Electromagnetic and hadronic physics in Geant4

Luciano Pandola INFN-LNGS

Queen's University, Belfast (UK), January 24, 2013

Based on a presentation by G.A.P. Cirrone (INFN-LNS)

Outline

- The philosophy of the physics definition
- How to define and activate models
- Electromagnetic physics
- Hadronic physics

Philosophy

- Provide a general model framework that allows the implementation of complementary/alternative models to describe the same process (e.g. Compton scattering)
 - A certain model could work better in a certain energy range
- Decouple modeling of cross sections and of final state generation
- Provide **processes** containing
 - Many possible models and cross sections
 - <u>Default cross sections</u> for each model

Models under continuous development

G4VUserPhysicsList

- All physics lists must derive from this class
 - And then be registered to the G4RunManager
 - Mandatory class in Geant4

```
class MyPhysicsList: public G4VUserPhysicsList {
  public:
  MyPhysicsList();
  ~MyPhysicsList();
  void ConstructParticle();
  void ConstructProcess();
  void SetCuts();
 }
```

- User must implement the following (purely virtual) methods:
 - ConstructParticle(), ConstructProcess(), SetCuts()

ConstructParticle()

- Choose the particles you need in your simulation and define all of them here
 - G4Electron::ElectronDefinition()
 - G4Gamma::GammaDefinition()
 - **.**...
- It is possible use Geant4 classes that create groups of particles
 - G4BosonConstructor()
 - G4LeptonConstructor()

SetCuts()

- Define all production cuts for gamma, electrons and positrons
 - Recently also for protons
- Notice: this is a production cut, not a tracking cut
 - All particles, once created, are tracked down to zero kinetic energy
 - The cut is used to limit the generation of secondaries (e.g. δ-rays from ionization, or gammas from bremsstrahlung)
 - The cut is expressed in equivalent range
 - This is converted in energy for each material

Physics definition

- Different ways to implement the physics models
- 1. Explicitly associating a given model to a given particle for a given energy range
 - Error prone
 - Done at <u>code level</u> (requires C++ coding)

2. Use of **BUILDER** and **REFERENCE PHYSICS LISTS**

- The BUILDERS are process-related (standard, lowenergy, Bertini, etc.)
 - Building blocks to be used in a physics list
 - Allows mix-and-match done by the user
- THE REF PHYSICS LISTS are complete physics lists
 - Can be instantiated by UI (macro files)

Builder with the G4VModularPhysicsList

- It is used to build a realistic physics list which would be too long and complicated with the previous approach
- It is derived from G4VUserPhysicsList
- AddTransportation() automatically called
- Allows the definition of "physics modules" for a given process
 - Electromagnetic
 - Hadronic
 - Decay
 - Optical physics
 - Ion physics

Reference physics lists

- Provide a complete and realistic physics with ALL models of interest
- Provided according to some use-cases
- Few choices are available for EM physics
- Several possibilities for hadronic
- They are intended as starting point and their builders can be reused
 - They are made up of builders, so easy to change/replace each given block

Reference physics lists

- These families share components to attach certain types of processes to groups of particles. These components are:
 - electromagnetic interactions for all particles. Different settings are offered:
 - Default transport parameters (best performance)
 - Some optimised choice (_EMV extension)
 - Some high precision choice (_EMY extension)
 - Inelastic interactions
 - Elastic scattering
 - Capture
 - Decay of unstable particles
 - Specialised treatment of low energy neutrons (< 20 MeV)

How to build a modular physics list

Create a class derived by G4VModularPhysicsList

class myList : public G4VModularPhysicsList

 Implement the mandatory methods
 ConstructParticle() and ConstructProcess() and use the appropriate builders (or create your own)

```
void myList::ConstructProcess()
{
    AddTransportation();
    //Em physics
    G4VPhysicsConstructor* emList = new G4EmStandardPhysics();
    emList->ConstructProcess();
    //Inelastic physics for protons
    G4VPhysicsConstructor* pList = new G4QGSPProtonBuilder();
    pList->ConstructProcess();
```

How to use a Geant4 physics list

In your main(), just register an instance of the physics list to the G4RunManager

```
#include "QGSP_BERT.hh"
int main()
{
    // Run manager
    G4RunManager * runManager = new G4RunManager();
    ...
    G4VUserPhysicsList* physics = new QGSP_BERT();
    runManager-> SetUserInitialization(physics);
}
```

