)
INFN

Persistency: writing L& %™

!'_ information on an external file

Luciano Pandola
INFN-LNGS

Queen’s University, Belfast (UK), January 24, 2013

Based on a presentation by G.A.P. Cirrone (INFN-LNS)

Introduction: data analysis
‘L with Geant4

= For a long time, Geant4 did not attempt to provide/
support any data analysis tools

= The focus was given (and is given) to the central mission
as a Monte Carlo simulation toolkit

= As a general rule, the user is expected to provide her/his
f(__)wn code to output results to an appropriate analysis
ormat

= A few basic classes for data analysis have recently been
implemented in Geant4 (version 9.5)
= Support for histograms and (very limited) ntuples
= Output in ROOT, XML, HBOOK and CSV (ASCII)

= Appropriate only for easy/quick analysis: for advanced
tasks, the user must write his/her own code and to use
an external analysis tool

Introduction: how to write
i simulation results

= Formatted (= human-readable) ASCII files

= Simplest possible approach is comma-separated values
(.csv) files

= The resulting files can be opened and analyzed by tools
such as: Gnuplot, Excel, OpenOffice, Matlab, Origin,
ROOT, PAW, ...

= Binary files with complex anlysis objects (Ntuples)

= Allows to control what plot you want with modular choice
of conditions and variables

= EX: energy of electrons knowing that (= cuts): (1) position/
location, (2) angular window, (3) primary/secondary ...

=« Tools: Root , PAW, AIDA-compliant (PI, JAS3 and
OpenScientist)

{ ASCII files

i Output stream (G4cout)

= G4cout iS @ iostream object defined by Geant4.

= The usage of this objects is exactly the same as the
ordinary std: : cout except that the output
streams will be handled by G4UImanager

5 Ic_;4end1 is the equivalent of std: :endl to end a
ine
= Output strings may be displayed on another
window or stored in a file

= One can also use the file streams o
(std: :ofstream) provided by the C++ libraries

Output on screen — an

ﬁexample

void SteppingAction: .UserSteppingAction(const GdStep* aStep)

{

evtNb = eventAction -» Trasporto();

GdString particlelName = aStep -> GetTrack() -> GetDynamicParticle() -> GetDefinition() -> GetParticleName();
GdString volumeNane = aStep ->GetPreStepPoint() -> GetPhysicalVolume() -> GetName();

Gddovhle particleCharge = aStep -> GetTrack() -> GetDefinition() -> GetAtomicNumber () ;

Gddovhle PDG=aStep->GetTrack()->GetDefinition()->GetatomicMass();

G4Track* theTrack = aStep->GetTrack();

Gddouble kineticEnergy = theTrack -» GetKineticEnergy();
Gdint trackID = aStep -> GetTrack() -> GetTrackID();
Gddouble edep = aStep->GetTotalEnerqgyDeposit();

GdString materiallame = theTrack->GetMaterial()->GetName();

G4cout << "Energy deposited--->" << " " <K< edep << " "
<< "Charge--->" << " " <K< particleCharge << " "

<< "Kinetic Energy --->" << " " << kineticEnergy << " "
<< G4dendl;

Output on screen — an

:-| example

To write a new ASCII file: a

i recipe - 1

= Add to the include list of your class the <£stream>
header file

= This will allow to use the C++ libraries for stream on file

= Put into the class declaration (file .hh) an ofstream
(=output file stream) object (or pointer):
std: :ofstream myFile;

= In this way, the file object will be visible in all methods
of the class

= Open the file, in the class constructor, or into a
specific method:
myFile.open(“filename.out”,
std::10s::trunc);
= To append data to an existing file, you must specify

std: :10s::app

To write a new ASCII file: a

i recipe - 2

= Inside a reqgularly called method (e.qg. inside a virtual
method of an User Class), where appropriate, write
your data (i.e. G4double, G4int, G4String,...) t0
the file, in the same fashion of G4cout:

if (myFile.is open()) // Check that file is opened
{

myFile << kineticEnergy/MeV << " " << dose << G4endl;

= This could be for instance the EndOfEventAction ()
of the G4UserEventAction user class

= Finally close the file, in the class destructor, or into a
specific method: myFile.close() ;

tting with tools

GIRME

D
e
.

o5

.
(A

N

%

.

Selection

Range

X Auto

[ssheet1 A1:$B%3

[~ Eirst row as label

[~ First column as label

Chart results in worksheet

Sheetl

If the selected cells do not contain the desired data, select the data range now.

Include the cells containing column and row labels if you want them to be included in your chart.

16 1

14

12

10

Seriesl

- Series2

MATL

Sanio

i
fap
row o«

wim

—

- ———

Plotted Variables:

Categories
Line Plots

Ster and Stair Piots
Bar Plots

Scatter Plots.

Pie Charts
Histograms

Polar Plots

Cortour Plots
Images

3D Surfaces
Volumetrics

Vector Fisls
Analytic Plots

H_stopping_power

plot

i plotyy

S

semilogx

semiogy

loglog

errorbar

L ABEBEEE

comet

N\ AutoFormat Chart

Choose a chart type

E

[~ Show text elements in
preview

Help

Cancel

o

ik
A

Sl

Data series in: ' Rows

<< Back

Lines

& Columns

| Next >> I

Create

—

MATLAB

Area Graph
Display the elements in a variable as one or more
curves and fill the area heneath each curve

Vectors create a single curve; matrices create one
curve per column

When the variable is a matrix, the curves are stacked to
show the relative contribution of each corresponding row
element to the total height of the curves at any x nterval.

Plotted Variables
+» Single variable -- plot a vector or each column of a
matrix as one line vs. its index.
+ Two variables -- plot the second variable in the
sequence at the corresponding values of the first
variable in the sequence.

