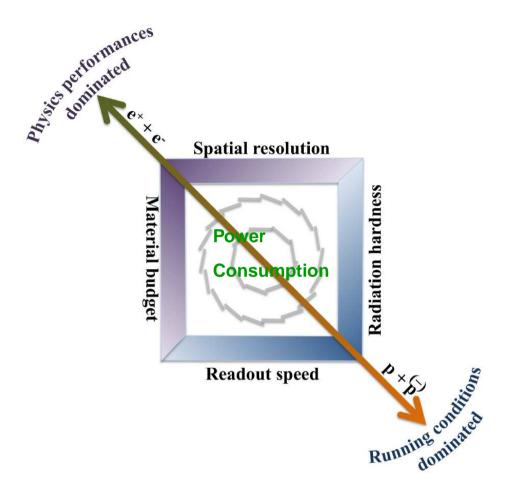
Introduction to CMOS Pixel Sensors

Marc Winter – IPHC-CNRS/IN2P3 (Strasbourg)

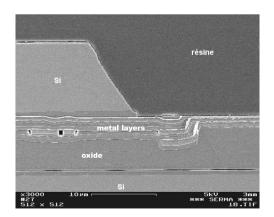
V Scuola Nazionale – Legnaro, 17 April 2013

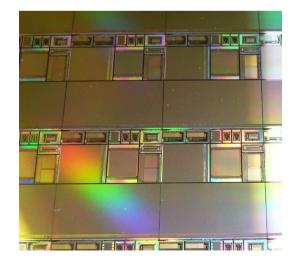
OUTLINE

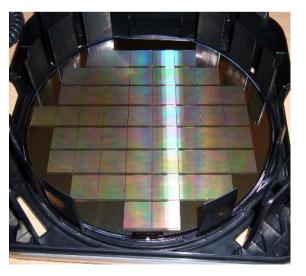

- Main features of CMOS pixel sensors
 - ▷ motivation ▷ principle: sensing & read-out ▷ limitations ▷ hit characteristics
- Achieved performances
 - ▷ means of evaluation
 ▷ beam test characterisation
 ▷ sources of performance degradation

Applications

- ▷ system integration aspects
 ▷ subatomic physics apparatus
- Outlook
 - ▷ 2D sensors
 ▷ 3D sensors
- Summary


The Quadrature of the Vertex Detector


- CMOS pixel sensors offer the perspective of "combining the extremes" (ultimately !)
- Several labs develop CMOS pixel sensors : Italy (Univ., INFN), UK (RAL), CERN, Germany (Heidelberg, Bonn, ...), USA, France (IPHC, Saclay), ...
- CMOS Pixel Sensors chosen/envisaged by growing number of subatomic physics experiments :
 - STAR at RHIC/BNL : commissionning
 - ALICE at LHC/CERN : under development
 - CBM at FAIR/GSI : under development
 - ILC : option
 - Etc.
- Variety of applications besides subatomic physics : dosimetry, hadrontherapy, γ & β counting, ...


CMOS Technology

- C.M.O.S. = Complementary Metal-Oxide-Semiconductor
- CMOS pixel sensors exploit the fabrication processes used in industry for mass production of integrated circuits :
 - * micro-processors, micro-controler, RAM, ...
 - * cell phones & cameras, lap tops, cars, ...
- CMOS fabrication mode :
 - * μ circuit lithography on a substrate
 - * proceeds through reticules ($\sim 2x2 \rightarrow 2x3 \text{ cm}^2$) organised in wafers (typically 8")

Main Features of CMOS Sensors

- P-type low-resistivity (O(10) $\Omega \cdot cm$) Si hosting n-type "charge collectors"
 - signal created in epitaxial layer (low doping):

