant4_INCLUDE_DIR}

 ${PROJECT_SOURCE_DIR}/include)
 message(STATUS "ROOT found. Analysis enabled")
else()
 message(STATUS "ROOT not found. EXIT")
 return()
endif()
target_link_libraries([myexec] ${Geant4_LIBRARIES}
 ${ROOT_LIBRARIES})

How to compile ROOT in a
Geant4 application - 2

  When launching cmake, one must specify where to
find the configuration of the ROOT module
  -DCMAKE_MODULE_PATH=/…/…/
  Geant4 provides the cmake configuration of several

modules (ROOT, AIDA, CLHEP, Pythia, HepMC) in
the build/Modules directory

  Then add in the class header (.hh file) of specific
user class(es) devoted to analysis the required
ROOT include files
  Histrograms, graphs, ntuples, etc.
  See next slide

How to compile ROOT in a
Geant4 application - 3

Graphic al objects

NTuples, 1-D(float) & 3-D
(double) histograms

Mandatory headers

Using ROOT objects for
analysis - A recipe 1

  Declare the pointers to the ROOT objects
in your class header (.hh):

  TFile *theTFile; // ROOT file
  TH1F *histoEnergyDepositedPerEvent; //
1-D histogram

  TNtuple *kinFragNtuple; // ntuple

  Create an instance for each object in the
class constructor, or in a specific method:

theTFile = new TFile(“myFileName”, “RECREATE”);
This will create the file myFileName.root containing an image of ROOT variables.

The option “RECREATE” means that an existing file will be overwritten!

Using ROOT objects for
analysis - A recipe 2

  An instance of each defined object can be
created, in the class constructor or in a specific
method called once, via the "new" operator:

Using ROOT objects for
analysis - A recipe 3

  Now you have to fill each ROOT object with
the appropriate values
  …from the appropriate place, e.g. EndOfEventAction
  Data are temporarily written to memory, then

flushed to file

Fills one raw of the ROOT Ntuple

Using ROOT objects for
analysis - A recipe 4

  At the end of the simulation (or at the end of a
run) write and finalize the ROOT file.
  This can be done e.g.

  At the EndRunAction
  In the destructor of the analysis class
  At the end of the main program

It’s a good programming practice to check
 that a pointer is not NULL before using it

This will finalize and close the ROOT file,
and it frees the memory

Graphics at run-time
  It is possible to create a ROOT Application

Environment that interfaces to the windowing
system
  This will allow to use and display ROOT objects at

run-time
  For instance, you can see how the histrogram looks after

1000 simulated events and update it every 1000 events
  A unique TApplication object must be

instantiated (for example in the main) so that ROOT
will load the graphic libraries
TApplication myapp("myapp",0,0);

  Crate a ROOT TCanvas and draw the histograms
(graphs, or whatever ROOT object) on it

