Atlas New Small Wheel Upgrade

Introduction

Small Wheel muon chambers need to be upgraded (in phase I)

- ▶ Measured rate higher than estimate (rate limit at ~5x10³⁴ cm⁻²s⁻¹)
- Reduce the fake rate at p_T>20GeV (at present small wheel not used in LVL1 trigger)

Motivation for NSW: reduction of fake rates

- Reduction of fake rates with NSW:
 - 0. w/o NSW
 - 1. requiring the presence of a segment in NSW
 - 2. requiring NSW segment pointing to IP (9 < 1mrad)
 - 3. requiring NSW segment matching in (η, ϕ) the EM muon chamber trigger segment

Efficiency of LI_MU20 trigger

NSW selection of technology

- Three proposals
 - TGC+sMDT
 - TGC+sRPC
 - Micromegas
- Options reduced to (early 2012)
 - TGC+MM
 - TGC+MM+MDT
- Selected option:
 - TGC+MM
 - With milestones
 - Approved by ATLAS
 - I7-18 Jan. 2013 NSW meeting to evaluate milestones accomplishment

NSW layout

A tentative Layout of the New Small Wheels and a sketch of an 8-layer chamber built of two multilayers, of four active layers each, separated by an instrumented Al spacer for monitoring the internal chamber deformations

NSW Institutes & timescale

51 participating Institutes (interests expressed in kick-off meeting in Aug. 2012) in Micromegas, TGC, trigger, services

TDR

- 20 Institutes involved in Micromegas
 - INFN: 7 (MM/ MM+trigger) + 2 (trigger) commissioning
- Main milestones:
 - Resolution O(100 um) at impact angle 0<theta<30deg
 - Performance in magnetic field
 - Spark suppression
 - Ageing properties
 - Demonstration of large chamber construction O(Im2)
 - Progress in industrial production

Micromegas operating principle

- Micromegas (I. Giomataris, G. Charpak et al., NIM A 376 (1996) 29) are parallelplate chambers where the amplification takes place in a thin gap, separated from the conversion region by a fine metallic mesh
- The thin amplification gap (short drift times and fast absorption of the positive ions) makes it particularly suited for high-rate applications

No space charge effect Reduced ballistic deficit (only for fast electronics <20 ns) Intrinsic rate limit ~200 MHz/cm²

Test beams

- Huge effort of Micromegas community to run almost continuous beam tests in 2012:
 - CERN:
 - I week in June (H2 at CERN SPS)
 - 2 weeks in July/August (H6 at CERN SPS)
 - 2 weeks in September (H6 at CERN SPS)
 - 2 more weeks in October/November (H6 at CERN SPS)
 - Frascati:
 - ► I week in July
 - I week in November
 - Saclay
 - Several tests on irradiation
 - Micromegas installed in ATLAS

Performance of small chambers

- $10x10 cm^{2}$
- Ar:CO2 93:7
- APV25 readout (SRS system)
- 400 um strip pitch
- 5 mm drift gap

Space resolution: uTPC operation

100

80

60

40

20

0

-20 -15 -10

- For the uTPC mode operation a good time resolution on single hit O(<10ns) is
- APV samples signal at 25ns
- Time extracted by fitting the binned signal shape
- Intrinsically MM can do much better

TB in Frascati:
$$\sigma t = 6$$
 ns

Time distributions

- In what follows Vd is not optimized (calibrated) chamber by chamber. A unique value from simulation (Garfield) V_d=4.7 cm/ us is used
- Optimization will improve the spatial resolution (work in progress)

- From the ti distribution the T0 and y-t relation (V_{drift}) can be extracted
- Bi-FermiDirac fit

 V_{drift} not the same for all chambers

Spatial resolution

- First method: comparison of homologous (sameyhalfil orientation) chambers
 - Time jitter equal in the two chambers:
 difference X₁-X₃ removes the jitter
 - Resolution computed as

$$\sigma(X) = \frac{\sigma(X_1 - X_3)}{\sqrt{2}}$$

Resolution equal for both chambers

Beam divergency (measured to be ~24 um) negligible

- Distributions show tails \rightarrow fit with double gaussian
- Resolutions quoted either as sigma of the 'core' gaussian or as weighted average of two gaussians

uTPC single chamber resolution

First method

Spatial resolution

- Second method: global fit
 - Time jitter is corrected by reconstructing global tracks from uTPC hits separately for even and odd chambers
 - A global fit is then applied to the uTPC hits of all chambers but the one under study
 - Standard uTPC tracklet is reconstructed for the chamber under study
 - X_{half} comparison between global and local track

uTPC single chamber resolution

Second method

Correlation with centroid

| |6

• Resolution in uTPC and with the centroid method are anticorrelated \rightarrow can be used to improve the resolution:

$$\mathbf{x}_{comb} = (\mathbf{x}_{half} + \mathbf{x}_{cent}) / 2 \qquad \qquad \mathbf{x}_{comb} = \frac{W_{half} \mathbf{x}_{half} + W_{cent} \mathbf{x}_{cent}}{W_{half} + W_{cent}}$$