Q \sim 70–80 e-h / $\mu m \mapsto$ signal \lesssim 1000 e $^-$

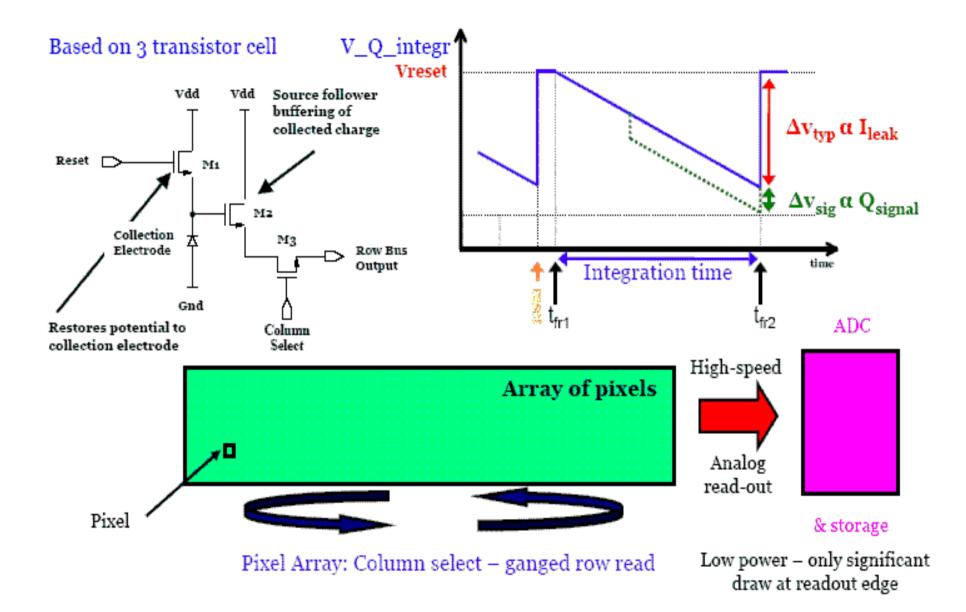
- charge sensing through n-well/p-epi junction
- excess carriers propagate (thermally) to diode with help of reflection on boundaries with p-well and substrate (high doping)
 - \Rightarrow continuous signal sensing (no dead time)

p-epi p++ substrate recombination

ionizing particle

passivation

oxide

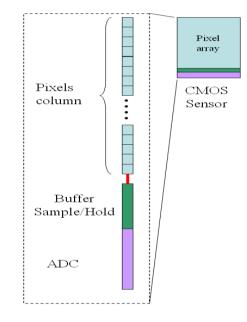

- Prominent advantages of CMOS sensors :
 - \diamond granularity : pixels of \lesssim 10×10 μm^2 \Rightarrow high spatial resolution (e.g. \lesssim 1 μm if needed)
 - \diamond low material budget : sensitive volume \sim 10 20 $\mu m \Rightarrow$ total thickness \lesssim 50 μm
 - \diamond signal processing μ circuits integrated in the sensors \Rightarrow compacity, high data throughput, flexibility, etc.
 - \diamond industrial mass production \Rightarrow cost, industrial reliability, fabrication duration, multi-project run frequency,

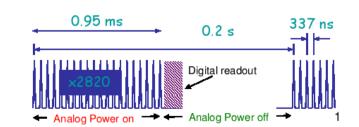
technology evolution, ...

 $\diamond~$ operating conditions : from $\ll 0^\circ C$ to $\gtrsim 30\text{-}40^\circ C$

hinspace
hin

Basic Read-Out Architecture




CMOS Pixel Sensors: Read-Out Architectures

- Signal sensing and read-out are decoupled :
 - * signal sensing (charge collection) is continuous (no dead time)
 - \Rightarrow signal read-out may be performed in various ways, independently of charge collection
- Signal processing alternatives :
 - * self-triggered : only fired pixels are (randomly) read-out \equiv hybrid pixels
 - rolling shutter (less power consumption) : read-out of all pixels (A or D),
 followed by sparsification outside of sensitive area
 - * snap-shot : requires 2 consecutive read-outs,

with 1 used for average noise subtraction (rather suited to light imaging due to up to 50 % dead time)

- Signal transfer alternatives :
 - * continuous : permanent output to outside world
 - * intermittent : signal stored on chip until read-out sign is provided
 - \hookrightarrow event based trigger or beam time structure (ILC) $\triangleright \triangleright \triangleright$

