
Persistency: writing
information on an external file

Luciano Pandola
INFN-LNGS

Based on a presentation by G.A.P. Cirrone (INFN-LNS)

Queen’s University, Belfast (UK), January 24, 2013

Introduction: data analysis
with Geant4

  For a long time, Geant4 did not attempt to provide/
support any data analysis tools
  The focus was given (and is given) to the central mission

as a Monte Carlo simulation toolkit
  As a general rule, the user is expected to provide her/his

own code to output results to an appropriate analysis
format

  A few basic classes for data analysis have recently been
implemented in Geant4 (version 9.5)
  Support for histograms and (very limited) ntuples
  Output in ROOT, XML, HBOOK and CSV (ASCII)
  Appropriate only for easy/quick analysis: for advanced

tasks, the user must write his/her own code and to use
an external analysis tool

Introduction: how to write
simulation results

  Formatted (= human-readable) ASCII files
  Simplest possible approach is comma-separated values

(.csv) files
  The resulting files can be opened and analyzed by tools

such as: Gnuplot, Excel, OpenOffice, Matlab, Origin,
ROOT, PAW, …

  Binary files with complex anlysis objects (Ntuples)
  Allows to control what plot you want with modular choice

of conditions and variables
  Ex: energy of electrons knowing that (= cuts): (1) position/

location, (2) angular window, (3) primary/secondary …

  Tools: Root , PAW, AIDA-compliant (PI, JAS3 and
OpenScientist)

ASCII files

Output stream (G4cout)
  G4cout is a iostream object defined by Geant4.

  The usage of this objects is exactly the same as the
ordinary std::cout except that the output
streams will be handled by G4UImanager

  G4endl is the equivalent of std::endl to end a
line

  Output strings may be displayed on another
window or stored in a file

  One can also use the file streams
(std::ofstream) provided by the C++ libraries

Output on screen – an
example

  a

 G4cout << "Energy deposited--->" << " " << edep << " "
 << ”Charge--->" << " " << particleCharge << " "
 << ”Kinetic Energy --->" << " " << kineticEnergy << " "

 << G4endl;

Output on screen – an
example

To write a new ASCII file: a
recipe - 1

  Add to the include list of your class the <fstream>
header file
  This will allow to use the C++ libraries for stream on file

  Put into the class declaration (file .hh) an ofstream
(=output file stream) object (or pointer):
std::ofstream myFile;
  In this way, the file object will be visible in all methods

of the class
  Open the file, in the class constructor, or into a

specific method:
 myFile.open(“filename.out”,
std::ios::trunc);
  To append data to an existing file, you must specify
std::ios::app

To write a new ASCII file: a
recipe - 2

  Inside a regularly called method (e.g. inside a virtual
method of an User Class), where appropriate, write
your data (i.e. G4double, G4int, G4String,…) to
the file, in the same fashion of G4cout:

  This could be for instance the EndOfEventAction()
of the G4UserEventAction user class

  Finally close the file, in the class destructor, or into a
specific method: myFile.close();

if (myFile.is_open()) // Check that file is opened
	{
	 myFile << kineticEnergy/MeV << " " << dose << G4endl;
	 …
	}

Plotting with tools
EXCEL

GNUPLOT

OPENOFFICE

MATLAB

ROOT files

ROOT

  ROOT is an Object Oriented Data Analysis Framework.
  It is heavily used in High Energy and Particle Physics
  Advanced support for data analysis, storage and

display
  Freely available

  http://root.cern.ch/

How to compile ROOT in a
Geant4 application - 1

  First of all, the compiler must know where to find
the ROOT includes (.hh) and the ROOT libraries

  Easily managed by the cmake build
  The CMakeLists.txt file must be edited like

find_package(ROOT)
if(ROOT_FOUND)
 include_directories(${ROOT_INCLUDE_DIR} ${Geant4_INCLUDE_DIR}

 ${PROJECT_SOURCE_DIR}/include)
 message(STATUS "ROOT found. Analysis enabled")
else()
 message(STATUS "ROOT not found. EXIT")
 return()
endif()
target_link_libraries([myexec] ${Geant4_LIBRARIES}
 ${ROOT_LIBRARIES})

How to compile ROOT in a
Geant4 application - 2

  When launching cmake, one must specify where to
find the configuration of the ROOT module
  -DCMAKE_MODULE_PATH=/…/…/
  Geant4 provides the cmake configuration of several

modules (ROOT, AIDA, CLHEP, Pythia, HepMC) in
the build/Modules directory

  Then add in the class header (.hh file) of specific
user class(es) devoted to analysis the required
ROOT include files
  Histrograms, graphs, ntuples, etc.
  See next slide

How to compile ROOT in a
Geant4 application - 3

Graphic al objects

NTuples, 1-D(float) & 3-D
(double) histograms

Mandatory headers

Using ROOT objects for
analysis - A recipe 1

  Declare the pointers to the ROOT objects
in your class header (.hh):

  TFile *theTFile; // ROOT file
  TH1F *histoEnergyDepositedPerEvent; //
1-D histogram

  TNtuple *kinFragNtuple; // ntuple

  Create an instance for each object in the
class constructor, or in a specific method:

theTFile = new TFile(“myFileName”, “RECREATE”);
This will create the file myFileName.root containing an image of ROOT variables.

The option “RECREATE” means that an existing file will be overwritten!

Using ROOT objects for
analysis - A recipe 2

  An instance of each defined object can be
created, in the class constructor or in a specific
method called once, via the "new" operator:

Using ROOT objects for
analysis - A recipe 3

  Now you have to fill each ROOT object with
the appropriate values
  …from the appropriate place, e.g. EndOfEventAction
  Data are temporarily written to memory, then

flushed to file

Fills one raw of the ROOT Ntuple

Using ROOT objects for
analysis - A recipe 4

  At the end of the simulation (or at the end of a
run) write and finalize the ROOT file.
  This can be done e.g.

  At the EndRunAction
  In the destructor of the analysis class
  At the end of the main program

It’s a good programming practice to check
 that a pointer is not NULL before using it

This will finalize and close the ROOT file,
and it frees the memory

Graphics at run-time
  It is possible to create a ROOT Application

Environment that interfaces to the windowing
system
  This will allow to use and display ROOT objects at

run-time
  For instance, you can see how the histrogram looks after

1000 simulated events and update it every 1000 events
  A unique TApplication object must be

instantiated (for example in the main) so that ROOT
will load the graphic libraries
TApplication myapp("myapp",0,0);

  Crate a ROOT TCanvas and draw the histograms
(graphs, or whatever ROOT object) on it