If the first variable is a vector, its length must equal
the length of the second variable and it must be
manaotonic.

If the first variable is a matrix, its size must equal the
size of the second variable and each column must
he monotonic

More Information

See the area reference page for more detailed
information about the MATLAB area function. See also
Lencrh and =5 2e

Plot] [Pitinhew Figure_] [Close

GNUPLOT

sinc(xdx+y¥y)

{ ROOT files

i ROOT

= ROOT is an Object Oriented Data Analysis Framework.
= It is heavily used in High Energy and Particle Physics
= Advanced support for data analysis, storage and

display I
= Freely available N>
= http://root.cern.ch/ RO OT (\(f%
S
k@,)

An Object-Oriented ’
Data Analysis Framework \ ¢

How to compile ROOT in a
i Geant4 application - 1

= First of all, the compiler must know where to find
the ROOT includes (.hh) and the ROOT libraries

= Easily managed by the cmake build
= The CMakelLists.txt file must be edited like

find package (ROOT)

if (ROOT FOUND)

include directories (${ROOT_ INCLUDE DIR} ${Geant4 INCLUDE DIR}

$ {PROJECT SOURCE DIR}/include)

message (STATUS "ROOT found. Analysis enabled")
else ()

message (STATUS "ROOT not found. EXIT")

return ()

endif ()

target link libraries([myexec] ${Geant4 LIBRARIES}

$ {ROOT LIBRARIES})

How to compile ROOT in a
i Geant4 application - 2

= When launching cmake, one must specify where to
find the configuration of the ROOT module

= -DCMAKE MODULE PATH=/../../

= Geant4 provides the cmake configuration of several
modules (ROOT, AIDA, CLHEP, Pythia, HepMC) in
the build/Modules directory

= Then add in the class header (.hh file) of specific

user class(es) devoted to analysis the required
ROOT include files

= Histrograms, graphs, ntuples, etc.
= See next slide

How to compile ROOT in a

i Geant4 application - 3

Mandatory headers

(double) histograms

1

NTuples, 1-D(float) & 3-D

Graphic al objects

v

-~

-

#inc lude
#include
#include
#include
#include
#inc lude
#include
#include
#include
#include
#inc lude
#include
#inc lude

"TROOT.h"
"TFile.h"
"TNtuple.
"TTree.h"

"TH1F.h"
"TH3D.h"

"TCanvas.

1-1 re

h'

"TGraph.h"

"Tixis.h'

"TLegend.h"

"TLegendEntry.

"TLegend.h"
"TStyle.h"

k

-l"

Using ROOT objects for
i analysis - A recipe 1

= Declare the pointers to the ROOT objects

in your class header (.hh):
> TFile *theTFile; // ROOT file

» TH1F *histoEnergyDepositedPerEvent; //
1-D histogram

» TNtuple *kinFragNtuple; // ntuple

= Create an instance for each object in the
class constructor, or in a specific method:

theTFile = new TFile(“myFileName”, “RECREATE") ;

This will create the file myFileName . root containing an image of ROOT variables.
The option "RECREATE"” means that an existing file will be overwritten!

Using ROOT objects for
i analysis - A recipe 2

= An instance of each defined object can be
created, in the class constructor or in a specific
method called once, via the "new" operator:

o . - mF S Irna Fha ars 1 =y v Fan) 1w Fha TROM s I N P
S/ Histogram containing the energyv deposited in the FIRST slice of the

/7 detector, at each event,

histoEnergyDepositedPerEvent = new THILF ("EnergyPerEvent”,
"Energy, Counts",
400,
50.0,
70.0);

kinFragNtuple = new THNtuple("kinFraghtuple™,

"Kinetic energy by voxel & fragment”,

"i:j:k:A:Z:KineticEnergy");

Using ROOT objects for
analysis - A recipe 3

= Now you have to fill each ROOT object with
the appropriate values

=« ...from the appropriate place, e.g. EndOfEventAction

« Data are temporarily written to memory, then
flushed to file

L7 7777 777 77 777 777 7777777777

A/ FillKineticFragmentTy p create an uuuplc where the voxel indexs, the atomic number and mass and the kinetic
S/ energv of all the pa cles interacting th the pha re stored
void Hadronther apyknaly Hanag :FillKineticFracme ntTupl (G4int 1,

G4int j,

G4int k,

G4int A,
G4double Z,
G4double kinEnergy)

kinFragtuple -> Fill(i, 3, k, 4, z, xinkneray): <—— FillS one raw of the ROOT Ntuple

{

}

Using ROOT objects for
analysis - A recipe 4

= At the end of the simulation (or at the end of a
run) write and finalize the ROOT file.

= This can be done e.q.
= At the EndRunAction
= In the destructor of the analysis class
= At the end of the main program

FEELEII Il 77777l 777777777777 rr7 77777777
/7 Flush data & close the file

void HadrontherapyvidnalysisManager::flush()

L | It's @ good programming practice to check
i { IBeliile) « that a pointer is not NULL before using it

theTFile -»> Write();

theTFile -> Close(): \ o _
} This will finalize and close the ROOT file,
) and it frees the memory

i Graphics at run-time

= It is possible to create a ROOT Application
Environment that interfaces to the windowing
system
= This will allow to use and display ROOT objects at
run-time

= For instance, you can see how the histrogram looks after
1000 simulated events and update it every 1000 events

= A unique T2Ap I_pllcatlon object must be
|nstant|ated or example in the main) so that ROOT
will load the graphlc libraries

TApplication myapp ("myapp",0,0);

= Crate a ROOT TCanvas and draw the histograms
(graphs, or whatever ROOT object) on it