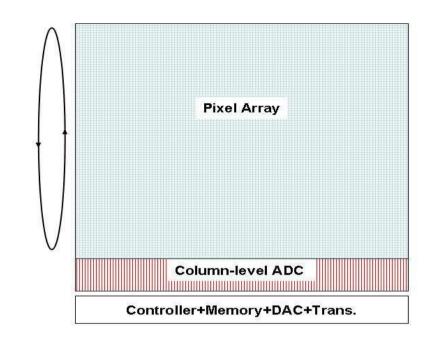
Overview of Rolling Shutter Architecture

- Sensor organisation :
 - * Signal sensing and analog processing in pixel array
 - * Mixed and Digital circuitry integrated in chip periphery
 - * Read-out in rolling shutter mode

(pixels grouped in columns read-out in //)

- \Rightarrow trend : increase functionnalities inside pixels
- Main consequences :
 - * Read-out speed :
 - \equiv integration time
 - \equiv nb of pixels \times pixel read-out time (O(100 ns))
 - * Power consumption :

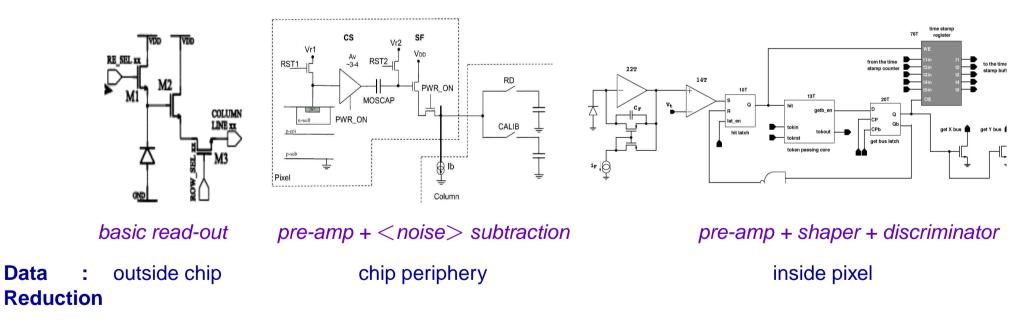
limited inside the pixel array to the row(s) being read out


* Material budget :

peripheral band(s) for mixed+digital circuitry, insensitive to impinging particles

 $\, \hookrightarrow \, \sim$ 10 % of chip surface

* Time stamp :


each row encompasses a specific time intervalle \Rightarrow adapt (\equiv exploit with) track reconstruction code

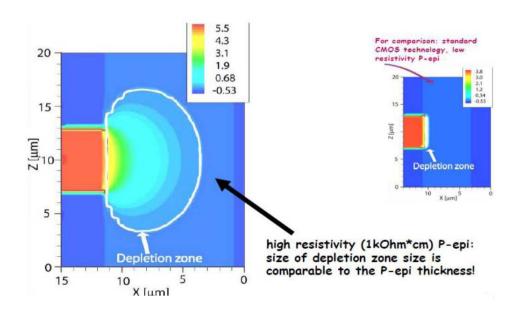
Signal Sensing & Processing Architectures

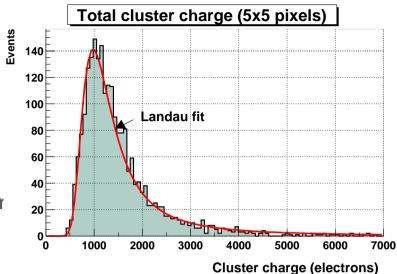
- Main sensing and read-out micro-circuit elements :
 - * in-pixel conversion of charge into electrical signal (e.g. voltage) with average noise subtraction
 - * signal discrimination (in perspective of zero-suppression)
 - discriminator output encoding (sparsification with charge encoding) *
 - * data transmission logic \rightarrow connection with the outside world
- In-pixel μ circuitry :