The complete lists of Reference Physics List

...../source/physics_lists/lists

-rw-rr	1 cirrone	staff	4102 16 A	ug 09:14	QGSP_BERT_EMV.icc
-rw-rr	1 cirrone	staff	2564 11 M	lay 2009	QGSP_BERT_EMX.hh
-rw-rr	1 cirrone	staff	4232 16 A	ug 09:14	QGSP_BERT_EMX.icc
-rw-rr	1 cirrone	staff	2542 31 0	ct 2006	QGSP_BERT_HP.hh
-rw-rr	1 cirrone	staff	4322 16 A	ug 09:14	QGSP_BERT_HP.icc
-rw-rr	1 cirrone	staff	2586 17 0	ct 2008	QGSP_BERT_NOLEP.hh
-rw-rr	1 cirrone	staff	4224 16 A	ug 09:14	QGSP_BERT_NOLEP.icc
-rw-rr	1 cirrone	staff	2580 26 A	pr 2007	QGSP_BERT_NQE.hh
-rw-rr	1 cirrone	staff	4240 16 A	ug 09:14	QGSP_BERT_NQE.icc
-rw-rr	1 cirrone	staff	2557 7 M	lay 2007	QGSP_BERT_TRV.hh
-rw-rr	1 cirrone	staff	4236 16 A	ug 09:14	QGSP_BERT_TRV.icc
-rw-rr	1 cirrone	staff	2496 31 0	ct 2006	QGSP_BIC.hh
-rw-rr	1 cirrone	staff	4578 16 A	ug 09:14	QGSP_BIC.icc
-rw-rr	1 cirrone	staff	2552 11 M	lay 2009	QGSP_BIC_EMY.hh
-rw-rr	1 cirrone	staff	4176 16 A	ug 09:14	QGSP_BIC_EMY.icc
-rw-rr	1 cirrone	staff	2550 24 N	lov 2006	QGSP_BIC_HP.hh
-rw-rr	1 cirrone	staff	4140 16 A	ug 09:14	QGSP_BIC_HP.icc
-rw-rr	1 cirrone	staff	2563 13 N	lov 2007	QGSP_DIF.hh
-rw-rr	1 cirrone	staff	4317 16 A	ug 09:14	QGSP_DIF.icc
-rw-rr	1 cirrone	staff			QGSP_EMV.hh
-rw-rr	1 cirrone	staff	4822 16 A	ug 09:14	QGSP_EMV.icc
-rw-rr	1 cirrone	staff	2541 26 A	pr 2007	QGSP_EMV_NQE.hh
-rw-rr	1 cirrone	staff	4260 16 A	ug 09:14	QGSP_EMV_NQE:iccPhysics Lists
-rw-rr	1 cirrone	staff	2582 23 A	pr 2009	QGSP_FTFP_BERT.hh
-rw-rr	1 cirrone	staff	4174 16 A	ug 09:14	QGSP_FTFP_BERT.icc
-rw-rr	1 cirrone	staff	3499 19 J	ul 2009	QGSP_INCL_ABLA.hh
-rw-rr	1 cirrone	staff	4262 16 A	ug 09:14	QGSP_INCL_ABLA.icc
-rw-rr	1 cirrone	staff	2528 26 A	pr 2007	QGSP_NQE.hh H Port E
-rw-rr	1 cirrone	staff	4234 16 A	ug 09:14	QGSP_NQE.icc
-rw-rr	1 cirrone	staff	2523 28 N	lov 2006	QGSP_QEL.hh
-rw-rr	1 cirrone	staff	4413 16 A	ug 09:14	QGSP_QEL.icc
-rw-rr	1 cirrone	staff	2507 13 N	lov 2007	QGS_BIC.hh
-rw-rr	1 cirrone	staff	4188 16 A	ug 09:14	QGS_BIC.icc
-rw-rr		staff			Shielding.hh
-rw-rr	1 cirrone	staff	4113 16 A	ug 09:14	Shielding.icc htlon
-rw-rr	1 cirrone	staff	3710 31 0	ct 2006	SpecialCuts.hh
lists Lavor	a! >				 WilsonAbrasion

