
Retrieving information from
the simulation

Luciano Pandola
INFN-LNGS

Partially based on a presentations by A. Lechner, J. Apostolakis, M. Asai, G. Cosmo
and A. Howard

Part I: Sensitive Detectors

Sensitive Detector (SD)

  A logical volume becomes sensitive if it has a pointer
to a sensitive detector (G4VSensitiveDetector)
  A sensitive detector can be instantiated several times,

where the instances are assigned to different logical
volumes

  Note that SD objects must have unique detector names
  A logical volume can only have one SD object attached (But you

can implement your detector to have many functionalities)
  Two possibilities to make use of the SD functionality:

  Create your own sensitive detector (using class
inheritance see next slides)

  Highly customizable
  Use Geant4 built-in tools: Primitive scorers

Adding sensitivity to a logical
volume

  Create an instance of a sensitive detector
  Register the sensitive detector to the SD manager
  Assign the pointer of your SD to the logical volume of

your detector geometry

create instance

register to SD manager
assign to logical volume

Part II: User-defined sensitive
detectors: Hits and Hits
Collection

The ingredients of user SD

  A powerful and flexible way of extracting information
from the physics simulation is to define your own SD

  Derive your own concrete classes from the base
classes and customize them according to your needs

Concrete class Base class

Sensitive Detector MySensitiveDetector G4VSensitiveDetector

Readout geometry MyROGeometry (opt) G4VReadoutGeometry

Hit MyHit G4VHit

Template class

Hits collection G4THitsCollection<MyHit*>

Hit class - 1

  Hit is a user-defined class which derives from the
base class G4VHit. Two virtual methods
  Draw()
  Print()

  You can store various types of information by
implementing your own concrete Hit class

  Typically, one may want to record information like
  Position, time and ΔE of a step
  Momentum, energy, position, volume, particle type of

a given track
  Etc.

Hit class - 2

A “Hit” is like a “container”, a empty box which
contains the information retrieved step by step

The Hit concrete class (derived by
G4VHit) must be written by the user: the
user must decide which variables and/or
information the hit should store and when

store them

X =

Y =

T =

ΔE =

The Hit objects are created and filled by the
SensitiveDetector class (invoked at each step in detectors
defined as sensitive). Stored in the “HitCollection”, attached

to the G4Event: can be retrieved at the EndOfEvent

Hit class - 3

Example

data member (private)

public methods to
handle data member

Geant4 Hits

Since in the simulation one may have different
sensitive detectors in the same setup (e.g. a

calorimeter and a Si detector), it is possible to define
many Hit classes (all derived by G4VHit) storing

different information

X =

Y =

T =

ΔE =

Class Hit1 :
public G4VHit

Z =

Pos =

Dir =

Class Hit2 :
public G4VHit

Hits Collection - 1

At each step in a detector defined as sensitive, the method
ProcessHit() of the user SensitiveDetector class is
inkoved: it must create, fill and store the Hit objects

X = 1

Y = 2

T =3

ΔE = 1

Step 1

X = 2

Y = 0

T =3.1

ΔE = 2

Step 2

X = 3

Y = 2

T =4

ΔE = 3

Step 3

X = 3

Y = 2

T =6

ΔE = 1

Step N

.....

Hits collection (= vector<Hit>)

Hits Collection - 2

  Once created in the sensitive detectors, objects of
the concrete hit class must be stored in a
dedicated collection
  Template class G4THitsCollection<MyHit>,

which is actually an array of MyHit*

  The hits collections can be accesses in different
phases of tracking
  At the end of each event, through the G4Event (a-

posteriori event analysis)
  During event processing, through the Sensitive Detectr

Manager G4SDManager (event filtering)

The HCofThisEvent
Remember that you may have many kinds of Hits

(and Hits Collections)

X = 1

Y = 2

T =3

ΔE = 1

X = 2

Y = 0

T =3.1

ΔE = 2

X = 3

Y = 2

T =4

ΔE = 3

X = 3

Y = 2

T =6

ΔE = 1

Z = 5
Pos =
(0,1,1)
Dir =
(0,1,0)

Z = 5.2
Pos =
(0,0,1)
Dir =
(1,1,0)

Z = 5.4
Pos =
(0,1,2)
Dir =
(0,1,1)

HCofThisEvent

Attached to
G4Event*

Hits Collections of an event

  A G4Event object has a G4HCofThisEvent
object at the end of the event processing (if it
was successful)
  The pointer to the G4HCofThisEvent object can

be retrieved using the
G4Event::GetHCofThisEvent() method

  The G4HCofThisEvent stores all hits
collections creted within the event
  Hits collections are accessible and can be processes

e.g. in the EndOfEventAction() method of the
User Event Action class

SD and Hits

  Using information from particle steps, a
sensitive detector either
  constructs, fills and stores one (or more) hit object
  accumulates values to existing hits

  Hits objects can be filled with information in
the ProcessHits() method of the SD
concrete user class next slides
  This method has pointers to the current G4Step and

to the G4TouchableHistory of the ReadOut
geometry (if defined)

Sensitive Detector (SD)

