
Interaction with the Geant4
kernel

Luciano Pandola
INFN-LNGS

Based on a presentation by G.A.P. Cirrone (INFN-LNS)

Queen’s University, Belfast (UK), January 24, 2013

The main ingredients

Optional user classes - 1

e.g. actions to be done
at the beginning and
end of each event

Optional user classes - 2

  The user may implement the member
functions he desires in his/her derived classes
  E.g. one may want to perform some action at each

tracking step

  Objects of user action classes must be
registered with G4RunManager
runManager->

SetUserAction(new MyEventActionClass);

Geant4 terminology: an
overview

  The following keywords are often used in
Geant4

  Run, Event, Track, Step
  Processes: At Rest, Along Step, Post Step
  Cut (or production threshold)

The Run (G4Run)
  As an analogy with a real experiment, a run of Geant4

starts with ‘Beam On’
  Within a run, the User cannot change

  The detector setup
  The physics setting (processes, models)

  A Run is a collection of events with the same detector and
physics conditions

  At the beginning of a Run, geometry is optimised for
navigation and cross section tables are (re)calculated

  The G4RunManager class manages the processing of each
Run, represented by:
  G4Run class
  G4UserRunAction for an optional User hook

The Event (G4Event)
  An Event is the basic unit of simulation in Geant4
  At the beginning of processing, primary tracks are generated

and they are pushed into a stack
  A track is popped up from the stack one-by-one and

‘tracked’
  Secondary tracks are also pushed into the stack
  When the stack gets empty, the processing of the event is

completed
  G4Event class represents an event. At the end of a successful

event it has:
  List of primary vertices and particles (as input)
  Hits and Trajectory collections (as outputs)

  G4EventManager class manages the event.
  G4UserEventAction is the optional User hook

The Track (G4Track)
  The Track is a snapshot of a particle and it is represented

by the G4Track class
  It keeps ‘current’ information of the particle (i.e. energy,

momentum, position, polarization, ..)
  It is updated after every step

  The track object is deleted when
  It goes outside the world volume
  It disappears in an interaction (decay, inelastic scattering)
  It is slowed down to zero kinetic energy and there are no

'AtRest' processes
  It is manually killed by the user

  No track object persists at the end of the event
  G4TrackingManager class manages the tracking
  G4UserTrackingAction is the optional User hook for

tracking

Run, Event and Tracks

  One Run consists of	

  Event #1 (track #1, track #2,)
  Event #2 (track #1, track #2,)
 
  Event #N (track #1, track #2,)

Example of an Event and
Tracks

  Tracking order follows ‘last in first out’ rule:
T1 -> T4 -> T3 -> T6 -> T7 -> T5 -> T8 -> T2

(ParentID = 1) (ParentID = 3)

Example:
retrieving information from tracks

The Step (G4Step)
  G4Step represents a step in the particle propagation
  A G4Step object stores transient information of the

step
  In the tracking algorithm, G4Step is updated each

time a process is invoked
  You can extract information from a step after the

step is completed
  Both, the ProcessHits() method of your sensitive

detector and UserSteppingAction() of your step
action class file get the pointer of G4Step

  Typically , you may retrieve information in these
functions (for example fill histograms in Stepping
action)

The Step in Geant4
  The G4Step has the information about the two points (pre-step

and post-step) and the ‘delta’ information of a particle (energy loss
on the step,)

  Each point knows the volume (and the material)
  In case a step is limited by a volume boundary, the end point

physically stands on the boundary and it logically belongs to the
next volume

  G4SteppingManager class manages processing a step; a ‘step’ in
represented by the G4Step class

  G4UserSteppingAction is the optional User hook

The G4Step object

  A G4Step object contains
  The two endpoints (pre and post step) so one has

access to the volumes containing these endpoints
  Changes in particle properties between the points

  Difference of particle energy, momentum,
  Energy deposition on step, step length, time-of-flight, ...

  A pointer to the associated G4Track object

  G4Step provides various Get methods to access
these information or object istances
  G4StepPoint* GetPreStepPoint(),

The geometry boundary
  To check, if a step ends on a boundary, one may

compare if the physical volume of pre and post-step
points are equal

  One can also use the step status
  Step Status provides information about the process that

restricted the step length
  It is attached to the step points: the pre has the status

of the previous step, the post of the current step
  If the status of POST is “fGeometryBoundary” the

step ends on a volume boundary (does not apply to
word volume)

  To check if a step starts on a volume boundary you can
also use the step status: if the status of the PRE-step
point is “fGeomBoundary” the step starts on a volume
boundary

Step concept and boundaries

Illustration of step starting and ending on boundaries

Geant4 terminology: an
overview

Example of usage of the hook
user classes - 1

  G4UserRunAction
  Has two methods (BeginOfRunAction() and
EndOfRunAction()) and can be used e.g. to
initialise, analyse and store histogram

  Everything User want to know at this stage
  G4UserEventAction

  Has two methods (BeginOfEventAction() and
EndOfEventAction())

  One can apply an event selection, for example
  Access the hit-collection and perform the event

analysis

Example of usage of the hook
user classes - 2

  G4UserStakingAction
  Classify priority of tracks

  G4UserTrackingAction
  Has two methods (PreUserTrakingAction()
and PostUserTrackinAction())

  For example used to decide if trajectories should
be stored

  G4UserSteppingAction
  Has a method which is invoked at the end of a

step

Retrieving information from
steps and tracks

Example:
check if step is on boundaries

Example: step information in
SD

Some more detail on
information retrieving

Something more about tracks

  After each step the track can change its state
  The status can be (in red can only be set by the

User)

Particles in Geant4

  A particle in general has the following three sets
of properties:
  Position/geometrical info

  G4Track class (representing a particle to be tracked)

  Dynamic properties: momentum, energy, spin,..
  G4DynamicParticle class

  Static properties: rest mass, charge, life time
  G4ParticleDefinition class

  All the G4DynamicParticle objects of the same
kind of particle share the same
G4ParticleDefinition

Particles in Geant4

Class hierarchy

  G4Track has a pointer to a G4DynamicParticle
  G4DynamicParticle has a pointer to a
G4ParticleDefinition

  All information accessible via G4Track

Example:
static particle information

Examples: particle information
from step/track