Electromagnetic physics

EM concept - 1

- The same physics processes (e.g. Compton scattering) can be described by different models, that can be alternative or complementary in a given energy range
- For instance: Compton scattering can be described by
 - G4KleinNishinaCompton
 - G4LivermoreComptonModel (specialized low-energy, based on the Livermore database)
 - G4PenelopeComptonModel (specialized low-energy, based on the Penelope analytical model)
 - G4LivermorePolarizedComptonModel (specialized low-energy, Livermore database with polarization)
 - G4PolarizedComptonModel (Klein-Nishina with polarization)
- Different models can be combined, so that the appropriate one is used in each given energy range (→ performance optimization)

EM concept - 2

- A physical interaction or process is described by a process class
 - Naming scheme : « G4ProcessName »
 - Eg. : « G4Compton » for photon Compton scattering
- A physical process can be simulated according to several models, each model being described by a <u>model class</u>
 - The usual naming scheme is: « G4ModelNameProcessNameModel »
 - Eg. : « G4LivermoreComptonModel » for the Livermore Compton model
 - Models can be alternative and/or complementary on certain energy ranges
 - Refer to the Geant4 manual for the full list of available models

Packages overview

 Models and processes for the description of the EM interactions in Geant4 have been grouped in several packages

Package	Description
Standard	γ -rays, e [±] up to 100 TeV, Hadrons, ions up to 100 TeV
Muons	Muons up to 1 PeV
X-rays	X-rays and optical photon production
Optical	Optical photons interactions
High-Energy	Processes at high energy (> 10 GeV). Physics for exotic particles
Low-Energy	Specialized processes for low-energy (down to 250 eV), including atomic effects
Polarization	Simulation of polarized beams

EM processes for γ -rays, e[±]

Particle	Process	G4Process
Photons	Gamma Conversion in e [±]	G4GammaConversion
	Compton scattering	G4ComptonScattering
	Photoelectric effect	G4PhotoElectricEffect
	Rayleigh scattering	G4RayleighScattering
e±	Ionisation	G4eIonisation
	Bremsstrahlung	G4eBremsstrahlung
	Multiple scattering	G4eMultipleScattering
e+	Annihilation	G4eplusAnnihilation

EM processes muons

Particle	Process	G4Process
μ^{\pm}	Ionisation	G4MuIonisation
	Bremsstrahlung	G4MuBremsstrahlung
	Multiple scattering	G4MuMultipleScattering
	e [±] pair production	G4MuPairProduction

Only one model available for these processes (but in principle users may write their own processes, if needed)

When/why to use Low Energy Models

- Use Low-Energy models (Livermore or Penlope), as an alternative to Standard models, when you:
 - need precise treatment of EM showers and interactions at low-energy (keV scale)
 - are interested in atomic effects, as fluorescence x-rays, Doppler broadening, etc.
 - can afford a more CPU-intensive simulation
 - want to cross-check an other simulation (e.g. with a different model)
- Do not use when you are interested in EM physics > MeV
 - same results as Standard EM models, performance penalty

Example: PhysicsList, γ-rays

Only PostStep

G4ProcessManager* pmanager =

G4Gamma::GetProcessManager(); pmanager->AddDiscreteProcess(new G4PhotoElectricEffect); pmanager->AddDiscreteProcess(new G4ComptonScattering); pmanager->AddDiscreteProcess(new G4GammaConversion); pmanager->AddDiscreteProcess(new G4RayleighScattering);

• Use AddDiscreteProcess because γ-rays processes have only PostStep actions

• For each process, the **default model** is used among all the available ones (e.g. **G4KleinNishinaCompton** for **G4ComptonScattering**)

EM Physics Constructors for Geant4 9.6 - ready-for-the-use

G4EmStandardPhysics – default G4EmStandardPhysics_option1 – HEP fast but not precise G4EmStandardPhysics_option2 – Experimental G4EmStandardPhysics_option3 – medical, space G4EmStandardPhysics_option4 – optimal mixture for precision G4EmLivermorePhysics G4EmLivermorePolarizedPhysics G4EmPenelopePhysics G4EmDNAPhysics

- \$G4INSTALL/source/physics_list/builders
- Advantage of using of these classes they are tested on regular basis and are used for regular validation

How to extract Physics ?