  A specific feature to Geant4 is that a user can
provide his/her own implementation of the detector
and its response customized

  To create a sensitive detector, derive your own
concrete class from the G4VSensitiveDetector
abstract base class
  The principal purpose of the sensitive detector is to

create hit objects
  Overload the following methods (see also next slide):

  Initialize()
  ProcessHits() (Invoked for each step if step starts in

logical volume having the SD attached)
  EndOfEvent()

Sensitive Detector

User
concrete
SD class

SD implementation: constructor

  Specify a hits collection (by its unique name) for each
type of hits considered in the sensitive detector:
  Insert the name(s) in the collectionName vector

Base class

SD implementation: Initialize()
  The Initialize() method is invoked at the beginning of each event
  Construct all hits collections and insert them in the G4HCofThisEvent

object, which is passed as argument to Initialize()
  The AddHitsCollection() method of G4HCofThisEvent requires the

collection ID
  The unique collection ID can be obtained with GetCollectionID():

  GetCollectionID() cannot be invoked in the constructor of this SD class (It is
required that the SD is instantiated and registered to the SD manager first).

  Hence, we defined a private data member (collectionID), which is set at the
first call of the Initialize() function

SD implementation: ProcessHits()
  This ProcessHits() method is invoked for every step in the

volume(s) which hold a pointer to this SD (= each volume
defined as “sensitive”)

  The principal mandate of this method is to generate hit(s) or
to accumulate data to existing hit objects, by using information
from the current step
  Note: Geometry information must be derived from the

“PreStepPoint”

// 1) create hit

// 2) fill hit

// 3) insert in the collection

G4bool

SD implementation: EndOfEvent()

  This EndOfEvent() method is invoked at the
end of each event.
  Note is invoked before the EndOfEvent function

of the G4UserEventAction class

Processing hit information - 1

  Retrieve the pointer of a hits collection with the
GetHC()method of G4HCofThisEvent collection
using the collection index (a G4int number)

  Index numbers of a hit collection are unique and
don’t change for a run. The number can be obtained
by G4SDManager::GetCollectionID(“name”);

  Notes:
  if the collection(s) are not created, the pointers of the

collection(s) are NULL: check before trying to access
it

  Need an explicit cast from G4VHitsCollection (see
code)

Processing hit information - 2

  Loop through the entries of a hits collection to
access individual hits
  Since the HitsCollection is a vector, you can

use the [] operator to get the hit object
corresponding to a given index

  Retrieve the information contained in this hit
(e.g. using the Get/Set methods of the
concrete user Hit class) and process it

  Store the output in analysis objects

Process hit: example

retrieve
index

retrieve all hits
collections

retrieve hits
collection by index

loop over
individual hits,

retrieve the data

The HCofThisEvent
Remember that you may have many kinds of Hits

(and Hits Collections)

X = 1

Y = 2

T =3

ΔE = 1

X = 2

Y = 0

T =3.1

ΔE = 2

X = 3

Y = 2

T =4

ΔE = 3

X = 3

Y = 2

T =6

ΔE = 1

Z = 5
Pos =
(0,1,1)
Dir =
(0,1,0)

Z = 5.2
Pos =
(0,0,1)
Dir =
(1,1,0)

Z = 5.4
Pos =
(0,1,2)
Dir =
(0,1,1)

HCofThisEvent

Attached to
G4Event*

Recipe and strategy - 1

  Create your detector geometry
  Solids, logical volumes, physical volumes

  Implement a sensitive detector and assign an
instance of it to the logical volume of your
geometry set-up
  Then this volume becomes “sensitive”
  Sensitive detectors are active for each particle steps, if

the step starts in this volume

  Optionally, implement a read-out geometry
and attach it to the sensitive detector

Recipe and strategy - 2

  Create hits objects in your sensitive detector using
information from the particle step
  You need to create the hit class(es) according to your

requirements
  Use Touchable of the read-out geometry to retrieve

geometrical info associated with this
  Store hits in hits collections (automatically associated

to the G4Event object)
  Finally, process the information contained in the hit in

user action classes (e.g. G4UserEventAction) to
obtain results to be stored in the analysis object

Part III: Native Geant4
scoring

Extract useful information

  Alternatively to user-defined sensitive detectors, primitive
scorers provided by Geant4 can be used

  Geant4 provides a number of primitive scorers, each one
accumulating one physics quantity (e.g. total dose) for an
event

  It is convenient to use primitive scorers instead of user-
defined sensitive detectors when:
  you are not interested in recording each individual step, but accumulating

physical quantities for an event or a run

  you have not too many scorers

G4MultiFunctionalDetector

  G4MultiFunctionalDetector is a concrete class
derived from G4VSensitiveDetector

  It should be assigned to a logical volume as a kind of
(ready-for-the-use) sensitive detector

  It takes an arbitrary number of
G4VPrimitiveSensitivity classes, to define the
scoring quantities that you need
  Each G4VPrimitiveSensitivity accumulates one physics

quantity for each physical volume
  E.g. G4PSDoseScorer (a concrete class of
G4VPrimitiveSensitivity provided by Geant4)
accumulates dose for each cell

  By using this approach, no need to implement
sensitive detector and hit classes!

