Analisi Dati ad LHC Risultati della Collaborazione ATLAS

Laboratorio di Fisica Nucleare Subnucleare e Astrofisica 5 Dicembre 2012

Analisi Dati ad LHC: Risultati della Collaborazione ATLAS

I principali ingredienti di una analisi ad LHC

Vediamo quali sono i principali strumenti necessari per produrre una misura di fisica delle particelle, basata sull'analisi di dati raccolti ad un acceleratore. Gli esempi analizzati saranno basati sul caso di acceleratori *pp* come LHC ed un esperimento quale ATLAS, ma hanno validità più generale.

In ordine sparso, anche se vagamente cronologico, faremo cenno ai principali strumenti adottati durante lo sviluppo di un'analisi dati:

- produzione di dati simulati, utilizzando tecniche montecarlo; strumento usato, ad esempio, per studi di fattibilità iniziali, controllo del fondo, estrazione del risultato finale
- software di ricostruzione e selezione di eventi; strumento usato per individuare quegli eventi che hanno buona probabilità di contenere il segnale che interessante e quindi contribuire all'analisi
- analisi per la caratterizzazione sui dati del comportamente del software di ricostruzione e selezione; strumento che consente, ad esempio, di mettere in relazione dati reali e simulazione
- tecniche di trattamento statistico dei dati; strumenti utilizzati per l'estrazione del risultato finale

RIASSUNTO DEI RISULTATI DI ATLAS

Produzione di dati simulati

Avere a disposizione dati simulati che riguardino il fenomeno studiato, è una risorsa utile in ogni fase dell'analisi, dalle fasi preliminari all'estrazione del risultato finale Il processo di produzione di questi dati deve essere effettuato in modo che essi siano potenzialmente indistinguibili da dati reali.

Riassunto dei risultati di ATLAS 000

Produzione di dati simulati

Avere a disposizione dati simulati che riguardino il fenomeno studiato, è una risorsa utile in ogni fase dell'analisi, dalle fasi preliminari all'estrazione del risultato finale Il processo di produzione di questi dati deve essere effettuato in modo che essi siano potenzialmente indistinguibili da dati reali.

Alcuni degli usi più ovvi che si fanno dei dati simulati:

- vedremo più avanti quanto sia fondamentale saper selezionare correttamente il segnale che ci interessa studiare: i dati simulati possono essere usati per ottimizzare il processo di selezione di eventi
- quasi sempre, guardando la distribuzione di una variabile, si guarda una sovrapposizione di distribuzioni, dovute al segnale, ma anche a fondi di diversa natura; sui dati simulati, contrariamente a quanto accade guardando dati reali, si può fare in modo univoco uno studio delle diverse componenti di una distribuzione
- ogni misura sperimentale va confrontata con le attese teoriche, le quali però dipendono dal rivelatore, dalle sue prestazioni, ecc.; è quindi necessario poter simulare completamente il fenomeno fisico studiato, per poter confrontare correttamente misura sperimentale e previsione teorica

Alcuni risultati di ATLAS

RIASSUNTO DEI RISULTATI DI ATLAS 000

Produzione di dati simulati

Avere a disposizione dati simulati che riguardino il fenomeno studiato, è una risorsa utile in ogni fase dell'analisi, dalle fasi preliminari all'estrazione del risultato finale Il processo di produzione di questi dati deve essere effettuato in modo che essi siano potenzialmente indistinguibili da dati reali.

Selezione di eventi interessanti: trigger

Come visto nella prima presentazione, è assolutamente necessario filtrare in tempo reale i dati acquisiti dall'esperimento.

Dal punto di vista tecnico, si tratta di ridurre la banda passante dei dati, dal punto di vista fisico, occorre far si che quella banda passante sia utilizzata in modo intelligente, selezionando con la massima efficienza possibile i dati interessanti.

Questo significa che il primo passo di una analisi in un esperimento come ATLAS è assicurarsi che esista un trigger in grado di selezionare il segnale che ci interessa studiare!

