
Interaction with the Geant4
kernel

Luciano Pandola
INFN-LNGS

Based on a presentation by G.A.P. Cirrone (INFN-LNS)

Queen’s University, Belfast (UK), January 24, 2013

The main ingredients

Optional user classes - 1

e.g. actions to be done
at the beginning and
end of each event

Optional user classes - 2

  The user may implement the member
functions he desires in his/her derived classes
  E.g. one may want to perform some action at each

tracking step

  Objects of user action classes must be
registered with G4RunManager
runManager->

SetUserAction(new MyEventActionClass);

Geant4 terminology: an
overview

  The following keywords are often used in
Geant4

  Run, Event, Track, Step
  Processes: At Rest, Along Step, Post Step
  Cut (or production threshold)

The Run (G4Run)
  As an analogy with a real experiment, a run of Geant4

starts with ‘Beam On’
  Within a run, the User cannot change

  The detector setup
  The physics setting (processes, models)

  A Run is a collection of events with the same detector and
physics conditions

  At the beginning of a Run, geometry is optimised for
navigation and cross section tables are (re)calculated

  The G4RunManager class manages the processing of each
Run, represented by:
  G4Run class
  G4UserRunAction for an optional User hook

The Event (G4Event)
  An Event is the basic unit of simulation in Geant4
  At the beginning of processing, primary tracks are generated

and they are pushed into a stack
  A track is popped up from the stack one-by-one and

‘tracked’
  Secondary tracks are also pushed into the stack
  When the stack gets empty, the processing of the event is

completed
  G4Event class represents an event. At the end of a successful

event it has:
  List of primary vertices and particles (as input)
  Hits and Trajectory collections (as outputs)

  G4EventManager class manages the event.
  G4UserEventAction is the optional User hook

The Track (G4Track)
  The Track is a snapshot of a particle and it is represented

by the G4Track class
  It keeps ‘current’ information of the particle (i.e. energy,

momentum, position, polarization, ..)
  It is updated after every step

  The track object is deleted when
  It goes outside the world volume
  It disappears in an interaction (decay, inelastic scattering)
  It is slowed down to zero kinetic energy and there are no

'AtRest' processes
  It is manually killed by the user

  No track object persists at the end of the event
  G4TrackingManager class manages the tracking
  G4UserTrackingAction is the optional User hook for

tracking

Run, Event and Tracks

  One Run consists of	

  Event #1 (track #1, track #2,)
  Event #2 (track #1, track #2,)
 
  Event #N (track #1, track #2,)

Example of an Event and
Tracks

  Tracking order follows ‘last in first out’ rule:
T1 -> T4 -> T3 -> T6 -> T7 -> T5 -> T8 -> T2

(ParentID = 1) (ParentID = 3)

Example:
retrieving information from tracks

The Step (G4Step)
  G4Step represents a step in the particle propagation
  A G4Step object stores transient information of the

step
  In the tracking algorithm, G4Step is updated each

time a process is invoked
  You can extract information from a step after the

step is completed
  Both, the ProcessHits() method of your sensitive

detector and UserSteppingAction() of your step
action class file get the pointer of G4Step

  Typically , you may retrieve information in these
functions (for example fill histograms in Stepping
action)

The Step in Geant4
  The G4Step has the information about the two points (pre-step

and post-step) and the ‘delta’ information of a particle (energy loss
on the step,)

  Each point knows the volume (and the material)
  In case a step is limited by a volume boundary, the end point

physically stands on the boundary and it logically belongs to the
next volume

  G4SteppingManager class manages processing a step; a ‘step’ in
represented by the G4Step class

  G4UserSteppingAction is the optional User hook

The G4Step object

  A G4Step object contains
  The two endpoints (pre and post step) so one has

access to the volumes containing these endpoints
  Changes in particle properties between the points

  Difference of particle energy, momentum,
  Energy deposition on step, step length, time-of-flight, ...

  A pointer to the associated G4Track object

  G4Step provides various Get methods to access
these information or object istances
  G4StepPoint* GetPreStepPoint(),

The geometry boundary
  To check, if a step ends on a boundary, one may

compare if the physical volume of pre and post-step
points are equal

  One can also use the step status
  Step Status provides information about the process that

restricted the step length
  It is attached to the step points: the pre has the status

of the previous step, the post of the current step
  If the status of POST is “fGeometryBoundary” the

step ends on a volume boundary (does not apply to
word volume)

  To check if a step starts on a volume boundary you can
also use the step status: if the status of the PRE-step
point is “fGeomBoundary” the step starts on a volume
boundary

Step concept and boundaries

Illustration of step starting and ending on boundaries

Geant4 terminology: an
overview

Example of usage of the hook
user classes - 1

  G4UserRunAction
  Has two methods (BeginOfRunAction() and
EndOfRunAction()) and can be used e.g. to
initialise, analyse and store histogram

  Everything User want to know at this stage
  G4UserEventAction

  Has two methods (BeginOfEventAction() and
EndOfEventAction())

  One can apply an event selection, for example
  Access the hit-collection and perform the event

analysis

Example of usage of the hook
user classes - 2

  G4UserStakingAction
  Classify priority of tracks

  G4UserTrackingAction
  Has two methods (PreUserTrakingAction()
and PostUserTrackinAction())

  For example used to decide if trajectories should
be stored

  G4UserSteppingAction
  Has a method which is invoked at the end of a

step

Retrieving information from
steps and tracks

Example:
check if step is on boundaries

Example: step information in
SD

Some more detail on
information retrieving

Something more about tracks

  After each step the track can change its state
  The status can be (in red can only be set by the

User)

Particles in Geant4

  A particle in general has the following three sets
of properties:
  Position/geometrical info

  G4Track class (representing a particle to be tracked)

  Dynamic properties: momentum, energy, spin,..
  G4DynamicParticle class

  Static properties: rest mass, charge, life time
  G4ParticleDefinition class

  All the G4DynamicParticle objects of the same
kind of particle share the same
G4ParticleDefinition

Particles in Geant4

Class hierarchy

  G4Track has a pointer to a G4DynamicParticle
  G4DynamicParticle has a pointer to a
G4ParticleDefinition

  All information accessible via G4Track

Example:
static particle information

Examples: particle information
from step/track