  Primitive scorers (classes derived from G4VPrimitiveSensitivity)
have to be registered to the G4MultiFunctionalDetector

  They are designed to score one kind of quantity (surface
flux, total dose) and to generate one hit collection per
event
  automatically named as

<MultiFunctionalDetectorName>/<PrimitiveScorerName>

  hit collections can be retrieved in the EventAction or RunAction (as those
generated by sensitive detectors)

  do not share the same primitive score object among multiple
G4MultiFunctionalDetector objects (results may mix up!)

G4VPrimitiveSensitivity

MyDetectorConstruction::Construct()

{ … G4LogicalVolume* myCellLog = new G4LogicalVolume(…);

G4MultiFunctionalDetector* myScorer = new

G4MultiFunctionalDetector(“myCellScorer”);

G4SDManager::GetSDMpointer()->

 AddNewDetector(myScorer);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new G4PSFlatSurfaceFlux

(“TotalSurfFlux”);

myScorer->Register(totalSurfFlux);

G4VPrimitiveSensitivity* totalDose = new G4PSDoseDeposit

(“TotalDose”);

myScorer->Register(totalDose);

}

instantiate multi-
functional detector
and register in the

SD manager

create a primitive
scorer (surface

flux) and register
it

create a primitive
scorer (total dose)

and register it

attach to volume

For example ...

  Concrete Primitive Scorers (Application Developers Guide 4.4.6)
  Track length

  G4PSTrackLength, G4PSPassageTrackLength

  Deposited energy
  G4PSEnergyDepsit, G4PSDoseDeposit

  Current/Flux
  G4PSFlatSurfaceCurrent,

G4PSSphereSurfaceCurrent,G4PSPassageCurrent,
G4PSFlatSurfaceFlux, G4PSCellFlux, G4PSPassageCellFlux

  Others
  G4PSMinKinEAtGeneration, G4PSNofSecondary, G4PSNofStep,

G4PSCellCharge

Some primitive scorers that
you may find useful

angle

V : Volume

L : Total step length in the cell

V : Volume

A closer look at some scorers

  A G4VSDFilter can be attached to
G4VPrimitiveSensitivity to define which kind of
tracks have to be scored (e.g. one wants to know surface flux
of protons only)
  G4SDChargeFilter (accepts only charged particles)

  G4SDNeutralFilter (accepts only neutral particles)

  G4SDKineticEnergyFilter (accepts tracks in a defined
range of kinetic energy)

  G4SDParticleFilter (accepts tracks of a given particle type)

  G4VSDFilter (base class to create user-customized filters)

G4VSDFilter

MyDetectorConstruction::Construct()

{

 G4VPrimitiveSensitivity* protonSurfFlux

 = new G4PSFlatSurfaceFlux(“pSurfFlux”);

G4VSDFilter* protonFilter = new

 G4SDParticleFilter(“protonFilter”);

protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->Register(protonSurfFlux);

}

create a primitive
scorer (surface
flux), as before

create a particle
filter and add
protons to it

register the filter to
the primitive scorer

register the scorer to the
multifunc detector (as

shown before)

For example ...

Command-based scoring
Thanks to the newly developed parallel navigation, an

arbitrary scoring mesh geometry can be defined which
is independent to the volumes in the mass geometry.

Also, G4MultiFunctionalDetector and primitive scorer classes
now offer the built-in scoring of most-common quantities

•  Define a scoring mesh
/score/create/boxMesh <mesh_name>
/score/open, /score/close

•  Define mesh parameters
/score/mesh/boxsize <dx> <dy> <dz>
/score/mesh/nbin <nx> <ny> <nz>
/score/mesh/translate,

•  Define primitive scorers
/score/quantity/eDep <scorer_name>
/score/quantity/cellFlux <scorer_name>
currently 20 scorers are available

UI commands for scoring no C++ required, apart
from instantiating G4ScoringManager in main()

U
n

d
e
r

d
e
v
e
lo

p
m

e
n

t!

•  Define filters
/score/filter/particle <filter_name>
<particle_list>
/score/filter/kinE <filter_name>
<Emin> <Emax> <unit>
 currently 5 filters are available

•  Output
/score/draw <mesh_name>

 <scorer_name>
/score/dump, /score/list

How to learn more about
built-in scoring

examples/extended/runAndEvent/RE02
(use of primitive scorers)

examples/extended/runAndEvent/RE03
(use of UI-based scoring)

Have a look at the dedicated
extended examples released with

Geant4:

Part IV: Summary and
outlook

Conclusions

  Indeed, the final goal of any MC simulation is to
retrieve physical information

  Geant4 provides a powerful and flexible system to
retrieve and score information during the run
  Based on

  Sensitive Detectors (attached to logical volumes)
  Hits
  Hits Collections (attached to the G4Event)

  Require concrete classes written by the user to work
  An other possibility is to use built-in Geant4 scorers

  Less work to do but much less flexible
  Suggested only in case you need a limited amount of

information and/or for a restricted scope