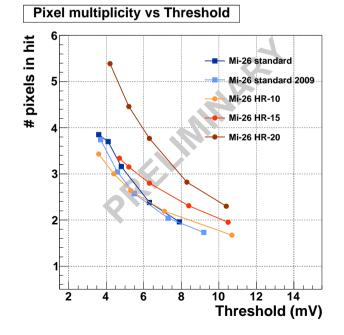
Data

Limitations of the Technology

- Very thin sensitive volume
 - \Rightarrow impact on signal magnitude (mV !) \Rightarrow very low noise FEE required
- Sensitive volume only partly depleted
 - \Rightarrow negative impact on radiation tolerance & speed but positive on σ_{sp} (charge spread)
 - \triangleright tendency : high-resistivity epitaxial layer \Rightarrow improved radiation tolerance (SNR)
- Commercial fabrication
 - \Rightarrow fabrication parametres (doping profile \rightarrow epitaxial layer, number of metal layers, etc.) not optimal for charged particle detection *(optimised for commercial items)*:
 - * real potential of CMOS pixel sensors not exploited (yet !)
 - * choice of process for HEP often driven by epitaxial layer characteristics (governs signal), at the expense of the FEE circuitry parametres (feature size, nb of Metal Layers)
- Use of P-MOS transistors inside pixel array restricted in most processes
 - \Rightarrow limited signal processing functionnalities inside (small) pixels (most performed on sensor periphery)
 - ▷ tendency : buried P-well techno. \Rightarrow allows use of P-MOS transistors (watch charge coll. eff. !)

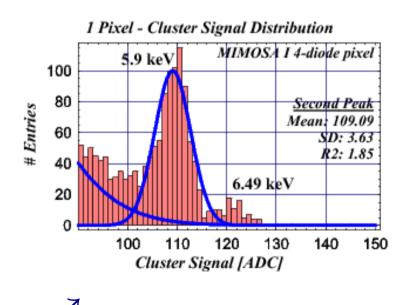

Hit Characteristics


• Standard processes : charges diffuse thermally


 $_{*} \lesssim 10^{3} \text{ e}^{-}$ shared among \sim 10-15 pixels per cluster

 $_{\ast}\,$ typically \lesssim 200/300 e^- (MPV) in seed pixel

- High-resistivity epitaxy (O(k $\Omega \cdot cm$) : larger charge sensing volum
 - $_{*}$ less diffusion \Rightarrow less pixels/cluster (typically \lesssim 4)
 - $_{*}$ larger charge collected/pixel (e.g. \sim 500 e⁻) \Rightarrow higher SNR

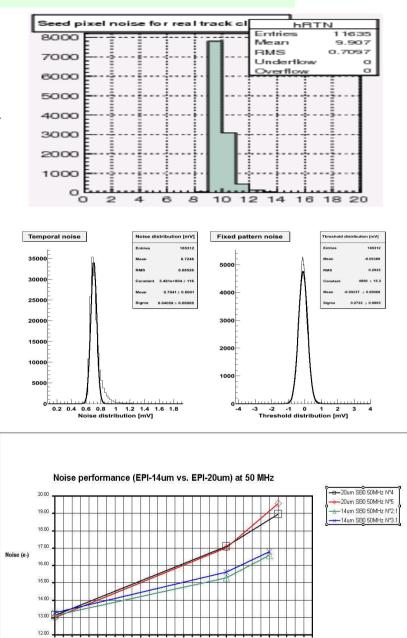


Calibration of Charge-to-Voltage Conversion Factor

- **Goal :** establish a well defined correspondence between the measured sensor output voltages and the amplitude of the charge collected by each diode
- Mean : use radioactive sources emitting particles with adapted and well defined energy
- Ex: 55 Fe source
 - $_{*}\,$ emits X-Rays with 5.9 keV (\sim 90%) or 6.49 keV (\sim 10%)
 - * X-Rays interact with Si atoms through photo-electric effect
 - \Rightarrow the ejected p.e. carries \sim 100% of the X-Ray energy

(e⁻ binding energy ...)

- $_{\ast}\,$ the p.e. creates eh pairs at the expense of \sim 3.6 eV per pair
 - \Rightarrow 5900/3.6 \simeq 1640 eh pairs (6490/3.6 \simeq 1800 eh)
- Calibration with ⁵⁵Fe X-Rays
 - $_{\ast}\,$ a small fraction of X-Rays impinge sensor near sensing diode
 - \Rightarrow nearly all e⁻ created get collected by nearby sensing diode
 - * the charge distribution observed on the ADC scale exhibits 2 peaks



Sensor Noise: Sources, Reduction Strategies

- Main Sources :
 - * in pixel : sensing diode capacitance DDD
 - * in pixel : leakage current collected by sensing diode
 - * outside pixel : signal processing micro-circuits

