Flavor physics in the LHC era

Paride Paradisi

CERN

LNF, Frascati 06 December 2012

- Open questions
- 2 The SM and NP flavor puzzles
- 3 Messages from the B-factories, Tevatron, and LHCb
- **4** First evidence for $B_s \rightarrow \mu^+ \mu^-$: implications and consequences
- 5 Three anomalies (hint of NP) and their experimental tests
 - ▶ Direct CPV in charm decays $D \to K^+K^-(\pi^+\pi^-)$ [Giudice, Isidori, & P.P., '12]
 - For the anomalous magnetic moment of the muon (g-2) [Giudice, P.P., & Passera '12]
 - For the $h
 ightarrow \gamma \gamma$ excess and the muon (g-2) anomaly [Giudice, P.P., & Strumia '12]
- 6 The lepton flavor violation probe of NP
- Occurrent Conclusions and future perspectivies

- The origin of flavour is still, to a large extent, a mystery. The most important open questions can be summarized as follow:
 - Which is the organizing principle behind the observed pattern of fermion masses and mixing angles?
 - Are there extra sources of flavour symmetry breaking beside the SM Yukawa couplings which are relevant at the TeV scale?
- Related important questions are:
 - Which is the role of flavor physics in the LHC era?
 - Do we expect to understand the (SM and NP) flavor puzzles through the synergy and interplay of flavor physics and the LHC?

Flavor Physics within the SM

• $\mathcal{L}_{Kinetic+Gauge}^{SM} + \mathcal{L}_{Higgs}^{SM}$ has a large $U(3)^5$ global flavour symmetry

$$\mathbf{G}=\mathbf{U}(\mathbf{3})^{\mathbf{5}}=\mathbf{U}(\mathbf{3})_{\mathbf{u}}\otimes\mathbf{U}(\mathbf{3})_{\mathbf{d}}\otimes\mathbf{U}(\mathbf{3})_{\mathbf{Q}}\otimes\mathbf{U}(\mathbf{3})_{\mathbf{e}}\otimes\mathbf{U}(\mathbf{3})_{\mathbf{L}}$$

•
$$\mathcal{L}_{\mathrm{Yukawa}} = \bar{Q}_L \mathbf{Y}_{\mathsf{D}} D_R \phi + \bar{Q}_L \mathbf{Y}_{\mathsf{U}} U_R \tilde{\phi} + \bar{L}_L \mathbf{Y}_L E_R \phi + h.c$$
 break *G* down to
 $\mathbf{G} \rightarrow \mathbf{U}(1)_{\mathsf{B}} \times \mathbf{U}(1)_{\mathsf{e}} \times \mathbf{U}(1)_{\mu} \times \mathbf{U}(1)_{\tau}$

• CKM matrix: $Y_U = V_{CKM} \times diag(y_u, y_c, y_t)$ for $Y_D = diag(y_d, y_s, y_b)$

"Very likely, flavour and CP violation in FC processes are dominated by the CKM mechanism" (Nir)

UT tensions

Similar conclusions from the CKMfitter collaboration ('10)

- 1 These "UT tension" are interesting but not significant yet.
- 2 To monitor the impact of BSM scenarios on the UT analyses.
- ③ To monitor the implications of possible solutions of the "UT tension" in BSM scenarios.

Paride Paradisi (CERN)

B_s mixing

The NP "scale"

- Gravity $\implies \Lambda_{\text{Planck}} \sim 10^{18-19} \; \mathrm{GeV}$
- Neutrino masses $\implies \Lambda_{see-saw} \lesssim 10^{15} \ {\rm GeV}$
- BAU: evidence of CPV beyond SM
 - ► Electroweak Baryogenesis $\implies \Lambda_{NP} \lesssim TeV$
 - ${\scriptstyle \blacktriangleright}~$ Leptogenesis $\Longrightarrow \Lambda_{see-saw} \lesssim 10^{15}~{\rm GeV}$
- Hierarchy problem: $\implies \Lambda_{NP} \lesssim {
 m TeV}$
- Dark Matter $\Longrightarrow \Lambda_{NP} \lesssim {
 m TeV}$