E, se non esiste, serve implementarlo al più presto, per non perdere collisioni preziose!

La prima cosa che il trigger deve fare è trasformare le informazioni di basso livello dei rivelatori in informazioni di più alto livello, come coincidenze di segnali su più piani di rivelatori, cluster di energia nei calorimetri, tracce di particelle cariche, ecc.

RIASSUNTO DEI RISULTATI DI ATLAS

Selezione di eventi interessanti: trigger

RIASSUNTO DEI RISULTATI DI ATLAS

Selezione di eventi interessanti: trigger

Selezione di eventi interessanti: trigger

Gli ingredienti di base per la selezione di trigger sono, principalmente, i seguenti:

- presenza di leptoni, eventualmente isolati (e, μ , τ)
- presenza di fotoni
- presenza di jet
- presenza di jet da beauty (b-jet)
- quantità di energia trasversa rilevata in totale nei calorimetri
- quantità di energia trasversa mancante

Questi possono essere sfruttati per costruire "segnature" diverse, sia lavorando sulla loro soglia in momento trasverso, sia operandone una combinazione in modo più o meno complicato:

- trigger di singolo oggetto: mu24i_tight, mu36_tight, g120_loose
- trigger combinati: 2b45_loose_j145_j45, 2mu4_xe60
- trigger specifici: 2mu6_Jpsimumu

Selezione di eventi interessanti: ricostruzione

Gli eventi ritenuti interessanti a livello di trigger, vengono salvati su disco per essere analizzati "offline", ovvero non in tempo reale.

Analogamente a quanto visto per il trigger, l'analisi dati "offline" trasforma le informazioni di basso livello prodotte dai rivelatori in informazioni di più alto livello. Diversamente da prima, non vi sono limitazioni su:

- precisione della ricostruzione, ad esempio in termini di numero di iterazioni
- tempo di esecuzione per ciascun algoritmo
- numero di algoritmi eseguiti
- accesso ai dati e ai database di calibrazione dei rivelatori

Tutto questo si traduce in una qualità superiore degli oggetti ricostruiti: tracce di particelle cariche nei traccianti interni e nello spettrometro di muoni, jet e fotoni ricostruiti nei calorimetri, ...

Selezione di eventi interessanti: identificazione

Gli oggetti di alto livello vengono poi combinati al fine di identificare la natura delle particelle presenti nello stato finale degli eventi selezionati.

Vediamo un paio di esempi: ricostruzione combinata di muoni

Selezione di eventi interessanti: identificazione

Gli oggetti di alto livello vengono poi combinati al fine di identificare la natura delle particelle presenti nello stato finale degli eventi selezionati.

Vediamo un paio di esempi: identificazione di jet con beauty

- b-tagging is a powerful tool to separate a heavy flavor signal (b, top, Higgs, SUSY) from backgrounds.
- Identify decays of b-hadrons in jets by presence of
- tracks with large impact parameter and impact parameter significance.
- secondary decay vertex.
- Crucial to understand and have a good description of the impact parameter of tracks in jets.
- Correct estimate of error on primary and secondary vertex positions.

Ciascuna delle ricostruzioni e selezioni operate a livello di trigger e di identificazione offline è caratterizzata da diverse importanti proprietà, tra cui:

- l'efficienza sul segnale che si vuole selezionare; una piena efficienza non è mai raggiungibile per svariati motivi, tra cui: non perfetta copertura da parte dei rivelatori, inefficienze nell'acquisizione dati, inefficienze del software di ricostruzione, ...
- la capacità di rigettare oggetti o eventi che non corrispondono al segnale cercato; questa quantità può alternativamente essere espressa come frazione di selezioni fasulle (*fake*)
- la risoluzione; ovvero la precisione con cui una quantità viene ricostruita; ad esempio la risoluzione in energia che si ha per la ricostruzione di jet nei calorimetri oppure la risoluzione in impulso trasverso che si ha per la ricostruzione di tracce cariche

Una prima stima di questi parametri può essere fornita dallo studio dei dati simulati, ma una loro conferma deve venire dallo studio dei dati reali. Le analisi volte a misurare sui dati i parametri cruciali degli strumenti di ricostruzione e selezione vengono solitamete dette analisi di calibrazione.