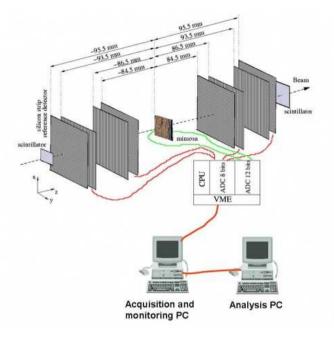
- Tricks to minimise the noise :
 - * maximal amplification inside pixel
 - $\Rightarrow \text{ minimises impact of the noise } \rhd \rhd \rhd$ of signal processing micro-circuits
 - * operate chip with short integration time
 - \Rightarrow minimises integrated leakage current
 - * operate chip at low temperature
- $\triangleright \triangleright \triangleright$

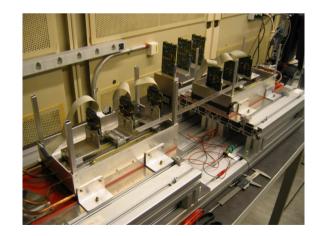
 \Rightarrow minimises thermal noise

10

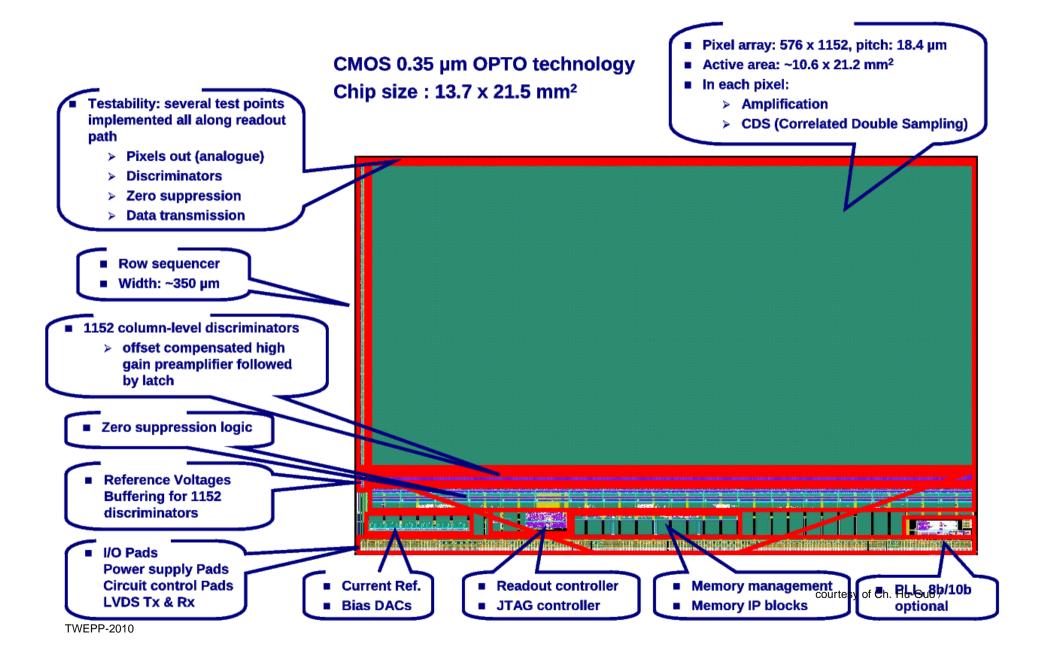
15

Temperature by internal temperature Monitoring Diode ሮር)