- Possible to retrieve physics quantities via G4EmCalculator or directly from the physics models
 - Physics List should be initialized
- Example for retrieving the total cross section (cm⁻¹) of a process with name procName: for particle partName and material matName

G4EmCalculator **emCalculator**;

G4Material * material =

G4NistManager::Instance()->FindOrBuildMaterial("matName);

G4double massSigma = emCalculator.ComputeCrossSectionPerVolume (energy,particle,procName,material);

G4cout << G4BestUnit(massSigma, "Surface/Volume") << G4endl;

A good example: \$G4INSTALL/examples/extended/ electromagnetic/TestEm14

Hadronic physics

Hadronic Physics

- Data-driven models
- Parametrised models
- Theory-driven models

Hadronic physics challenge

Three energy regimes

- < 100 MeV</p>
- resonance and cascade region (100 MeV 10 GeV)
- > 20 GeV (QCD strings)
- Within each regime there are several models
- Many of these are phenomenological

Reference physics lists for Hadronic interactions

- Are part of the Geant4 code
- Four families of lists
 - LHEP, parameterised modelling of hadronic interactions
 - Based on the old GEISHA package
 - QGS, or list based on a model that use the Quark Gluon String model for high energy hadronic interactions of protons, neutrons, pions and kaons
 - FTF, based on the FTF (FRITIOF like string model) for protons, neutrons, pions and kaons
 - Other specialized physics lists

Hadronic processes

- At rest
 - Stopped muon, pion, kaon, anti-proton
 - Radioactive decay
 - Particle decay (decay-in-flight is PostStep)
- Elastic
 - Same process to handle all long-lived hadrons (multiple models available)
- Inelastic
 - Different processes for each hadron (possibly with multiple models vs. energy)
 - Photo-nuclear, electro-nuclear, mu-nuclear
- Capture
 - Pion- and kaon- in flight, neutron
- Fission

Cross sections

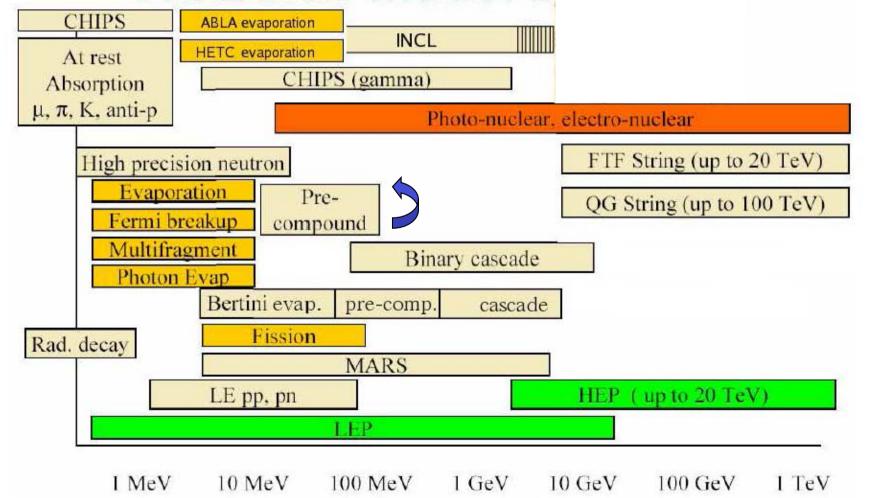
- Default cross section sets are provided for each type of hadronic process:
 - Fission, capture, elastic, inelastic
- Can be overridden or completely replaced
- Different types of cross section sets:
 - Some contain only a few numbers to parameterize cross section
 - Some represent large databases (data driven models)
- Cross section management
 - GetCrossSection() → sees last set loaded for energy range

Alternative cross sections

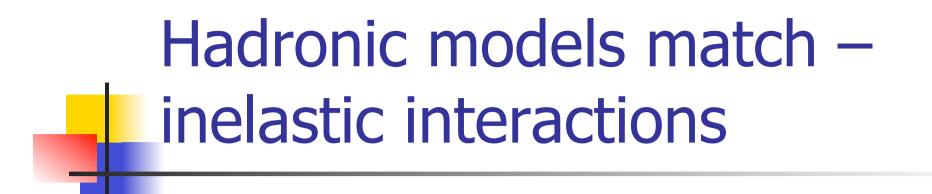
- To be used for specific applications, or for a given particle in a given energy range, for instance:
- Low energy neutrons
 - elastic, inelastic, fission and capture (< 20 MeV)
- Neutron and proton inelastic cross sections
 - 20 MeV < E < 20 GeV</p>
- Ion-nucleus reaction cross sections (several models)
 - Good for E/A < 1 GeV
- Isotope production data
 - E < 100 MeV
- Photo-nuclear cross sections