SM = effective theory at the EW scale

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{d \geq 5} rac{\mathcal{L}_{ij}^{(d)}}{\Lambda_{NP}^{d-4}} \; \mathcal{O}_{ij}^{(d)}$$

•
$$\mathcal{L}_{\text{eff}}^{d=5} = \frac{y_{\nu}^{ij}}{\Lambda_{\text{see-saw}}} L_i L_j \phi \phi,$$

• $\mathcal{L}^{d=6}_{eff}$ generates FCNC operators

The NP flavor problem

$${\cal L}_{
m eff} = {\cal L}_{
m SM} + \sum_{d=6} rac{c_{ij}^{(6)}}{\Lambda_{NP}^2} \; {\cal O}_{ij}^{(6)}$$

[Isidori, Nir, Perez '10]

	Bounds on A (TeV)		Bounds on cij		
Operator	Re	Im	Re	Im	Observables
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \varepsilon_K$
$(\hat{s}_R d_L)(\hat{s}_L d_R)$	1.8×10^{4}	3.2×10^{5}	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^{\mu} u_L)^2$	1.2×10^{3}	2.9×10^{3}	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\tilde{c}_R u_L)(\tilde{c}_L u_R)$	6.2×10^{3}	1.5×10^{4}	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\hat{b}_L \gamma^{\mu} d_L)^2$	5.1×10^{2}	9.3×10^{2}	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{B_d \to \psi K}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^{3}	3.6×10^{3}	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{B_d \to \psi K}$
$(\bar{b}_L \gamma^{\mu_S} L)^2$	1.1×10^{2}	1.1×10^{2}	7.6×10^{-5}	7.6×10^{-5}	Δm_{B_i}
$(\tilde{b}_R s_L)(\tilde{b}_L s_R)$	3.7×10^2	3.7×10^{2}	1.3×10^{-5}	1.3×10^{-5}	Δm_{B_i}

"Generic" flavor violating sources at the TeV scale are excluded

Paride Paradisi (CERN)

MFV & the NP flavor problem

• SM without Yukawa interactions: $U(3)^5$ global flavour symmetry

 $U(3)_u \otimes U(3)_d \otimes U(3)_Q \otimes U(3)_e \otimes U(3)_L$

- Yukawa interactions break this symmetry
- Proposal for any New Physics model:

Yukawa structures as the only sources of flavour violation

Minimal Flavour Violation [D'Ambrosio et al. '02]

Notice that MFV allows new "flavour blind"CPV phases!

[Kagan et al. '09] (model-independent) [Ellis et al. '07] (SUSY) [Colangelo et al., '08], [Smith et al. '09] (SUSY) [Altmannshofer et al., '08,'09], [P.P & Straub, '09] (SUSY) [Buras et al., '10,'10] (2HDM)

$$(c_{\mathrm{MFV}}^{\Delta F=1})_{ij} \sim V_{ti}^{\star} V_{tj}, \qquad (c_{\mathrm{MFV}}^{\Delta F=2})_{ij} \sim (V_{ti}^{\star} V_{tj})^2$$