Conoscere le suddette quantità è cruciale nell'estrazione di una misura. Un semplice esempio dell'importanza dell'efficienza di selezione:

- vogliamo misurare la sezione d'urto di produzione di muoni ad LHC
- ipotizziamo di poter trascurare la frazione di muoni fake ricostruiti
- conosciamo il numero totale di collisioni pp prodotte in un dato intervallo (luminosità integrata)

Per prima cosa dobbiamo stimare il numero di eventi che sono stati prodotti entro l'accettanza del rivelatore nell'intervallo studiato.

Questo numero N_{prod} sarà dato da

$$N_{prod} = rac{N_{meas}}{\epsilon_{trigger} \cdot \epsilon_{offline}}$$

dove

- N_{meas} è il numero di eventi osservati nel rivelatore
- $\epsilon_{trigger}$ è l'efficienza della selezione di trigger
- $\epsilon_{offline}$ è l'efficienza della selezione offline

Esempi di analisi di calibrazione: studio della curva di accensione dei trigger di jet. Si può facilmente studiare, se si dispone di un trigger *unbiased* (scorrelato rispetto alla selezione che si vuole studiare), l'efficienza della selezione di trigger relativa a quella offline in funzione dell'energia dell'oggetto selezionato (ad es. un jet).

Esempi di analisi di calibrazione: studio dell'efficienza di ricostruzione di muoni combinati.

Se siamo in grado di selezionare un segnale fisico noto, legato all'oggetto che vogliamo caratterizzare, possiamo ricavare l'efficienza di selezione dell'oggetto studiando il comportamento del segnale fisico.

Ad esempio, possiamo analizzare decadimenti $Z \rightarrow \mu^+ \mu^-$ e $J/\Psi \rightarrow \mu^+ \mu^-$ selezionati tramite la richiesta di un singolo muone combinato e una traccia nei tracciatori interni:

Esempi di analisi di calibrazione: studio dell'efficienza di ricostruzione di muoni combinati.

Se siamo in grado di selezionare un segnale fisico noto, legato all'oggetto che vogliamo caratterizzare, possiamo ricavare l'efficienza di selezione dell'oggetto studiando il comportamento del segnale fisico.

Ad esempio, possiamo analizzare decadimenti $Z \to \mu^+ \mu^-$ e $J/\Psi \to \mu^+ \mu^-$ selezionati tramite la richiesta di un singolo muone combinato e una traccia nei tracciatori interni:

- ricostruiamo il picco di massa invariante di coppie $\mu^+\mu^-$ (muone combinato + traccia) e contiamo quanti eventi di segnale abbiamo "sotto" al picco corrispondente alla massa della Z o della J/Ψ
- applichiamo la selezione che vogliamo caratterizzare (muone combinato) al secondo muone della coppia
- calcoliamo di quanto e' diminuito il numero di eventi di segnale "sotto" al picco
- il rapporto fra queste due quantità è proprio l'efficienza di selezione di singolo muone combinato

Esempi di analisi di calibrazione: studio dell'efficienza di ricostruzione di muoni combinati.

Se siamo in grado di selezionare un segnale fisico noto, legato all'oggetto che vogliamo caratterizzare, possiamo ricavare l'efficienza di selezione dell'oggetto studiando il comportamento del segnale fisico.

Ad esempio, possiamo analizzare decadimenti $Z \rightarrow \mu^+ \mu^-$ e $J/\Psi \rightarrow \mu^+ \mu^-$ selezionati tramite la richiesta di un singolo muone combinato e una traccia nei tracciatori interni:

Esempi di analisi di calibrazione: studio dell'efficienza di ricostruzione di muoni combinati.

Se siamo in grado di selezionare un segnale fisico noto, legato all'oggetto che vogliamo caratterizzare, possiamo ricavare l'efficienza di selezione dell'oggetto studiando il comportamento del segnale fisico.