Micromegas single plane spatial resolution

Combined uTPC and centroid – first method (MM difference)

Micromegas single plane spatial resolution

Combined uTPC and centroid – second method (global fit)

P. lengo - NSW status 21/12/12

Efficiency Mesh Inefficiency distribution on MM strip plane Strips Track reconstructed with other MM planes T1 🕨 T2 Inefficiency due to pillars expected 1.1% Т3 T4 Τ5 Chamber T **T2** Т3 **T4** Т5 **T6** Т7 **T8** Τ6 Inefficiency (%) Τ7 T8 hnocluster_T4 hnocluster_T5 hnocluster_T5 hnocluster T4 Entries 650 Entries 684 80 **E** Mean 6.213 Mean -6.725 50 RMS 2.573 RMS 2.648 70 E 60 F 40 50 30 40 **F** 30 20 20 Л 10 1Ոռ 10 0 Cluster Position [mm] Cluster Position [mm] 8 -10 -8 19 P. lengo - NSW status 21/12/12

Test with magnetic field

Garfield simulation

P. lengo - NSW status 21/12/12

Beam profile

23

Data – cluster position vs B

P. lengo - NSW status 21/12/12

24

Data-MC comparison

Lorentz Angle vs drift field: cluster size method

P. lengo - NSW status 21/12/12

P. lengo - NSW status 21/12/12

26

VMM1: preliminary track slope resolution

Sparks: problem and solution

- Sparks can be drastically reduced by adding a _____ resistive layer on the r/o strips
- Specific R&D to optimize the resistive protection
- Excellent results

 Additional stability observed in 'reversed' operation mode: HV applied to resistive strips, mesh grounded

X-ray irradiation

Equivalent charge generated during 5 years HL-LHC

Wi (Argon + 10% CO₂) = 26.7 eV Gain = 5000 MIP deposit in 0.5 cm drift = 1248.5 eV

Charge per iteration = 37.4 fC

Expected rate at the HL-LHC : I0kHz/cm²

5 years of HL-LHC operation (200days X year)

Total detector charge generated during HL-LHC operation is estimated to be 32.5 mC/cm²

During the X-ray ageing test it was generated a total charge of

 $Q_{ageing} = 765 \text{mC} \text{ in } 4 \text{cm}^2$,

during a total exposure time of

T_{exposure} = IIdays 2I hours

And therefore, the total charge to be generated at the HL-LHC during 5 years with more than a factor 5 of security factor.

29

Detector operated in data taking conditions

Gas mixture :Argon + 10% CO2 Gas Flow = 0.5 l/h Gain 3000 HVm = 540V HVd =790 V

X-ray generator set-up at 10 kV 5 mA

X-ray exposure in a small active area region of 4 cm².

X-ray irradiation

Measurements at different position were performed by using a mask with several equi-distant holes over the active region of the detector.

Normalized gain measurements show the relative compatibility with position.

The exposed region does not show a considerable change respect to the non-exposed regions.

Exposed detector RI7a

NON Exposed detector R17b

Neutron exposure

Neutron exposure

Neutron flux at the level of CSC in ATLAS ~3.10⁴ neutrons/cm2/s

10 years at HL-LHC (=> $\times 10.10^7$ sec) with a security factor $\times 3$

At the HL-LHC, we will accumulate $1,5.10^{13}$ n/cm2

At Orphee we have ~ 8.10^8 n/cm2/sec so in 1 hour we have : $8.10^8 \times 3600 \sim 3.10^{12}$ n/cm2/hour which is about 2 HL-LHC years (200 days year).

Gamma irradiation

Measurements at different position were performed by using a mask with several equidistant holes over the active region of the detector (Same mask used along all the aging tests). Source de Cobalt 60 placed at 50cm from the source :

- 20 days ~ 10 y-LHC equivalent
- Total exposure time: 480 h
- Total integrated charge: I484 mC
- Mean mesh current: 858 nA

Yam the

9 Holes mask

Fe55 source calibrations at different hole positions

Detector transparency

Alpha irradiation

Alpha source installed inside the chamber and centered just on top of the drift grid.

<u>Alpha spectrum</u>

Mesh current during alpha irradiation

RI7a detector irradiated with an alpha

Gain profile before and after irradiation

Irradiated chamber tested on beam

No efficiency reduction observed

P. lengo - NSW status 21/12/12

35

Test on L1 chamber (1x1 m²)

- Im2 chamber obtained with 2 Ix0.5 PCBs on AI support
- Floating mesh
- 450 um strip pitch

$1 \ge 1 m^2$ sketch (not to scale)

$1 \ge 1 m^2$ sketch (closed)

Test of L1

P. lengo - NSW status 21/12/12

Test on L1: current

- Stable operation during 2 months at the H6 beam line
- Working point ~550V (wrt 500V for TX chambers)
- Current during spills <100nA (beam intensity ~2.5x10⁵/spill); few nA in between spills

L1 current

41

► HV Scan (beam intensty ~1.5 10⁵/spill)