$\Delta F = 1,2$ MFV operators	Λ(TeV)	Observables
$H^{\dagger}\left(\overline{D}_{R}Y^{d\dagger}Y^{u}Y^{u\dagger}\sigma_{\mu u}Q_{L} ight)\left(eF_{\mu u} ight)$	6.1 TeV	$B o X_s \gamma, B o X_s \ell^+ \ell^-$
$\frac{1}{2} (\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L)^2$	5.9 TeV	$\epsilon_{K}, \Delta m_{B_{d}}, \Delta m_{B_{s}}$
$H_D^{\dagger}\left(\overline{D}_R Y^{d\dagger} Y^u Y^{u\dagger} \sigma_{\mu u} T^a Q_L ight) (g_s G^a_{\mu u})$	3.4 TeV	$B ightarrow X_{s} \gamma, B ightarrow X_{s} \ell^{+} \ell^{-}$
$\left(\overline{Q}_{L}Y^{u}Y^{u\dagger}\gamma_{\mu}Q_{L}\right)\left(\overline{E}_{R}\gamma_{\mu}E_{R}\right)$	2.7 TeV	$B ightarrow X_{s} \ell^{+} \ell^{-}, B_{s} ightarrow \mu^{+} \mu^{-}$
$\left(\overline{\mathcal{Q}}_{L}Y^{u}Y^{u\dagger}\gamma_{\mu}\mathcal{Q}_{L} ight)\left(eD_{\mu}F_{\mu u} ight)$	1.5 TeV	$B ightarrow X_{s} \ell^{+} \ell^{-}$

Observable	Experiment	MFV prediction	SM prediction
$\mathcal{A}_{\mathrm{CP}}(B_{s} \rightarrow \psi \phi)$	[0.10, 1.44] @ 95% CL	0.04(5)	0.04(2)
$\mathcal{A}_{\mathrm{CP}}(B \to X_s \gamma)$	< 6% @ 95% CL	< 0.02	< 0.01
${\cal B}(B_d o \mu^+ \mu^-)$	$< 1.8 imes 10^{-8}$	$< 1.2 imes 10^{-9}$	$1.3(3) imes 10^{-10}$
${\cal B}(B o X_s au^+ au^-)$	_	$< 5 imes 10^{-7}$	$1.6(5) imes 10^{-7}$
$\mathcal{B}(K_L o \pi^0 u ar{ u})$	< 2.6 $ imes$ 10 ⁻⁸ @ 90% CL	$< 2.9 imes 10^{-10}$	$2.9(5) imes 10^{-11}$

[D'Ambrosio et al. '02; Hurth et al. '08, Isidori, Nir & Perez '10]

- **1** MFV is not a theory of flavour and it has not been probed yet.
- 2 Can the SM and NP flavour problems have a common explanation?
- Is it possible to disentangle among different mechanisms solving flavour problems by means of their predicted pattern of deviation w.r.t. the SM predictions in flavour physics?

SM vs. NP flavor puzzle

The Gaussian wave functions of / and e^c overlap in an exponentially small region

Small Yukawa couplings without Symmetries

Paride Paradisi (CERN)

Flavor Models flavor protection

Operator	<i>U</i> (1)	$U(1)^{2}$	<i>SU</i> (3)	MFV
$(\overline{Q}_L X_{LL}^Q Q_L)_{12}$	λ	λ^5	λ^3	λ^5
$(\overline{D}_R X^D_{RR} D_R)_{12}$	λ	λ^{11}	λ^3	$(y_d y_s) imes \lambda^5$
$(\overline{Q}_L X_{LR}^D D_R)_{12}$	λ^4	λ^9	λ^3	$y_s imes\lambda^5$

[Lalak, Pokorski & Ross '10]

• RS flavor protection [Gerghetta & Pomarol, '99; Huber, '03; Agashe, Perez & Soni, '04]

• Why CP violation? Motivation:

- Baryogenesis requires extra sources of CPV
- ► The QCD $\overline{\theta}$ -term $\mathcal{L}_{CP} = \overline{\theta} \frac{\alpha_s}{8\pi} \tilde{GG}$ is a CPV source beyond the CKM
- Most UV completion of the SM, e.g. the MSSM, have many CPV sources
- However, TeV scale NP with O(1) CPV phases generally leads to EDMs many orders of magnitude above the current limits ⇒ the New Physics CP problem.

• How to solve the New Physics CP problem?