20

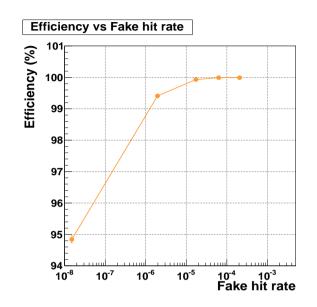

25

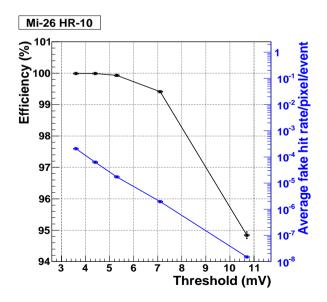
30


M.I.P. Detection Performance Evaluation

- Laboratory :
 - * test steering & read-out functionalities (e.g. pattern generator)
 - * evaluate charge collection efficiency & noise (⁵⁵Fe, light)
 - * assess charge-to-voltage conversion factor (⁵⁵Fe)
 - * estimate "m.i.p." detection efficiency with β (¹⁰⁶Ru)
- Particle beams :
 - $_{*}$ typically \sim 100 GeV/c π^{-} at CERN-SPS (not really m.i.p.)
 - \Rightarrow minimise multiple scattering
 - * install chip to test inside beam telescope (EUDET BT)
 - * determine :
 - detection efficiency (and SNR)
 - fake hit rate (and noise)
 - \circ single point resolution
 - etc.

CMOS Pixel Sensors: State of the Art

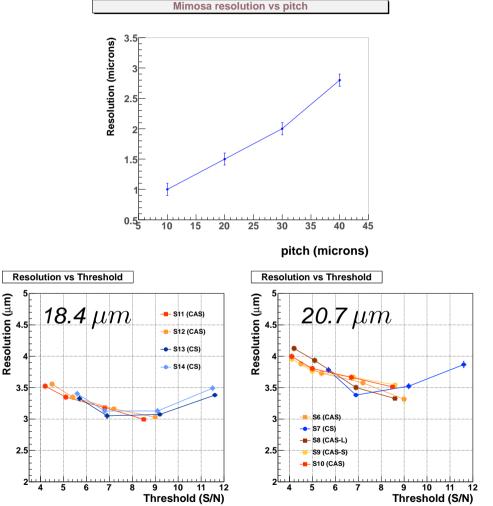

M.I.P. Detection Efficiency & Fake Hit Rate


• Motivation : find a sensor working point

with high detection efficiency and marginal contamination from noise fluctuations (fake hits)

- Detection efficiency
 - fraction of tracks reconstructed in telescope
 which are also reconstructed in the sensor
 - * study as function of discriminator threshold
 - $_{*}$ a high threshold may harm detection efficiency \Rightarrow Trade-off !
- Fake hit rate
 - * fraction of noise fluctuations which pass the discriminator threshold
 - * study as a function of discriminator threshold
 - $\ast\,$ a high threshold is best to keep fake rate marginal, but ...

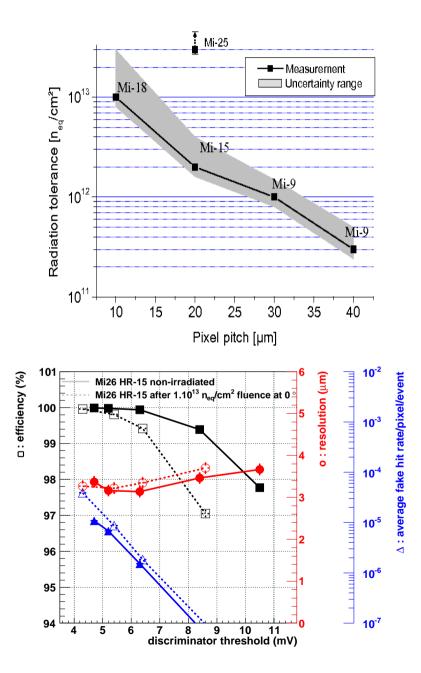
(typically $\lesssim 10^{-3/-4}$)



Spatial Resolution

- Compare position of impact on sensor surface predicted with BT to postion of hit reconstructed with sensor under test : clusters reconstructed with eta-function, exploiting charge sharing between pixels
- Impact of charge encoding resolution :
 - hinspace ex. of 20 μm pitch $\Rightarrow \sigma^{digi}_{sp}$ = pitch/ $\sqrt{12}$ \sim 5.7 μm

Nb of bits	12	3-4	1
Data	measured	reprocessed	measured
σ_{sp}	\lesssim 1.5 μm	\lesssim 2 μm	\lesssim 3.5 μm

