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Introduction: data analysis
‘L with Geant4

= For a long time, Geant4 did not attempt to provide/
support any data analysis tools

= The focus was given (and is given) to the central mission
as a Monte Carlo simulation toolkit

= As a general rule, the user is expected to provide her/his
f(__)wn code to output results to an appropriate analysis
ormat

= A few basic classes for data analysis have recently been
implemented in Geant4 (version 9.5)
= Support for histograms and (very limited) ntuples
= Output in ROOT, XML, HBOOK and CSV (ASCII)

= Appropriate only for easy/quick analysis: for advanced
tasks, the user must write his/her own code and to use
an external analysis tool




Introduction: how to write
i simulation results

= Formatted (= human-readable) ASCII files

= Simplest possible approach is comma-separated values
(.csv) files

= The resulting files can be opened and analyzed by tools
such as: Gnuplot, Excel, OpenOffice, Matlab, Origin,
ROOT, PAW, ...

= Binary files with complex anlysis objects (Ntuples)

= Allows to control what plot you want with modular choice
of conditions and variables

= EX: energy of electrons knowing that (= cuts): (1) position/
location, (2) angular window, (3) primary/secondary ...

=« Tools: Root , PAW, AIDA-compliant (PI, JAS3 and
OpenScientist)




{ ASCII files



i Output stream (G4cout)

= G4cout iS @ iostream object defined by Geant4.

= The usage of this objects is exactly the same as the
ordinary std: : cout except that the output
streams will be handled by G4UImanager

5 Ic_;4end1 is the equivalent of std: :endl to end a
ine
= Output strings may be displayed on another
window or stored in a file

= One can also use the file streams o
(std: :ofstream) provided by the C++ libraries



Output on screen — an

ﬁexample

void SteppingAction: .UserSteppingAction(const GdStep* aStep)

{

evtNb = eventAction -» Trasporto();

GdString particlelName = aStep -> GetTrack() -> GetDynamicParticle() -> GetDefinition() -> GetParticleName();
GdString volumeNane = aStep ->GetPreStepPoint() -> GetPhysicalVolume() -> GetName();

Gddovhle particleCharge = aStep -> GetTrack() -> GetDefinition() -> GetAtomicNumber () ;

Gddovhle PDG=aStep->GetTrack()->GetDefinition()->GetatomicMass();

G4Track* theTrack = aStep->GetTrack();

Gddouble kineticEnergy = theTrack -» GetKineticEnergy();
Gdint trackID = aStep -> GetTrack() -> GetTrackID();
Gddouble edep = aStep->GetTotalEnerqgyDeposit();

GdString materiallame = theTrack->GetMaterial()->GetName();

G4cout << "Energy deposited--->" << " " <K< edep << " "
<< "Charge--->" << " " <K< particleCharge << " "

<< "Kinetic Energy --->" << " " << kineticEnergy << " "
<< G4dendl;




Output on screen — an

:-| example




To write a new ASCII file: a

i recipe - 1

= Add to the include list of your class the <£stream>
header file

= This will allow to use the C++ libraries for stream on file

= Put into the class declaration (file .hh) an ofstream
(=output file stream) object (or pointer):
std: :ofstream myFile;

= In this way, the file object will be visible in all methods
of the class

= Open the file, in the class constructor, or into a
specific method:
myFile.open(“filename.out”,
std::10s::trunc);
= To append data to an existing file, you must specify

std: :10s::app




To write a new ASCII file: a

i recipe - 2

= Inside a reqgularly called method (e.qg. inside a virtual
method of an User Class), where appropriate, write
your data (i.e. G4double, G4int, G4String,...) t0
the file, in the same fashion of G4cout:

if (myFile.is open()) // Check that file is opened
{

myFile << kineticEnergy/MeV << " " << dose << G4endl;

= This could be for instance the EndOfEventAction ()
of the G4UserEventAction user class

= Finally close the file, in the class destructor, or into a
specific method: myFile.close() ;
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{ ROOT files



i ROOT

= ROOT is an Object Oriented Data Analysis Framework.
= It is heavily used in High Energy and Particle Physics
= Advanced support for data analysis, storage and

display I
= Freely available N>
= http://root.cern.ch/ RO OT (\(f%
S
k@, )

An Object-Oriented ’
Data Analysis Framework \ ¢



How to compile ROOT in a
i Geant4 application - 1

= First of all, the compiler must know where to find
the ROOT includes (.hh) and the ROOT libraries