- Decoupling some NP particles in the loop generating the EDMs (e.g. hierarchical sfermions, split SUSY, 2HDM limit...)
- Generating CPV phases radiatively $\phi_{CP}^{f} \sim \alpha_{w}/4\pi \sim 10^{-3}$
- ▶ Generating CPV phases via small flavour mixing angles $\phi_{CP}^{f} \sim \delta_{fj} \delta_{fj}$ with f = e, u, d: maybe the absence of NP signals in FCNC processes and EDMs have a common origin?

- High-energy frontier: A unique effort to determine the NP scale
- High-intensity frontier (flavor physics): A collective effort to determine the flavor structure of NP

Where to look for New Physics at the low energy?

- Processes very suppressed or even forbidden in the SM
 - FCNC processes ($\mu \rightarrow e\gamma, \tau \rightarrow \mu\gamma, B_{s,d}^0 \rightarrow \mu^+\mu^-, K \rightarrow \pi\nu\bar{\nu}$)
 - CPV effects in the electron/neutron EDMs, *d_{e,n}*...
 - **FCNC & CPV** in $B_{s,d}$ & *D* decay/mixing amplitudes
- Processes predicted with high precision in the SM
 - EWPO as $(g-2)_{\mu,e}$: $a_{\mu}^{exp} a_{\mu}^{SM} \approx (3 \pm 1) \times 10^{-9}$, a discrepancy at $3\sigma!$
 - ► LU in $R_M^{e/\mu} = \Gamma(M \to e\nu) / \Gamma(M \to \mu\nu)$ with $M = \pi, K$

Observable	SM	Theory	Present	Future	Future
	prediction	error	result	error	Facility
$S_{B_s \to \psi \phi}$	0.036	≤ 0.01	$0.81^{+0.12}_{-0.32}$	0.01	LHCb
$S_{B_{d} \rightarrow \phi K}$	$sin(2\beta)$	≤ 0.05	0.44 ± 0.18	0.1	LHCb
Ad	-5×10^{-4}	10-4	$-(5.8\pm3.4)10^{-3}$	10 ⁻³	LHCb
ASL	$2 imes 10^{-5}$	< 10 ⁻⁵	$(1.6 \pm 8.5)10^{-3}$	10 ⁻³	LHCb
$A_{CP}(b \rightarrow s\gamma)$	< 0.01	< 0.01	-0.012 ± 0.028	0.005	Super-B
$\mathcal{B}(B \rightarrow \tau \nu)$	1×10^{-4}	$20\% \rightarrow 5\%$	$(1.73 \pm 0.35) 10^{-4}$	5%	Super-B
$\mathcal{B}(B \rightarrow \mu \nu)$	$4 imes 10^{-7}$	$20\% \rightarrow 5\%$	$< 1.3 imes 10^{-6}$	6%	Super-B
$\mathcal{B}(B_s \rightarrow \mu \mu)$	(3.54±0.30)10 ⁻⁹	$20\% \rightarrow 5\%$	$(3.2^{+1.5}_{-1.2}) imes10^{-8}$	10%	LHCb
$\mathcal{B}(B_d \rightarrow \mu \mu)$	(1.07±0.10)10 ⁻¹⁰	$20\% \rightarrow 5\%$	$< 1.5 \times 10^{-8}$	[?]	LHCb
$B \rightarrow K \nu \bar{\nu}$	4×10^{-6}	$20\% \rightarrow 10\%$	$< 1.4 imes 10^{-5}$	20%	Super-B
$ q/p _{D-{ m mix}}$	1	< 10 ⁻³	$(0.86^{+0.18}_{-0.15})$	0.03	Super-B
ϕ_D	0	< 10 ⁻³	$-(9.6^{+8.3}_{-9.5})^{\circ}$	2°	Super-B
${\cal B}(K^+ \!\! ightarrow \!\! \pi^+ u ar u)$	$8.5 imes 10^{-11}$	8%	$(1.73^{+1.15}_{-1.05})10^{-10}$	10%	K factory
$\mathcal{B}(K_L \rightarrow \pi^0 \nu \bar{\nu})$	$2.6 imes 10^{-11}$	10%	$< 2.6 imes 10^{-8}$	[?]	K factory