Ad esempio, possiamo analizzare decadimenti $Z \rightarrow \mu^+ \mu^-$ e $J/\Psi \rightarrow \mu^+ \mu^-$ selezionati tramite la richiesta di un singolo muone combinato e una traccia nei tracciatori interni:

Alcuni esempi di risultati di ATLAS

È molto difficile riassumere brevemente il panorama delle analisi svolte dagli esperimenti di LHC, o ATLAS in particolare. La generalità dell'esperimento garantisce infatti accesso, con un unico setup sperimentale, all'analisi di diversi settori della fisica delle particelle.

Per rendere l'idea:

- esistono 7 macro-gruppi di analisi: Higgs, SUSY, Exotics, Top, Standard Model, B-physics, Heavy Ions
- ciascuno è suddiviso in sotto-gruppi in base, ad esempio, allo stato finale analizzato (sotto-gruppi Higgs), alla tipologia di particelle cercate (sotto-gruppi SUSY) alla proprietà misurata (sotto-gruppi Top)
- ad ogni sotto-gruppo fanno capo diverse analisi, con una numerosità di partecipanti molto varia, che va da analisi portate avanti da una o due persone, fino ad analisi che coinvolgono direttamente decine di membri dell'esperimento

Faremo quindi solo una brevissima carrellata di alcune misure pubblicate da ATLAS, partendo da quelle legate a oggetti noti e ben decritti dal Modello Standard e portandoci poi verso lo studio di regioni inesplorate della fisica delle particelle elementari.

Alcuni risultati di ATLAS 00000 Riassunto dei risultati di ATLAS

Studio di produzione di coppie $\mu^+\mu^-$ e coppie $t\bar{t}$

Tra i primi studi effettuati da ATLAS vi sono state le misure dello spettro inclusivo di coppie di muoni di segno opposto e delle proprietà del quark top. Utili a fini di calibrazione, misura sezione d'urto di particelle note ...

Alcuni risultati di ATLAS 00000 RIASSUNTO DEI RISULTATI DI ATLAS

Studio di produzione di coppie $\mu^+\mu^-$ e coppie $t\bar{t}$

Tra i primi studi effettuati da ATLAS vi sono state le misure dello spettro inclusivo di coppie di muoni di segno opposto e delle proprietà del quark top. Utili a fini di calibrazione, misura sezione d'urto di particelle note ...

Alcuni risultati di ATLAS 00000 Riassunto dei risultati di ATLAS 000

Studio di produzione di coppie $\mu^+\mu^-$ e coppie $t\bar{t}$

... e, con più statistica, per estendere la ricerca a potenziali nuove particelle di massa superiore a quella di Z e W e proprietà analoghe (Z', W')

Riassunto dei risultati di ATLAS

Studio di produzione di coppie $\mu^+\mu^-$ e coppie $t\bar{t}$

... e, con più statistica, per estendere la ricerca a potenziali nuove particelle di massa superiore a quella di Z e W e proprietà analoghe (Z', W')

Alcuni risultati di ATLAS 00000 RIASSUNTO DEI RISULTATI DI ATLAS

Misura di produzione di coppie di bosoni

Con ulteriore statistica si possono cominciare a misurare, con precisione, processi a bassa sezione d'urto predetti dal Modello Standard, per verificare la compatibilità tra teoria ed esperimento e vincolare il fondo di altri processi fisici. Ad esempio: sezione d'urto per il processo $ZZ \rightarrow l^+l^-l^+l^-$

RIASSUNTO DEI RISULTATI DI ATLAS

Misura di produzione di coppie di bosoni

Con ulteriore statistica si possono cominciare a misurare, con precisione, processi a bassa sezione d'urto predetti dal Modello Standard, per verificare la compatibilità tra teoria ed esperimento e vincolare il fondo di altri processi fisici. Ad esempio: sezione d'urto per il processo $ZZ \rightarrow l^+l^-l^+l^-$

Riassunto dei risultati di ATLAS 000

Ricerca del bosone di Higgs

Ricerca portata avanti in diversi canali di decadimento, sia per consolidare la ricerca, sia per verificare se esistono deviazioni dal Modello Standard nei decadimenti previsti.