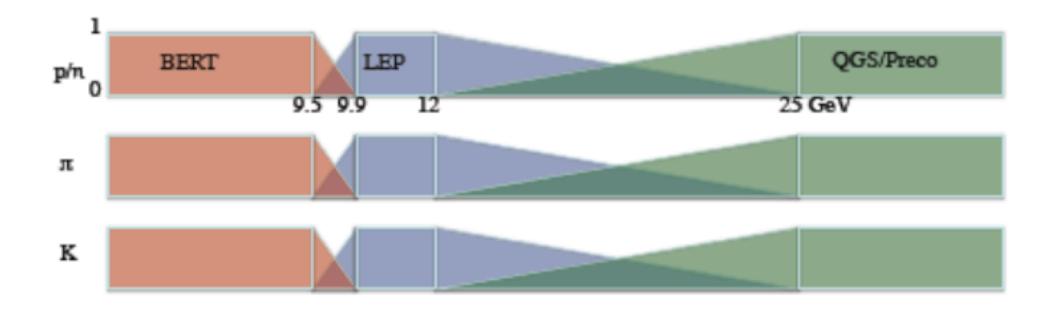
Information on the available cross sections at http://geant4.cern.ch/ support/proc_mod_catalog/cross_sections/

Thermal neutron scattering


- At thermal neutron energies, atomic translational motion as well as vibration and rotation of the chemically bound atoms affect the **neutron** scattering cross section and the energy and angular distribution of secondary neutrons
- The energy loss or gain of incident neutrons can be different from interactions with nuclei in unbound atoms
- Only individual Maxwellian motion of the target nucleus (Free Gas Model) was taken into account in the default NeutronHP models

Neutron HP Models


- Transport of **low-energy neutrons** in matter:
 - The energy coverage of these models is from thermal energies to 20 MeV
 - The modeling is based on the data formats of ENDF/B-VI, and all distributions of this standard data format are implemented
 - Includes cross sections and final state information for *elastic* and *inelastic scattering, capture, fission* and *isotope production*
 - The file system is used in order to allow granular access to, and flexibility in, the use of the cross-sections for different isotopes, and channels
 - Code in sub-directory: /source/processes/hadronic/models/ neutron_hp


Hadronic model inventory

http://geant4.cern.ch/support/proc_mod_catalog/models

33

Recommended reference physics lists

A dedicated web page

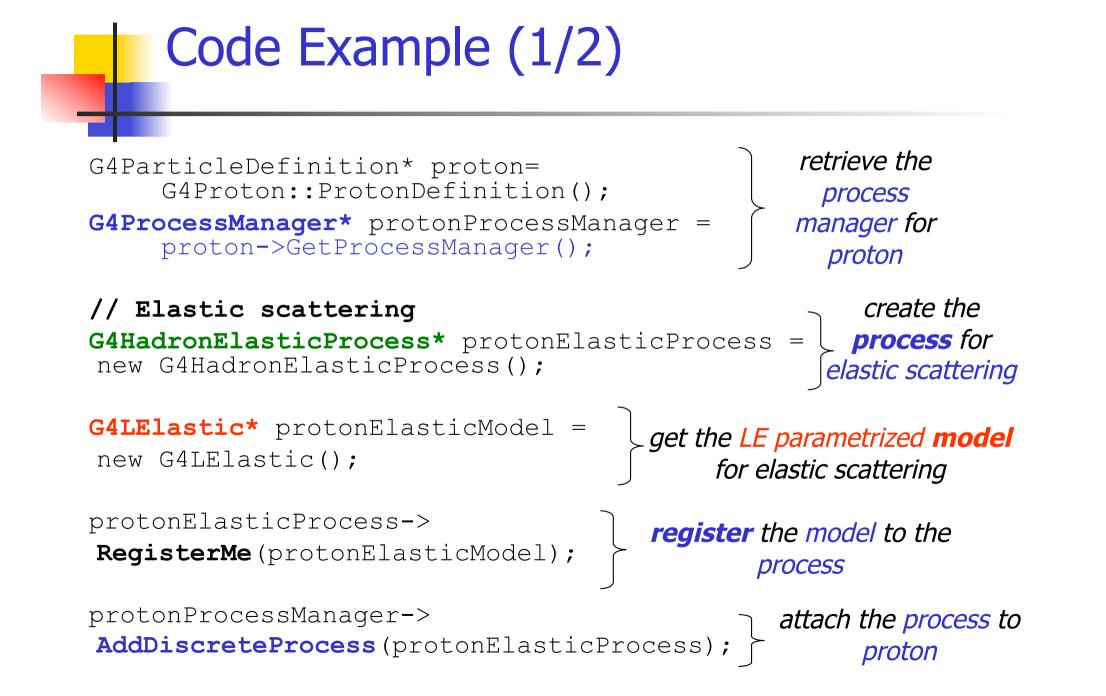
Info to help users to choose the proper physics list:

http://geant4.cern.ch/support/proc_mod_catalog/

physics_lists/physicsLists.shtml

Application fields are identified

- High energy physics
- LHC neutron fluxes
- Shielding
- Medical


...

Where to find information?

User Support

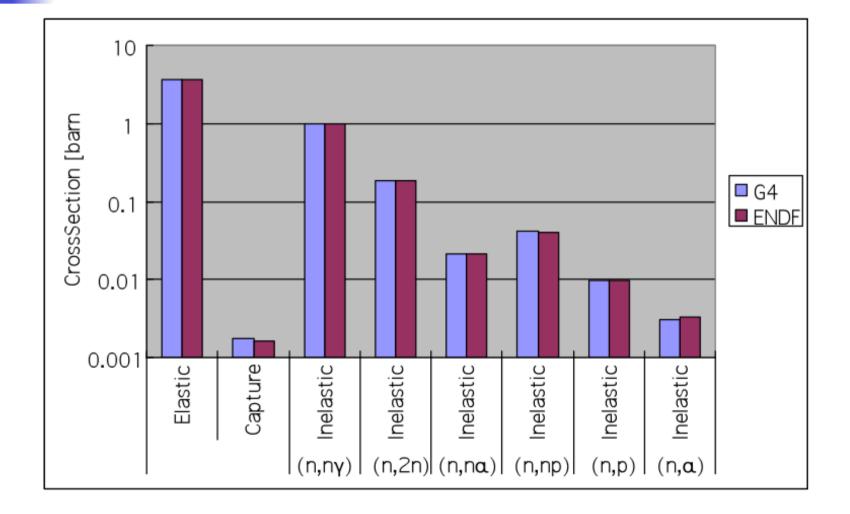
- 1. Getting started
- 2. Training courses and materials
- 3. Source code
 - a. Download page
 - b. LXR code browser -or- draft doxygen documentation
- 4. Frequently Asked Questions (FAQ)
- 5. Bug reports and fixes
- 6. User requirements tracker
- 7. User Forum
- 8. Documentation
 - a. Introduction to Geant4
 - b. Installation Guide
 - c. Application Developers Guide
 - d. Toolkit Developers Guide
 - e. Physics Reference Manual
 - f. Software Reference Manual
- 9. Physics lists
 - a. Electromagnetic
 - b. Hadronic

Code example (2/2)

