

First Meeting 12.2012 ToF-Wall Activity Report

F. Balestra, F. Iazzi, R. Introzzi and H. Younis

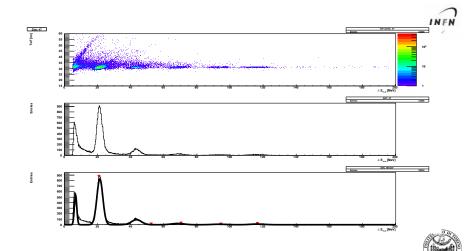
INFN PoliTO

December 13, 2012

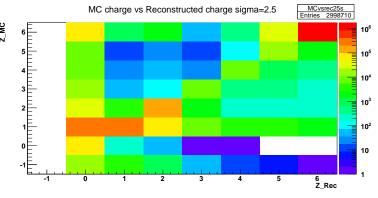
Overview

- Z id Performance on MC
- 2 Z id Efficiency and Contamination
- Calibration Stability
- Mext Steps

Peak identification on MC hits


The same approach used for ${\sf Z}$ id on production data has been followed

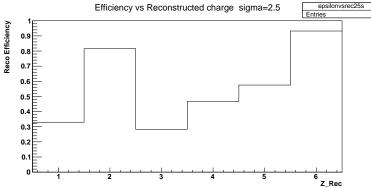
- ToF vs E_{loss} plots have been considered
- a ToF cut $(\pm 3 \text{ ns})$ has been applied to isolate main spots
- a projection on the energy axis has been produced for each slat
- peaks have been identified on the energy axis
 - ullet for each peak mean position and σ have been recorded
- when the released energy is within $n\sigma$ from a peak, the reconstructed Z is assigned accordingly
- ullet a cut at $\pm 2.5\sigma$ has been choosen for a good reconstructed statistics of Carbons



Peak identification on slat 47

Comparison of MC vs Reconstructed Charge at Present

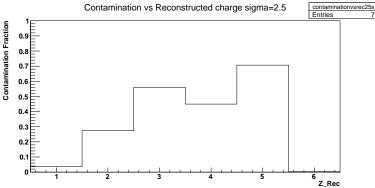
- a diagonal distribution is expected for perfect id
- not diagonal elements show misidentified charges, e.g. element (2,6
- Note: logarithmic color scale!



Efficiency

$$\epsilon(Z_{Rec}) = \frac{N(Z_{Rec} = Z_{MC})}{N'(Z_{MC})}$$

- $N(Z_{Rec} = Z_{MC})$: times the reconstructed and MC charges coincide
- $N'(Z_{MC})$: times a given Z occurs in MC (assumed as true Z)



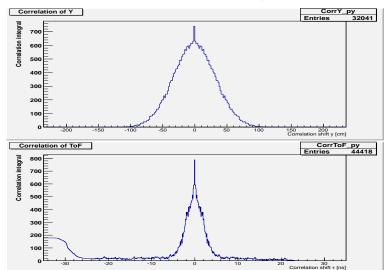
Contamination

$$\kappa(Z_{Rec}) = \frac{M(Z_{Rec} \neq Z_{MC})}{M'(Z_{Rec})}$$

- $M(Z_{Rec} \neq Z_{MC})$: times the reconstructed and MC charges differ
- $M'(Z_{Rec})$: times a given Z is reconstructed

Calibration Stability - Correlation Method

- a correlation method has been applied to evaluate the calibration stability over time (runs)
- run distribution patterns have been compared with a reference distribution (merge of runs 260-264)
- the rerference group has been choosen as close as possible to calibration sweepruns
- the correlation function between the run and the reference distribution, A(X) and B(X) respectively, has been evaluated

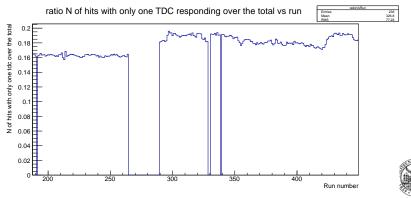

$$R(\xi) = \int A(X - \xi)B(X)dX$$

 the peak position indicates the calibration drift - peak position @ zero means no drift

• run 400, slat 40 - Y and ToF correlation plots

Work in progress

- for Eloss the method must be modified
 - Eloss is non linear with respect to calibration parameters
 - pedestals can be compared first and
 - then scaling correlation must be evaluated (a different correlation function is needed)



Under-threshold hits

several hits (mostly protons) release under-threshold energies

- only 1 TDC channel fires in the slat
- the plot shows the fraction of statistics that is lost for a missing TDC

Single Channel Issue

In order to recover some lost statistics it is necessary:

- exploit redundancy in TDC and ADC readings
 - · info for hits missing one reading can be completed
 - single channel TDC calibration can be retrieved from Y and ToF calibration parameters (Δ_t, Δ_b)
 - single channel ADC calibration is needed
 - the sweeprun vertical coordinate is provided by wedge bar position
 - wedge bar is centered on the slat height (just checked)
 - wedge bar height is 7 cm calibration beam position uncertainty is $\pm 3.5 \, \text{cm}$
 - Y can be better estimated by cross-checking with Vertex data (need for HIReco)
- any re-calibration should consider the position of MUSIC dead material for side and central slats

Single channel ADC calibration

$$ADC'_t = \epsilon_t E_0 e^{-\alpha[Ls - Y]}$$

$$ADC'_b = \epsilon_b E_0 e^{-\alpha[L(1 - s) + Y]}$$

$$E_0 = \sqrt{\epsilon_t * \epsilon_b * e^{-\alpha * L}} * \sqrt{ADC'_t * ADC'_b} = K * \sqrt{ADC'_t * ADC'_b}$$

$$Y = \frac{1}{2\alpha} \log \left(\frac{ADC_t}{ADC_b} \frac{\epsilon_b}{\epsilon_t} \right) - \frac{L}{2} (1 - 2s)$$

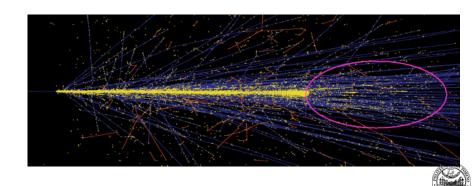
• ϵ_t and ϵ_b are PMT gain factors, α is the attenuation coefficient along the slat, L is the slat length, $s \in (0,1)$ is the length fraction indicating where the beam impings (Ls is the distance from the top PMT, L(1-s) from the bottom one)

Single channel ADC calibration

- E_0 , Y are known in sweepruns: 2 equations, 3 unknowns $(\epsilon_t, \epsilon_b, \alpha)$
- WANTED α : two different coordinates Y and Y' must be selected to provide another equation
 - larger $\Delta_Y = Y Y'$ lead to lower uncertainty propagation to calibration parameters
 - the beam spot spread is less than 1.5 cm in sweepruns!
 - alternate take: assume α is the same in all slats, separate two hit distributions, for Y and Y' respectively, on one slat in production runs and build two equations

Front and Rear Hit Clustering

- gather data from FRONT and REAR walls related to a unique track
- a cluster can be built on the basis of suitable criteria
 - X (slat), Y, ToF and Eloss compatibility
 - tilted tracks on right side slats lead to higher shift in slat number between front and rear walls
 - analogous reasoning holds for Y coordinate higher Y implies higher vertical shift
 - ullet REAR-panel ADC measurements have to be handled appropriately (e.g. pprox 116 MeV loss on front-wall for Carbon)
 - issue: no direct track coming from target through ALaDiN acceptance flange reaches the first 33 slats



THE END

INFN

Thanks for your attention