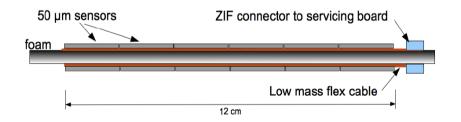


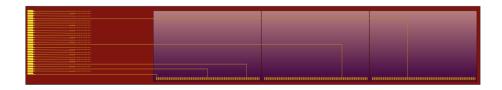
Radiation Tolerance

 $\triangleright \triangleright \triangleright$

- Introductory remarks :
 - * still evolving (csq of CMOS industry process param. evolution)
 - * CMOS technology expected to tolerate high ionising radiation doses (\gg 10 MRad), in particular with T < 0°C & short t_{integ}
 - main a priori concern : NON-ionising radiation
 (in absence of thick depleted sensitive volume)
- Influence of pixel pitch :
 - * fig: all measts done with low resistivity epitaxial layer, but 1
 - * high density sensing diodes (\equiv small pitch) improves non-ionising radiation tolerance
- Influence of epitaxial layer resistivity :
 - * ex: 400 $\Omega \cdot cm$ & O(1)V depletion voltage $\triangleright \triangleright \triangleright$
 - * trend : \gtrsim 1 $k\Omega \cdot cm$ & \gtrsim 10 V

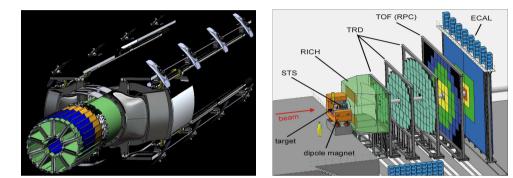
 \Rightarrow Tolerance to \gtrsim 10¹⁴⁻¹⁵ n_{eq}/cm² seems achievable

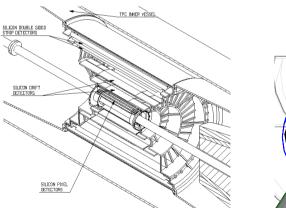


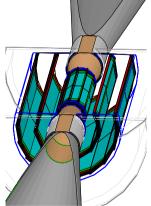

Sensor Integration in Ultra Light Devices

- "Useful" sensor thickness \lesssim 30 $\mu m \, \Rightarrow \,$ opens up new possibilities w.r.t. thicker sensors
 - > coarse thickness of sensors (e.g. STAR-PXL) is 50 μm
- STAR-PXL ladder (room temperature, single-end supported):
 - $\ast\,$ total material budget \simeq 0.37 % X_0 :
 - \circ 50 μm thin sensors \simeq 0.05 % X $_0$
 - \circ flexible cable \simeq 0.07 % X $_0$
 - \circ mechanical support \simeq 0.2 % X₀
 - $\circ~$ adhesive, etc. \simeq 0.05 % X $_0$

- Double-sided ladders with \sim 0.2-0.3 % X $_0$:
 - ⇒ manifold bonus : compactness, alignment, redundancy, pointing accuracy (shallow angle), fake hit rejection, etc.
- Unsupported & flexible ladders with \lesssim 0.15 % X $_0$
 - ⇒ 30 μm thin CMOS sensors mounted on thin cable & embedded in thin polyimide \rightarrow suited to beam pipe ?

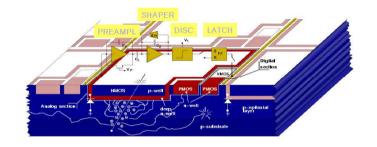


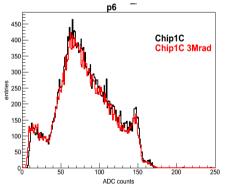


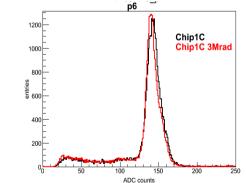


Examples of Applications in Subatomic Physics

- Beam telescopes :
 - $\ast\,$ EUDET (FP-6 / 2006-2010) : 6 planes with 1 $\times 2~\text{cm}^2$ sensors
 - $_{\ast}\,$ AIDA (FP-7 / 2011-2015) : \geq 3 planes with 4 \times 6 cm 2 sensors
- Vertex detectors :
 - * STAR-PXL at RHIC : 2 layers
 - * CBM-MVD at FAIR/GSI : 2-3 stations
 - * ALICE-ITS at LHC : 3 inner layers
 - * FIRST at GSI (p/C PMMA x-sec) : 4 stations
 - * option for ILD-VTX at ILC : 3 double-layers
- Trackers ("large pitch") :
 - * BES-III at BEPC
 - $_{*}$ ALICE-ITS at LHC : 4 outer layers (\lesssim 10 m^{2} !)
 - * in general : trackers surrounding vertex detectors
- EM calorimetres : SiW calorimetre
 - * generic R&D on **T**RA**C**AL