Riassunto dei risultati di ATLAS 000

Ricerca del bosone di Higgs

Ricerca portata avanti in diversi canali di decadimento, sia per consolidare la ricerca, sia per verificare se esistono deviazioni dal Modello Standard nei decadimenti previsti.

Riassunto dei risultati di ATLAS 000

Ricerca del bosone di Higgs

Ricerca portata avanti in diversi canali di decadimento, sia per consolidare la ricerca, sia per verificare se esistono deviazioni dal Modello Standard nei decadimenti previsti.

Osservazione di una nuova particella compatibile!

Ricerca di un nuovo segnale spesso interpretata in termini di esclusione. Linea tratteggiata: dati simulati per solo fondo; si grafica, per ogni massa, la sezione d'urto per il segnale (diviso SM) esclusa al 95%, date le fluttuazioni del fondo Linea continua: idem, sui dati reali, che includono fondo e potenziale segnale Tratteggio orizzontale: per le masse in cui la linea sperimentale sta sotto tale valore, si può escludere l'ipotesi di segnale SM

Discrepanze tra teoria ed esperimento: indicano presenza di segnale nei dati reali; nel nostro caso, eccesso significativo a masse attorno ai 125 GeV!

Osservazione di una nuova particella compatibile!

Ricerca di un nuovo segnale spesso interpretata in termini di esclusione. Linea tratteggiata: dati simulati per solo fondo; si grafica, per ogni massa, la sezione d'urto per il segnale (diviso SM) esclusa al 95%, date le fluttuazioni del fondo Linea continua: idem, sui dati reali, che includono fondo e potenziale segnale Tratteggio orizzontale: per le masse in cui la linea sperimentale sta sotto tale valore, si può escludere l'ipotesi di segnale SM

Discrepanze tra teoria ed esperimento: indicano presenza di segnale nei dati reali; nel nostro caso, eccesso significativo a masse attorno ai 125 GeV!

Osservazione di una nuova particella compatibile!

