Interaction with the Geant4

!'_ kernel)

Luciano Pandola INF g
INFN-LNGs | Geants

Queen’s University, Belfast (UK), January 24, 2013

Based on a presentation by G.A.P. Cirrone (INFN-LNS)

! The main ingredients

i Optional user classes - 1

= Five concrete base classes whose virtual member
functions the user may override to gain control of the
simulation at various stages
= G4UserRunAction .
e.g. actions to be done

g G4UserEvent:Action. @@ the beginning and
= G4UserTrackingAction end of each event

=« G4UserStackingAction
= G4UserSteppingAction

= Each member function of the base classes has a
dummy implementation (not purely virtual)
= Empty implementation: does nothing

i Optional user classes - 2

= The user may implement the member
functions he desires in his/her derived classes
= E.g. one may want to perform some action at each
tracking step
= Objects of user action classes must be
registered with GARunManager

runManager—>

SetUserAction (new MyEventActionClass) ;

Geant4 terminology: an

i overview

= The following keywords are often used in
Geant4

= Run, Event, Track, Step
= Processes: At Rest, Along Step, Post Step
= Cut (or production threshold)

i The Run (G4Run)

= As an analogy with a real experiment, a run of Geant4
starts with ‘Beam On’

= Within a run, the User cannot change
= The detector setup
= The physics setting (processes, models)

= A Run is a collection of events with the same detector and
physics conditions

= At the beginning of a Run, geometry is optimised for
navigation and cross section tables are (re)calculated

= The G4RunManager class manages the processing of each
Run, represented by:

= G4Run class
s G4UserRunAction for an optional User hook

i The Event (G4Event)

An Event is the basic unit of simulation in Geant4

At the beginning of processing, primary tracks are generated
and they are pushed into a stack

A track is popped up from the stack one-by-one and
‘tracked’

= Secondary tracks are also pushed into the stack

= When the stack gets empty, the processing of the event is
completed

G4Event class represents an event. At the end of a successful
event it has:

= List of primary vertices and particles (as input)

= Hits and Trajectory collections (as outputs)
G4EventManager class manages the event.
G4UserEventAction is the optional User hook

The Track (G4Track)

e Track is a snapshot of a particle and it is represented
by the G4Track class

» It keeps ‘current’ information of the particle (i.e. energy,
momentum, position, polarization, ..)

« It is updated after every step
= The track object is deleted when
= It goes outside the world volume
= It disappears in an interaction (decay, inelastic scattering)

« It is slowed down to zero kinetic energy and there are no
'AtRest’ processes

= It is manually killed by the user
= No track object persists at the end of the event
= G4TrackingManager class manages the tracking

= G4UserTrackingAction is the optional User hook for
tracking

i Run, Event and Tracks

= One Run consists of
= Event #1 (track #1, track #2,)
= Event #2 (track #1, track #2,)

Example of an Event and
1 Tracks

(world volume)

T2

T (primary track)

(ParentID = 3)T6 (ParentID = 1)

7v 13 18

= Tracking order follows ‘last in first out’ rule:
T1->T4->T3->T6->T1T/->T5->T1T8->T2

LA R R R R R R R ERERRRRERRERRRRRRERRRERRRRRRRR Rttt R R R R R R R

* G4Track Information: Particle = e-, Track ID = 87, Parent ID =

R R R R R R R RRERRRERRRR RS

X (mm) Y (mm) Z (mm) KinE (MeV) dE (MeV) Stepleng TrackLeng NextVolume ProcName
.87e+03 .63 -5.52 0.0326 0 0 0 physicalTreatmentRoom initStep
.87e+03 .85 -4.72 0.032 0.000545 0.924 0.924 physicalTreatmentRoom msc
.87e+03 .92 -3.9 0.0317 0.00036 0.928 1.85 physicalTreatmentRoom msc
.87e+03 5.89 -3.65 0.0289 0.00013 0.3 2.15 physicalTreatmentRoom

List of 2ndaries - #SpawnInStep= 1(Rest= 0,Along= 0,Post= 1), #SpawnTotal=
.87e+03 -3.65 0.00258

EndOf2ndaries Info

.87e+03 physicalTreatmentRoom
.87e+03 . . R 0.000654
.87e+0300249
.87e+0300163
.87e+03 .78 0.503 . .00109
.87e+03 .64 1.35 . .00184
.87e+03 .68 2.26 R .00204
.87e+03 .63 2.406 R 0.000345

List of 2ndaries - #SpawnInStep= 1(Rest= 0,Along= 0,Pos
.87e+03 2.46 0.00133

physicalTreatmentRoom
physicalTreatmentRoom
physicalTreatmentRoom
physicalTreatmentRoom
physicalTreatmentRoom

physicalTreatmentRoom

[

physicalTreatmentRoom
= 1), #SpawnTotal=

3.
4,
4,
5.
6.
7.
8.
8.
t

EndOf2ndaries Info
.87e+03 0.0125 0 0.0383 8.92 physicalTreatmentRoom
List of 2ndaries - #SpawnInStep= 1(Rest= 0,Along= 0,Post= 1), #SpawnTotal=
2.49 0.00402