[Altmannshofer, Buras, Gori, Paradisi, and Straub, '09; Isidori, Nir, and Perez, '10]

Superstars of 2011-2013 in flavour physics: $\mu \rightarrow e\gamma$, $B_s \rightarrow \psi \phi$, $B_{s,d} \rightarrow \mu^+ \mu^-$

Paride Paradisi (CERN)

$$B_s
ightarrow \mu^+ \mu^-$$

• First evidence for $B_s \rightarrow \mu^+ \mu^-$ discovery at LHCb

$${
m BR}({
m B_s} o \mu^+ \mu^-) = (3.2^{+1.5}_{-1.2}) imes 10^{-9}$$

- Next goals after the B_s → µ⁺µ[−] discovery:
 - Precision measurement of $B_s \rightarrow \mu^+ \mu^-$
 - ▶ Discovery of $B_d \rightarrow \mu^+ \mu^-$ (large NP effects are still allowed)
 - ▶ To monitor the ratio BR($B_s \rightarrow \mu^+\mu^-$)/ ΔM_s and BR($B_s \rightarrow \mu^+\mu^-$)/BR($B_d \rightarrow \mu^+\mu^-$): powerful tests of MFV
 - ▶ To look for non-standard effect in $B \to K(K^*)\ell^+\ell^-$ observables

Conclusions

We presented today an updated search for $B^{0}{}_{(s)} \rightarrow \mu^{+}\mu^{-}$ combining 7 TeV (1.0 fb⁻¹) and 8 TeV (1.1 fb⁻¹) data

We see an excess of $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$ signal above background expectation with a p-value of 5.3x10⁻⁴, corresponding to 3.5 σ

this is the first evidence of $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$ decay!

A maximum likelihood fit to data yields

 $\mathcal{B}(B^{0}_{s} \rightarrow \mu^{+}\mu^{-}) = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$

in agreement with SM expectation

On the same dataset, we set the most stringent limit on $B^0 \rightarrow \mu^+\mu^-$ decay: $\hat{\mathcal{B}}(B^0 \rightarrow \mu^+\mu^-) < 9.4 \times 10^{-10}$ at 95% CL

We warmly thank our colleagues in the CERN accelerator departments for the excellent performance of the LHC!!

talk by Palutan @ CERN, 2012/11/12, (see also arXiv:1211.2674)

Paride Paradisi (CERN)

FCNC processes as $B^0_{s,d} \rightarrow \mu^+ \mu^-$ offer a unique possibility in probing the underlying flavour mixing mechanism of **NP**

- No SM tree-level contributions (FCNC decays)
- CKM suppression \rightarrow $BR(B^0_{s,d} \rightarrow \mu^+ \mu^-) \sim |V_{ts(td)}|^2$
- Elicity suppression $ightarrow BR(B^0_{s,d}
 ightarrow \mu^+\mu^-)\sim m_\mu^2$
- Dominance of short distance effects \rightarrow SM uncertainties well under control

$$\begin{array}{lll} {\rm BR}({\rm B_s} \to \mu^+ \mu^-)^{\rm t=0} & = & (3.23 \pm 0.27) \times 10^{-9} \\ {\rm BR}({\rm B_d} \to \mu^+ \mu^-)^{\rm t=0} & = & (1.07 \pm 0.10) \times 10^{-10} \ \hbox{[Buras et al, `12]} \end{array}$$

High sensitivity to NP effects: SUSY, 2HDM, LHT, Z', RS models.....

$$A(b
ightarrow d)_{
m FCNC} \sim c_{
m SM} rac{y_t^2 V_{td}^* V_{tb}}{16 \pi^2 M_W^2} + c_{
m NP} rac{\delta_{
m 3d}}{16 \pi^2 \Lambda_{NP}^2}$$