RIASSUNTO DEI RISULTATI DI ATLAS

Un riassunto dei principali risultati: Standard Model

RIASSUNTO DEI RISULTATI DI ATLAS

Un riassunto dei principali risultati: SUSY

	ATLAS SUSY Searches* - 95% CL Lower Limits (Status: HCP 2012)				
MSUGRA/CMSSM 0 lep + is + F-	1-58 th 1 at Late 1 at Lat				
MSUGRA/CMSSM 1 len + i's + Ex	1-58.05 ¹ 8 TeV (41) 48-CONF-2012-104 124 TeV 0 = 0 mass				
Pheno model : 0 lep + i's + ET mine	L=58 (b) 8 TeV (ATLAS-CONF-2012-103) 1.18 TeV (0 mass (m(0) < 2 TeV, light y) ATLAS				
Pheno model : 0 lep + i's + ET meno	LISE TO A TEV ATLAS-CONF-2012-1021 1.38 TeV Q mass (m(q) < 2 TeV, light 2) Preliminary				
Gluino med $\overline{v}^{\pm}(\overline{0} \rightarrow c\overline{0}\overline{v}^{\pm}) : 1 \text{ len } + i's + F$	1-17 0°, 7 Tev (1200 4653) 900 GeV (1 mass (m/2) < 200 GeV m/2) = 4 m/2 (mm/3)				
GMSB (INI SP) : 2 len (OS) + i's + F	124 TeV (2004 453) 124 TeV (2008 453)				
9 GMSB (T NLSP) : 1-2 T + 0-1 lep + i's + E ^{T,miss}	142 0° 7 TeV (1210 1314) 120 TeV 0 (mass (may 10)				
GGM (bino NLSP) : yy + E ^{T,miss}	107 TeV (1220 0753) 107 TeV (1220 0753) 107 TeV (1220 0753)				
GGM (wino NLSP) : y + lep + E ^{T,miss}	Late (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1				
GGM (higgsino-bino NLSP): y + b + E ^{T,miss}	1-480° 7 Tev (1211 1167) end gave (1 mass (m/2) > 201 GeV)				
GGM (higgsing NLSP) : Z + jets + E_	13 = 7, 0 18V				
Gravitino I SP : 'monoiet' + F					
The second secon					
G G G (Vintual D) : 0 lep + 3 b-j s + E _{T,miss}					
$g \mapsto u_{T,miss}$ (virtually), 2 log + 1s + $E_{T,miss}$	and the second s				
G G G G G G G G G G G G G G G G G G G					
g g → tty (virtuart) = 0 lep + filtur-j s + E _{T,miss}	7 TeV results				
g→tty_tvirtual() . 0 lep + 3 b-j s + E _{T,miss}					
0 S					
E O DU, U, → IX . 3 IEU + JS + ET, miss					
T (light) T hot 1/2 log + b lot + F					
π (light), $\tau \rightarrow 0$, τ (light) $T \rightarrow 0$, τ (light) $T \rightarrow 0$					
$E_{\text{B}} = \frac{1}{2} $ (intedium), $i \rightarrow i \chi$. 2 lep + b-jet + $E_{T,miss}$					
$\frac{11}{2}$					
m m tr (neavy), t→ty . 0 lep + b-jet + E _{T,miss}					