AR R R R R R R R RERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRERRRRRREREEE SRS

* G4Track Information: Particle = e-, Track ID = 242, Parent ID = 87

LA R R R R R R R R R RR Rttt R i ittt R R R R R R R R

Step# X (mm) Y (mm) Z (mm) KinE (MeV) dE (MeV) Stepleng TrackLeng NextVolume ProcName
0 -1.87e+03 5.41 0.00138 0 0 0 physicalTreatmentRoom initStep
1 -1.87e+03 5.39 0.000253 0.00112 0.0481 0.0481 physicalTreatmentRoom msc
2 -1.87e+03 5.39 0 0.000253 0.0088 0.0569 physicalTreatmentRoom eIoni

Example:

; retrieving information from tracks

// retrieving information from tracks (given the G4Track object “track”):

if(track -> GetTrackID() !=1) {

}

G4cout << “Particle is a secondary” << G4end];

// Note in this context, that primary hadrons might loose their identity
if(track -> GetParentID() == 1)
G4cout << “But parent was a primary“ << G4end];

G4VProcess* creatorProcess = track -> GetCreatorProcess();

if(creatorProcess -> GetProcessName() == “LowEnergyloni”) {
G4cout << “Particle was created by the Low-Energy ” <<
<< “Ionization process“ << G4end];

}

i The Step (G4Step)

= G4Step represents a step in the particle propagation

= A G4Step object stores transient information of the
step

= In the tracking algorithm, G4Step is updated each
time a process is invoked

= You can extract information from a step after the
step is completed

» Both, the ProcessHits () method of your sensitive
detector and UserSteppingAction () of your step
action class file get the pointer of G4Step

« Typically , you may retrieve information in these
functic;ns (for example fill histograms in Stepping
action

i The Step in Geant4

The G4Step has the information about the two points %pre step
and post-step) and the ‘delta’ information of a particle (energy loss
on the step,)

= Each point knows the volume (and the material)

= In case a step is limited by a volume boundary, the end point
physically stands on the boundary and it logically belongs to the
next volume

Post-step point

Pre-step point

o G4Stepp1n% anager class manages processing a step; a 'step’in
represented by the G4Step class

= G4UserSteppingAction is the optional User hook

i The G4Step object

= A G4Step oObject contains

= The two endpoints (pre and post step) so one has
access to the volumes containing these endpoints

= Changes in particle properties between the points

= Difference of particle energy, momentum,
= Energy deposition on step, step length, time-of-flight, ...

= A pointer to the associated G4Track object
= G4Step provides various Get methods to access
these information or object istances
» GA4StepPoint* GetPreStepPoint(),

The geometry boundary

0 check, if a step ends on a boundary, one may

compare if the physical volume of pre and post-step
points are equal

= One can also use the step status

Step Status provides information about the process that
restricted the step length

It is attached to the step points: the pre has the status
of the previous step, the post of the current step

If the status of POST is "fGeometryBoundary” the
step ends on a volume boundary (does not apply to
word volume)

= To check if a step starts on a volume boundar% Eyou can

also use the step status: if the status of the PRE-step
point is "fGeomBoundary” the step starts on a volume
boundary

i Step concept and boundaries

Illustration

of step starting and ending on boundaries

pre—step

step status is
fGeomBoundary

point step starts on boundary
{ .\. pre—step point

/-‘/V()lulnc boundary \
step ends orrw.

post—step point

post—step
point

step—status 1s
fGeomBoundary

Geant4 terminology: an
overview

Largest unit of simulation, that consist of a sequence of events: If a
Run | G4Run

efined number of events was processed a run is finished.

G 4E t Basic simulation unit in Geant4: If a defined number of primary tracks
ven nd all resulting secondary tracks were processed an event is over.

track is NOT a collection of steps: It is a snapshot of the status of a
article after a step was completed (but it does NOT record previous

teps). A track is deleted, if the particle leaves world, has zero kinetic
Track | G4Track oo, ..

Event

Represents a particle step in the simulation and includes two points
(pre-step point and post-step point).