L1: Charge uniformity along the strip

L1: Gain

Gain at different Y positions

L1: resolution for normal tracks

L1: Inefficiency

The 2 x 1 m^2 MM (milestone)

Parameters:

- Chamber dimensions I x 2.4 m² (overall, 0.92 x 2.12 m² active area)
- 2 x 2048 strips (0.45 mm pitch), separated in the middle
- Flatness of readout plane to better than 50 µm over full area

Construction:

- Follow the scheme used for the $I \times I m^2$ chamber
 - Four 0.5 x 1.2 m² PCBs (thickness 0.5 mm) glued to stiffening panel
 - PCB boards for Ist chamber have been made at CERN
- Resistive strips have been printed (in industry), with interconnects
- Floating mesh, integrated into drift-electrode panel

The making of the drift panel

Measurement of four readout boards for 2 x 1 m^2 MM (CERN)

48

Readout board improvements

- Printing of resistive and 2nd coordinate strips instead of etching
 - First tests with printing the resistive strips were done in Kobe (Japan) and at CERN with promising results
 - ZI and Z2 chambers (CERN), 2D chambers with 2nd coordinate and resistive strips printed, are now in H6 test beam, working very nicely with much reduced spark rate (smoother surfaces)
 - Kobe chamber has arrived at CERN, to be measured in H6 this week
- Resistive strip interconnects
 - Incorporated in ZI and Z2, first impression: looks fine
 - Next step: optimization of resistivity values
- Zebra connection scheme
 - ZI and Z2 chambers incorporate elastomer Zebra interconnects that do not require soldering
 - Works fine, after reworking a bit the mechanics

Z1 & Z2 resistive strips

Z1 radiography (⁵⁵Fe)

Micromegas in ATLAS

 Four small MM chambers were installed in ATLAS behind the last muon station in April 2011 and smoothly operated all along the 2011 (background measured to be ~3 Hz/cm² at L=10³⁴ cm⁻²s⁻¹)

First large size resistive MM assembled and tested in muon beam in 2011

- > To be installed in the ATLAS cavern on the small wheel early 2012 for test
- A small prototype will be installed to evaluate the possibility to replace the Minimum Bias Trigger Scintillator of ATLAS with Micromegas

Integration in the ATLAS acquisition system

P. lengo - NSW status 21/12/12

MBT0 rates (preliminary)

- Random trigger (62 Hz)
- Record activity over
 525 ns (fiducial 300 ns)
- Events scanned by eye
 + program
- Rates: ≈20 kHz/cm² @ L=10³³ cm⁻² s⁻¹
 - (or I MHz/cm² @ L=5 x 10³⁴ cm⁻² s⁻¹)
- Rates scale with luminosity

Integrazione delle Micromegas in ATLAS DAQ tramite link seriale ad alta velocità su FPGA

Domenico della Volpe, Raffaele Giordano, Sabrina Perrella e Vincenzo Izzo

Obiettivo del lavoro

- Permettere la lettura delle camere MicroMegas installate in ATLAS tramite il sistema di TDAQ esistente in esperimento
- Data l'obsolescenza di alcuni componenti usati in passato nel TDAQ di ATLAS, realizzare un progetto completamente integrato su dispositivi FPGA
- bassi costi di produzione e brevi tempi di sviluppo
- Caratterizzazione, test e integrazione in esperimento del sistema di trasmissione
- Caratterizzazione del sistema di trasmissione anche per utilizzi futuri in apparato (es. altri subdetector, maggiori data rates e throughput)

SRS-based readout

- Front end electronics:
 - APV25 chips (CMS tracker, no other choice)
 - HDMI cables (LV, data)
- ROD in UX15:
 - 2x SRS FEC digitization, peak finding, zero suppression
 - DTC (one per FEC) link to SRU
 - SRU EB, TTC, LV1, DCS, SLINK
- USA15
 - CSC TTC, DATA, DTC fibres
 - Run Control Application (on RC PC)
 - ROS

ATLAS S-LINK Transmitter

TLK2501 su FPGA

Il contributo originale di questo lavoro: progettare un **emulatore del TLK2501** su FPGA ultima generazione utilizzato sfruttando le potenzialità del **GTX**

transceiver riprogrammabile

incorporato nell'ultima generazione di FPGA

Emulatore Trasmettitore

Miglioramento e Caratterizzazione

- Richiesta del gruppo del CERN per lo sviluppo dei link Miglioramento del protocollo (Aumento del throughput)
- Necessità di realizzare anche la scheda ricevitore

Caratterizzazione di S-LINK

Conclusioni...

- Il progetto è stato qualificato in base alle attuali specifiche di S-LINK (line rate = 2.0 Gbps) con un BER < 10⁻¹²
- > È diventato un oggetto proprietario del CERN e è open source

...inoltre...

- Il protocollo è stato migliorato per raggiungere un throughput più elevato
- Il protocollo risulta funzionare fino a 4Gbps (5Gbps!)

...e sviluppi futuri

- > Caratterizzare limiti intrinseci del protocollo
- Protocollo GTX-GTX

Additional material