TT T JE Class C Traiss	212 10 / 10 / 10 / 10 / 10 / 10 / 10 / 1				
$(1, 1 \rightarrow 0, 2 \text{ tep} + E_{T,\text{miss}})$	Let \mathbf{b} , reverse \mathbf{b} , reverse \mathbf{b} , \mathbf{b}				
≤ 0	$L_{10} = 0.5 \times 10^{-1} (1000.0004) = 1000000000000000000000000000000000000$				
$\chi_1 \chi_2 \rightarrow \chi_1 \chi_1 (vv), vv_1 (vv) = 3 \text{ lep } + E_{T,miss}$	Set GeV χ THESS $(m\chi) = m\chi$, $m\chi = 0, m(\chi)$ as above)				
$\chi_1 \chi_2 \rightarrow W^- \chi_1 \chi^- \chi_1 : 3 \text{ Iep } + E_{T, \text{max}}$	2013/018 (a tay (at CAS-COMP2012-154) 140-295 (GV) X, (1635 (MVZ) = MVZ), (MVZ) = 0, supports decodption				
Direct X, pair prod. (Awiob) . long-lived X,					
Stable g κ-nadrons : low p, pγ (full detector)	Line (a 1971) 385 Gev (g 1165)				
Stable t R-hadrons : low β, βγ (full detector)	Ellevis / Inv [121.130/] 883 GeV (11853				
GMSB : stable τ	L=4.7 mb , 7 TeV [1211.1597] 300 GeV 1 THASS (5 < tan 5 < 20)				
$\chi \rightarrow qq\mu (RPV) : \mu + heavy displaced vertex$	L=4.4 fb (, 7 TeV [1210.7451] 700 GeV q (TIASS (0.3×10 < k ₂₁₁ < 1.5×10 , 1 mm < ct < 1 m, g decoupled)				
LFV: pp→v,+X, v,→e+µ resonance	Last b, 7 tev (Pretiminary) 1.6 Tev (V, ITASS (2, 1, 0.10, 2, 2005)				
LFV: pp→v+X, v →e(µ)+t resonance	Let 6 b , 7 tev (Preiminary) 1.10 tev (V, IttelSS (Z ₃₁₇ -0.10, Z ₃₂₁₂₀ =0.05)				
5 Dilitical KPV CMOOW . Tiep + 7 js + E7,miss	L=47 m ,7 tev [ATLAS-CONF-2012-140] 1.2 tev [q = g (HaSS (ct ₁₂₀ < 1 mm)				
$\sim \chi_1 \chi_1 \chi_2 \rightarrow vv \chi_0, \chi_0 \rightarrow eev_\mu, euv : 4 lep + E_{T,miss}$	LINDORD 0 100 (012-10) 700 GeV X, 11655 (77, 125, 126, 125, 127, 125, 127, 125, 127, 125, 127, 127, 127, 127, 127, 127, 127, 127				
$L_L, L \rightarrow I\chi_1, \chi_1 \rightarrow eev_\mu, e\mu v_\mu : 4 lep + E_{T,miss}$	Linson , e int pickes-com-conz-tais au det i maco (mg) > 100 GeV, m(c)=m(c), ±m(c), ± (conz) = (conz)				
g → qqq : 3-jet resonance pair	Line (in , / lav (izto.ke)) 000 000 y (ill SS				
WIMP interaction (D5, Dirac y) - monoiet + F	Link the , / HV (1210-624) 100-257 GeV ogluduri miceo (mč.) (mř. 1001 1110-2593)				
T_miss.	A REAL PROVIDED AND A REAL				
	10 ⁻¹ 1 10				