 $B_{c,d}^{0} \rightarrow \mu^{+}\mu^{-}$ and NP

$B_s \rightarrow \mu^+ \mu^-$ in the SM

• Recend developments concerning the SM prediction of $B_s \rightarrow \mu^+ \mu^-$

I) Updated prediction taking into account leading NLO EW (+ full NLO QCD) of the photon-inclusive flavor-eigenstate decay:

$$BR^{(0)} = 3.2348 \times 10^{-9} \times \left(\frac{M_t}{173.2 \text{ GeV}}\right)^{3.07} \left(\frac{f_{B_s}}{227 \text{ MeV}}\right)^2 \left(\frac{\tau_{B_s}}{1.466 \text{ ps}}\right) \left|\frac{V_{tb}^* V_{ts}}{4.05 \times 10^{-2}}\right|^2$$

$$\sim 3\% \text{ th. error, which could} = \left(3.23 \pm 0.15 \pm 0.23_{f_{B_s}}\right) \times 10^{-9} \text{ Buras, Girrbach, Guadagnoli, G.I. '12}$$

$$SM \text{ prediction giving present best} \text{ estimate of parametric inputs}$$

II) Correction factors in relating BR⁽⁰⁾ to the experimentally accessible rate

- Photon-energy cut [Buras et al. '12] $\rightarrow \sim -10\%$ (already included in exp. efficiency)
- $\Delta \Gamma_{e} \neq 0$ [Bruyn et al. '12] $\rightarrow \sim +10\%$ (not included yet in exp. results)
- To compare with experiments need a time integrated branching fraction. taking into account the finite width of the B_s system:

$$\mathrm{BR}(\mathrm{B_s} \to \mu^+ \mu^-)^{(<\mathrm{t}>)} = \frac{1}{1 - y_s} \mathrm{BR}(\mathrm{B_s} \to \mu^+ \mu^-)^{(0)} = (3.54 \pm 0.30) \times 10^{-9}$$

Paride Paradisi (CERN)

fi

Theory of $B_{s,d} \rightarrow \mu^+ \mu^-$

• Effective Hamiltonian for $B_{s,d} \rightarrow \mu^+ \mu^-$

$$\mathcal{H}^{\mathrm{eff}}_{\Delta F=1} = \mathcal{H}^{\mathrm{eff}}_{\mathrm{SM}} + C_S O_S + C_P O_P + C_S' O_S' + C_P' O_P' + \mathrm{h.c.},$$

SM and constrained MFV (CMFV) current

$$\mathcal{H}^{
m eff}_{
m SM} = \mathcal{C}_{10} \mathcal{Q}_{10} \qquad \mathcal{Q}_{10} = ar{b}_L \gamma^\mu q_L ar{\ell} \gamma_\mu \gamma_5 \ell, \qquad \mathcal{C}^{
m SM}_{10} pprox rac{g_2^2}{16\pi^2} rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \;,$$

~

Scalar currents (2HDM, SUSY)

$$\begin{split} O_S &= \overline{d}_R^i d_L^j \overline{\ell} \ell \;, \qquad O_P &= \overline{d}_R^i d_L^j \overline{\ell} \gamma_5 \ell \;, \\ O_S' &= \overline{d}_L^i d_R^j \overline{\ell} \ell \;, \qquad O_P' &= \overline{d}_L^i d_R^j \overline{\ell} \gamma_5 \ell \;. \end{split}$$

$$\begin{split} & \text{BR}(B_s \to \mu^+ \mu^-) = \frac{\tau_{B_s} F_{B_s}^2 m_{B_s}^3}{32\pi} \sqrt{1 - 4\frac{m_{\mu}^2}{m_{B_s}^2}} \left(|B|^2 \left(1 - 4\frac{m_{\mu}^2}{m_{B_s}^2} \right) + |A|^2 \right) \\ & A = 2\frac{m_{\mu}}{m_{B_s}} C_{10}^{\text{SM}} + \frac{m_{B_s}}{m_b} \left(C_P - C_P' \right) \;, \quad B = \frac{m_{B_s}}{m_b} \left(C_S - C_S' \right) \end{split}$$