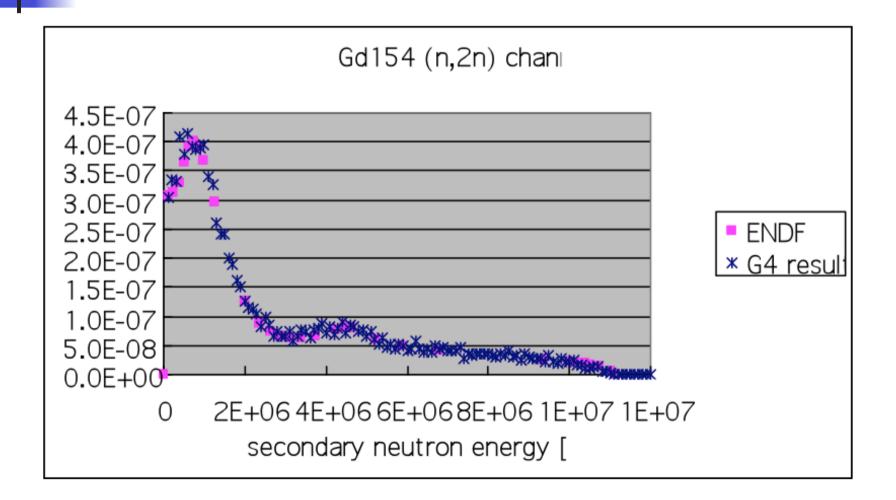
	<pre> // Inelastic scattering G4ProtonInelasticProcess* protonInelasticProcess{</pre>
Model 1	<pre>G4LEProtonInelastic* protonLEInelasticModel = new G4LEProtonInelastic(); protonLEInelasticModel-> SetMaxEnergy(20.0*GeV);</pre>
	<pre>protonInelasticProcess-> RegisterMe (protonLEInelasticModel); } registers LEP model to the process</pre>
Model 2	<pre>G4HEProtonInelastic* protonHEInelasticModel = new G4HEProtonInelastic(); protonHEInelasticModel->SetMinEnergy(20.0*GeV);</pre> gets the HEP model from 20 GeV
Ś	<pre>protonInelasticProcess ->RegisterMe (protonHEInelasticModel);</pre>

Quick overview of validation

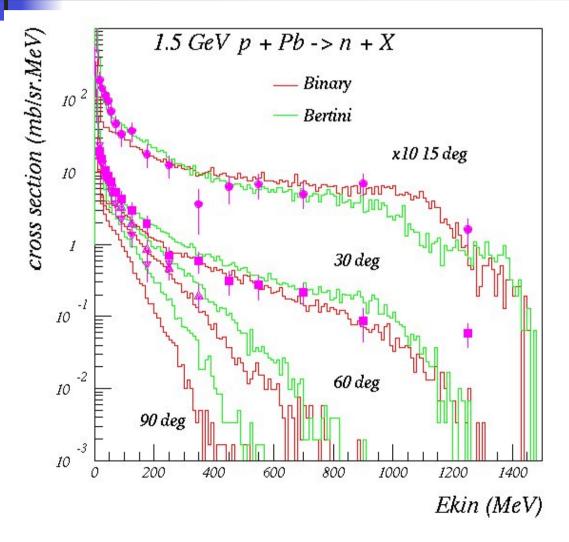
Hadronic validation


 A website is available to collect relevant information for validation of Geant4 hadronic models (plots, tables, references to data and to models, etc.)

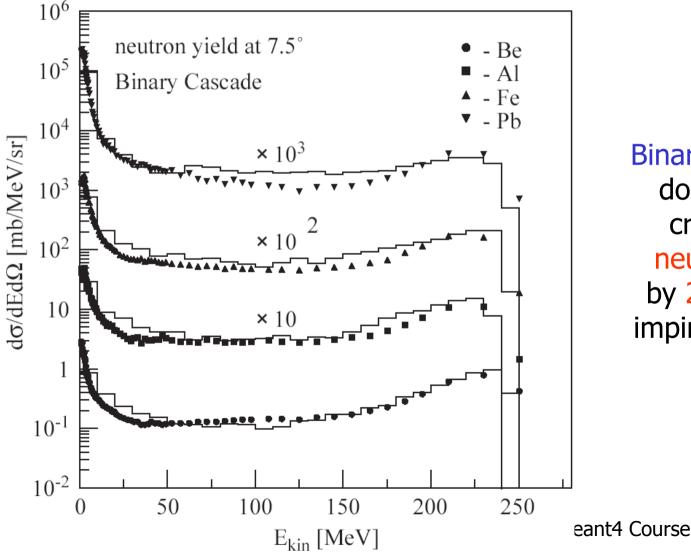
http://geant4.fnal.gov/hadronic_validation/


validation_plots.htm

- Several physics lists and several use-cases have been considered (e.g. thick target, stopped particles, lowenergy)
- Includes final states and cross sections


Some verification: channel cross section

Some verification: secondary energy spectrum



Nuclear fragmentation

Bertini and Binary cascade models: neutron production vs. angle from 1.5 GeV protons on Lead

Neutron production by protons

Binary cascade model: double differential cross-section for neutrons produced by 256 MeV protons impinging on different targets