Step | G4Step

Example of usage of the hook
i user classes - 1

m GA4UserRunAction

= Has two methods (BeginOfRunAction () and
EndOfRunAction ()) and can be used e.q. to
initialise, analyse and store histogram

=« Everything User want to know at this stage
s G4UserEventAction

= Has two methods (BeginOfEventAction () and
EndOfEventAction())

= One can apply an event selection, for example

= Access the hit-collection and perform the event
analysis

Example of usage of the hook
i user classes - 2

m G4UserStakingAction
» Classify priority of tracks

m G4UserTrackingAction

= Has two methods (PreUserTrakingAction ()
and PostUserTrackinAction())

= For example used to decide if trajectories should
be stored

s G4UserSteppingAction

= Has a method which is invoked at the end of a
step

Retrieving information from

!'_ steps and tracks

Example:
check if step is on boundaries

// in the source file of your user step action class:

#include “G4Step.hh“

UserStepAction::UserSteppingAction(const G4Step* step) {

G4StepPoint* preStepPoint = step -> GetPreStepPoint();
G4StepPoint* postStepPoint = step -> GetPostStepPoint();

// Use the GetStepStatus() method of G4StepPoint to get the status of the
// current stgv (contained in post-step point) or the previous step

// (contained in pre-steg point):

if(preStepPoint -> GetStepStatus() == fGeomBoundary) {

G4cout << “Step starts on geometry boundary“ << G4end];
%f(postStepPoint -> GetStepStatus() == f{GeomBoundary) {

G4cout << “Step ends on geometry boundary“ << G4endl;

// You can retrieve the material of the next volume through the

/] post-step Eoint :
G4Material* nextMaterial = step -> GetPostStepPoint()->GetMaterial();

Example: step information in

iSD

/l in source file of your sensitive detector:

MySensitiveDetector::ProcessHits(G4Step* step,
G4TouchableHistory*) {

// Total energy deposition on the step (= energy deposited by energy loss
/I process and energy of secondaries that were not created since their

// energy was < Cut):

G4double energyDeposit = step -> GetTotalEnergyDeposit();

// Difference of energy , position and momentum of particle between pre-
// and post-step point

G4double deltaEnergy = step -> GetDeltaEnergy();

G4ThreeVector deltaPosition = step -> GetDeltaPosition();

G4double deltaMomentum = step -> GetDeltaMomentum();

/| Step length
G4double stepLength = step -> GetStepLength();

Some more detail on

! information retrieving

iSomething more about tracks

= After each step the track can change its state

= The status can be (in red can only be set by the
User)

i Particles in Geant4

= A particle in general has the following three sets
of properties:
» Position/geometrical info
= G4Track class (representing a particle to be tracked)
= Dynamic properties: momentum, energy, spin,..
= GADynamicParticle class

» Static properties: rest mass, charge, life time
= G4ParticleDefinition class

= All the G4DynamicParticle objects of the same
kind of particle share the same
G4ParticleDefinition

In Geant4

* Particles

G4 Track

Represents a particle that travels
in space and time

Information relevant to tracking
he particle, e.g. position, time,
tep,..., and dynamic information

G4DynamicParticle

Represents a particle that is
subject to interactions with matter

Dynamic information, e.g.
particle momentum, kinetic
nergy, ..., and static information

G4ParticleDefinition

Defines a physical particle

Static information, e.g. particle
mass, charge, ... Also physics
processes relevant to the
particle

i Class hierarchy

= GATrack has a pointer to a G4DynamicParticle

= GADynamicParticle has a pointer to a
G4ParticleDefinition

= All information accessible via G4Track

object

G4DynamicParticleJ

{ G4Track has a '\,,asa

[G4ParticleDefinition]

Example:
static particle information

#include “G4ParticleDefinition.hh*
#include “G4ParticleTable.hh*

G4ParticleDefinition* proton = G4Proton::Definition();

G4double protonPDGMass = proton -> GetPDGMass();
G4double protonPDGCharge = proton -> GetPDGCharge();

G4int protonPDGNumber = proton -> GetPDGEncoding();

G4String protonPartType = proton -> GetParticleType(); / “baryon*
G4String protonPartSubType = proton -> GetPartic eSuf)Type(; Il “nucleon”

G4int protonBaryonNmb = proton -> GetBaryonNumber();
G4ParticleTable* ptable = G4ParticleTable::GetParticleTable();
G4ParticleDefinition* pionPlus = ptable -> FindParticle(“pi+”);
G4bool particlelsStable = pionPlus -> GetPDGStable();
G4double pionPlusLifeTime = pionPlus -> GetPDGLifeTime();
G4double pionPluslsospin = pionPlus -> GetPDGIsospin();

Examples: particle information
from step/track

#include “G4ParticleDefinition.hh“
#include “G4DynamicParticle.hh®
#include “G4Step.hh*

#include “G4Track.hh“

// Retrieve from the current step the track (after PostStepDolt of step is
/l completed):
GA4Track* track = step -> GetTrack();

// From the track you can obtain the pointer to the dynamic particle:
const G4DynamicParticle* dynParticle = track -> GetDynamicParticle();

// From the dynamic Farticle, retrieve the particle definition:
G4ParticleDefinition™ particle = dynParticle -> GetDefinition();

// The d}l/namic particle class contains e.g. the kinetic energy after the step:
G4double kinEnergy = dynParticle -> GetKineticEnergy();

// From the particle definition class you can retrieve static information like
// the particle name:
GA4String particleName = particle -> GetParticleName();

G4cout << particleName << “: kinetic energy of “
<< kinEnergy/MeV << “ MeV*
<< G4end];