= Easily managed by the cmake build
= The CMakelLists.txt file must be edited like

find package (ROOT)

if (ROOT FOUND)

include directories (${ROOT_ INCLUDE DIR} ${Geant4 INCLUDE DIR}

$ {PROJECT SOURCE DIR}/include)

message (STATUS "ROOT found. Analysis enabled")
else ()

message (STATUS "ROOT not found. EXIT")

return ()

endif ()

target link libraries([myexec] ${Geant4 LIBRARIES}

$ {ROOT LIBRARIES})




How to compile ROOT in a
i Geant4 application - 2

= When launching cmake, one must specify where to
find the configuration of the ROOT module

= -DCMAKE MODULE PATH=/../../

= Geant4 provides the cmake configuration of several
modules (ROOT, AIDA, CLHEP, Pythia, HepMC) in
the build/Modules directory

= Then add in the class header (.hh file) of specific

user class(es) devoted to analysis the required
ROOT include files

= Histrograms, graphs, ntuples, etc.
= See next slide



How to compile ROOT in a

i Geant4 application - 3

Mandatory headers

(double) histograms

1

NTuples, 1-D(float) & 3-D

Graphic al objects

v
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#inc lude
#include
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"TH3D.h"

"TCanvas.

1-1 re

h'

"TGraph.h"

"Tixis.h'

"TLegend.h"

"TLegendEntry.

"TLegend.h"
"TStyle.h"

k

-l"



Using ROOT objects for
i analysis - A recipe 1

= Declare the pointers to the ROOT objects

in your class header (.hh):
> TFile *theTFile; // ROOT file

» TH1F *histoEnergyDepositedPerEvent; //
1-D histogram

» TNtuple *kinFragNtuple; // ntuple

= Create an instance for each object in the
class constructor, or in a specific method:

theTFile = new TFile(“myFileName”, “RECREATE") ;

This will create the file myFileName . root containing an image of ROOT variables.
The option "RECREATE"” means that an existing file will be overwritten!




Using ROOT objects for
i analysis - A recipe 2

= An instance of each defined object can be
created, in the class constructor or in a specific
method called once, via the "new" operator:

o . - mF S Irna Fha ars 1 =y v Fan) 1w Fha TROM s I N P
S/ Histogram containing the energyv deposited in the FIRST slice of the

/7 detector, at each event,

histoEnergyDepositedPerEvent = new THILF ("EnergyPerEvent”,
"Energy, Counts",
400,
50.0,
70.0);

kinFragNtuple = new THNtuple("kinFraghtuple™,

"Kinetic energy by voxel & fragment”,

"i:j:k:A:Z:KineticEnergy");



Using ROOT objects for
analysis - A recipe 3

= Now you have to fill each ROOT object with
the appropriate values

=« ...from the appropriate place, e.g. EndOfEventAction

« Data are temporarily written to memory, then
flushed to file

L7 7777 777 77 777 777 7777777777

A/ FillKineticFragmentTy p create an uuuplc where the voxel indexs, the atomic number and mass and the kinetic
S/ energv of all the pa cles interacting th the pha re stored
void Hadronther apyknaly Hanag :FillKineticFracme ntTupl (G4int 1,

G4int j,

G4int k,

G4int A,
G4double Z,
G4double kinEnergy)

kinFragtuple -> Fill(i, 3, k, 4, z, xinkneray): <—— FillS one raw of the ROOT Ntuple

{

}



Using ROOT objects for
analysis - A recipe 4

= At the end of the simulation (or at the end of a
run) write and finalize the ROOT file.

= This can be done e.q.
= At the EndRunAction
= In the destructor of the analysis class
= At the end of the main program

FEELEII Il 77777l 777777777777 rr7 77777777
/7 Flush data & close the file

void HadrontherapyvidnalysisManager::flush()

L | It's @ good programming practice to check
i { IBeliile) « that a pointer is not NULL before using it

theTFile -»> Write();

theTFile -> Close(): \ o _
} This will finalize and close the ROOT file,
) and it frees the memory



i Graphics at run-time

= It is possible to create a ROOT Application
Environment that interfaces to the windowing
system
= This will allow to use and display ROOT objects at
run-time

= For instance, you can see how the histrogram looks after
1000 simulated events and update it every 1000 events

= A unique T2Ap I_pllcatlon object must be
|nstant|ated or example in the main) so that ROOT
will load the graphlc libraries

TApplication myapp ("myapp",0,0);

= Crate a ROOT TCanvas and draw the histograms
(graphs, or whatever ROOT object) on it