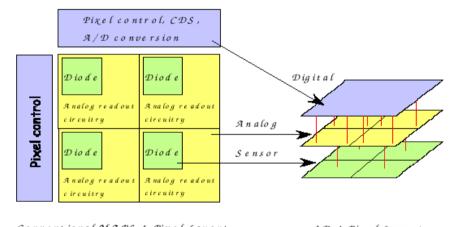



Perspectives: Fast 2D sensors


Evolve towards feature size << 0.35 μm :

* μ circuits : smaller transistors, more Metal Layers, ... * sensing : guadruple well, depleted sensitive volume, ...

- **Benefits :**
 - * faster read-out \Rightarrow improved time resolution
 - * higher μ circuit density \Rightarrow higher data reduction capability
 - * thinner gates, depletion \Rightarrow improved radiation tolerance
- **On-going R&D (examples) :**
 - * APSEL sensor (130 nm) for future Vx Det. :
 - in-pixel pre-amp + shaping + discri. $\triangleright \triangleright \triangleright$
 - sensing through buried n-well
 - shallow n-well hosting P-MOS T
 - TJSC project (180 nm) for ALICE-ITS upgrade : *
 - high-resistivity, 18-40 μm thick, epitaxy $\triangleright \triangleright \triangleright$
 - deep P-wells hosting P-MOS T
- Main limitations :
 - * VDSM technologies not optimised for analog μ circuits (low V !) \Rightarrow reliability
 - * conflict between speed (e.g. 10 ns) and granularity (e.g. 20imes20 μm^2 pixels)
 - Natural trend : chip stacking \Rightarrow



Using 3DIT to reach Ultimate CMOS Sensor Performances

- 3D Integration Technologies allow integrating high density signal processing μ circuits inside **small** pixels by stacking (\sim 10 μ m) thin tiers interconnected at pixel level
- 3DIT are expected to be particularly beneficial for (small pixel) CMOS sensors :
 - * combine different fab. processes \Rightarrow chose best one for each tier/functionnality
 - * alleviate constraints on peripheral circuitry and on transistor type inside pixel, etc.
- Split signal collection and processing functionnalities :
 - * Tier-1: charge sensing
 - * Tier-2: analog-mixed μ circuits
 - * Tier-3: digital μ circuits

- Conventional MAPS 4 Pixel Layout 3D 4 Pixel Layout
- The path to nominal exploitation of CMOS pixel potential :
 - * fully depleted 10-20 μm thick epitaxy $\Rightarrow \lesssim 5$ ns collect. time, rad. hardness > Hybrid Pix. Sensors ??? * FEE with < 10 ns time resolution \rightarrow solution for CLIC & HL-LHC specifications ???
- 3DIC \equiv consortium coordinated by FermiLab has already produced 1st generation of chips

SUMMARY

- CMOS sensor technology has become mature for high performance vertexing and tracking
 - * most relevant for specifications governed by granularity, material budget, power consumption, cost, ...
 - * excellent performance record with beam telescopes (e.g. EUDET project)
 - * 1st vertex detector experience will be gained with STAR-PXL, starting data taking in a few weeks ...
 - * new generation of sensors under development for experiments > 2015 (including trackers & calo.)
 - \hookrightarrow ALICE-ITS upgrade (see also talk of W. Snoeys), CBM-MVD (FAIR), ..., ILC VD (?), ...
- Technology full potential still far from being exploited (despite improvement due to high-resistivity epitaxial layer processes)
- Evolution of industry opens the door to 2 "natural" steps towards the "ultimate" performances of the technology :
 - $_{*}$ fast 2D sensors based on VDSM CMOS technologies may allow for \lesssim O(1) $\mu s, \gg$ 10 MRad
 - * **3D chips** are expected to "exhaust" the technology potential, but there is still a rather long way to go

\Rightarrow may lead to fast & rad. hard devices suited to HL-LHC & CLIC