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty. Mass scale [TeV]

000

Un riassunto dei principali risultati: Exotics

		ATLAS Exotics	Searches* - 95% CL Lo	wer Limits (Status:	HCP 2012)
	ES YAB	CL CLLLLLL I			
	Large ED (ADD) : monojet + E _{T,miss}	L=4.7 fb ⁻¹ , 7 TeV [1210.4491]		4.37 TeV M _D (0=2)	
60	Large ED (ADD) : monophoton + $E_{T,miss}$	L=4.6 fb , 7 TeV [1209.4625]	1.93 TeV //	D (0=2)	ATLAS
ž	Large ED (ADD) : dipnoton & dilepton, m _{17/11}	L=4.7 fb , 7 TeV [1211.1150]	0.000	4.18 TeV M ₅ (HLZ 6=3, NLO)	Preliminary
SK	OED . diphoton + $E_{T,miss}$	L=4.8 fb ', 7 TeV [ATLAS-CONF-2012-072]	1.41 TeV Compa	act. scale R	
G	S /Z ₂ ED : dilepton, m	L=4.9-5.0 fb , 7 TeV [1209.2535]		4.7 IeV $M_{KK} \sim R$ Gravitan mass (k/M = 0.1)	
3	RST uphoton & diepton, m _{77/1}	2=4.7-5.0 fb ', 7 TeV [1210.8389]	2.23 TeV	Graviton mass $(k/M_{pl} = 0.1)$	
9	RST: ZZ lesonance, mai/iji RST: WW/ reconcises m	L=1.0 fb ', 7 TeV [1203.0718]	845 Gev Graviton mast	$s(k/M_{pl} = 0.1)$	$H = (1.0 - 12.0) \text{ (b)}^{-1}$
tra	RS att (BR=0.925) : tt laiots m	L=4.7 fb , 7 TeV [1208.2850]	1.23 IEV Gravitor	$\int L c$	a = (1.0 - 13.0) ib
ň.	ADD RH (M (M = 2) : SS dimuon M	21k7 fb , 7 fev (k12k5-CONF-2012-136)	1.9 lev 9	x mass	s = 7, 8 TeV
-	ADD BH (M /M -3) : lentons + jets 2 n	201.3 /b , 7 lev [111.0080]	1.25 TeV M _D (0=0	, c)	
	Quantum black hole : dijet E (m)	L=1.0 fb , 7 TeV [1204.4646]	1.5 IeV M _D (c	(44 Tax 14 (8-6)	
	add contact interaction : (m)	List 10, 7 lev [1210.1716]			
5	coll CL: ee & uu m	1-40.5 0 B ⁻¹ 7 TeV (1915 1150)		7.0 TeV 1.	constructive int)
0	uutt CI : SS dilenton + iets + E-	1-10 fb ⁻¹ 7 ToV (1993 5530)	17 ToY A	13.5 100 14 (ourouse and
	7' (SSM) : m	LE1.0 ID , 7 IEV [1202.3520]	1. I I I I I I I I I I I I I I I I I I I	7 mass	
	7' (SSM) : m	1-47 0-1 7 TeV (1210 4904)	14 TeV 7' mgs	0	
	W' (SSM) : m.	1 - 4 7 fb ⁻¹ 7 TeV (1200 4448)	2.55 Tel	W mass	
\geq	$W' (\rightarrow tq, q = 1); m$	4 -4 7 fb ⁻¹ 7 TeV [1209 6593]	420 GeV W' mass	W mass	
	W_{\circ} (\rightarrow tb, SSM) : m	4 =1.0 fb ⁻¹ 7 TeV (1205 1016)	1 13 TeV W mass		
	W*: m	L=4.7 fb ⁻¹ , 7 TeV [1202.4446]	2 42 TeV	W* mass	
	Scalar I O pair (B=1) · kin vars in eeii evii	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 GeV 1" gen. LQ mass		
G	Scalar LQ pair (B=1) ; kin, vars, in uuii, uvii	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 GeV 2nd gen. LQ mas		
	Scalar LQ pair (β=1) : kin. vars. in ττij, τvij	L=4.7 fb ⁻¹ , 7 TeV [Preliminary]	538 GeV 3rd gen. LQ mass		
\$	4 th generation : t't'→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV t' mass		
ž	4^{th} generation : b'b'($T_{co}T_{SR}$) \rightarrow WtWt	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-130]	670 GeV b' (T) mass		
ne N	New quark b' : b'b → Zb+X, m _{2b}	L=2.0 fb ⁻¹ , 7 TeV [1204.1265] 4	00 GeV b' mass		
2	Top partner : TT \rightarrow tt + A ₀ A ₀ (dilepton, M ₁₀)	L=4.7 fb ⁻¹ , 7 TeV [1209.4188]	483 GeV T mass (m(A) < 100	GeV)	
é	Vector-like quark : CC, m	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mas	s (charge -1/3, coupling $\kappa_{qq} = 1$	/m _o)
<	Vector-like quark : NC, m _{liq}	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.08 TeV VLQ mass	(charge 2/3, coupling $\kappa_{qQ} = v/$	m _o)
12 0	Excited quarks : γ -jet resonance, m_{res}	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV	q* mass	
XE	Excited quarks : dijet resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3	84 TeV q* mass	
ЩЧ	Excited lepton : I-y resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV	I* mass (A = m(I*))	
	Techni-hadrons (LSTC) : dilepton, menup	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV ρ,/ω, mass (n	$n(\rho_{\tau}/\omega_{\tau}) - m(\pi_{\tau}) = M_{\omega})$	
	Techni-hadrons (LSTC) : WZ resonance (VIII), m	L=1.0 fb ⁻¹ , 7 TeV [1204.1648]	483 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T})$	$(1 + m_m, m(a_\tau) = 1.1 m(\rho_\tau))$	
10	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N ma	$ss(m(W_R) = 2 \text{ TeV})$	
5	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	2.4 TeV	W_R mass (m(N) < 1.4 TeV)	
0	H (DY prod., BR(H \rightarrow II)=1): SS ee ($\mu\mu$), m	L=4.7 fb 7 TeV [1210.5070]	HOS GeV H ⁺⁺ mass (limit at 398 G	eV for μμ)	
	n_{μ} (D T PIOU., DR($H^{-} \rightarrow e\mu$)=1): SS $e\mu$, $m_{e\mu}$	L=4.7 fb 7 TeV [1210.5070] 37	5 Gev H mass		
	Color octet scalar : dijet resonance, mi	L=4.8 fb ⁻ , 7 TeV [1210.1718]	1.86 TeV SC	alar resonance mass	
		10 ⁻¹	1	10	10
		10			ass scale [Te\/]
*0-	have a set of the second share a second s			101	uss sourc [16 v]

*Only a selection of the available mass limits on new states or phenomena shown