Paride Paradisi (CERN)

• **Zbb** $\rightarrow R_b^0, \mathcal{A}_b, \mathcal{A}_{FB}^{0,b}$

•
$$\begin{array}{l} \mathbf{Zd}_{j}\mathbf{d}_{i} \rightarrow K^{+} \rightarrow \pi^{+}\nu\bar{\nu}, \\ K_{L} \rightarrow \pi^{0}\nu\bar{\nu}, \ K_{L} \rightarrow \mu^{+}\mu^{-}, \\ \bar{B} \rightarrow X_{d,s}\nu\bar{\nu}, \ B_{d,s} \rightarrow \mu^{+}\mu^{-} \end{array}$$

Zdjdi vs Zbb

Observable	CMFV (95%CL)	SM(95%CL)	Exp.
$\mathcal{B}(B_d \rightarrow \mu^+ \mu^-) \times 10^{10}$	[0.36, 2.03]	[0.87, 1.27]	$< 1.8 \times 10^{2}$
$\mathcal{B}(B_s\! ightarrow\!\mu^+\mu^-)\! imes\!10^9$	[1.17, 6.67]	[2.92, 4.13]	$< 5.8 \times 10^{1}$

Haisch & Weiler '07

2HDM with MFV and "flavour blind" phases

Main messages:

- ► The "UT tension" is "solved" by a NP phase in B_d -mixing $(S_{\psi K_S})$ implying a large NP phase in B_s -mixing $(S_{\psi \phi})$, in agreement with present data (ϵ_K remains SM-like).
- ▶ Non-standard CPV effects in B_s mixing $S_{\psi\phi}$ imply lower bounds for the EDMs in the experimental reach as well as non-standard values for BR($B_{s,d} \rightarrow \mu^+\mu^-$).
- ▶ An extended Higgs sector below the TeV scale is required for such a pattern of deviation from the SM ⇒ the interplay of LHC (M_H), LHCb ($S_{\psi\phi}$, $B_{s,d} \rightarrow \mu^+\mu^-$), and EDMs experiments (d_n , d_{Tl} , d_{Ha}) will probe or falsify the scenario.

[Buras, Isidori & P.P., '10]

Paride Paradisi (CERN)

$B_s ightarrow \mu^+ \mu^-$ vs $B_d ightarrow \mu^+ \mu^-$ in MFV

Powerful probe of MFV (Hurt et al. '08)

Abelian SUSY flavor model

[Altmannshofer et al., '09]

 $Br(B_s
ightarrow \mu^+ \mu^-)/Br(B_d
ightarrow \mu^+ \mu^-) = |V_{ts}/V_{td}|^2$ in MFV models

[Hurth, Isidori, Kamenik & Mescia, '08]

$B \rightarrow K^* \ell^+ \ell^-$ observables

Obs.	46	47	16	48-50	51	most sensitive to
F_L	$-S_2^c$	F_L	5. C. C.	F_L	F_L	$C_{7,9,10}^{(\prime)}$
$A_{\rm FB}$	$\frac{3}{4}S_{6}^{s}$	$A_{\rm FB}$	$A_{\rm FB}$	$-A_{\rm FB}$	$-A_{\rm FB}$	C_7, C_9
S_5	S_5					C_7, C_7', C_9, C_{10}'
S_3	S_3	$\frac{1}{2}(1-F_L)A_T^{(2)}$			$\frac{1}{2}(1-F_L)A_T^{(2)}$	$C'_{7.9,10}$
A_9	A_9		$\frac{2}{3}A_{9}$		A_{im}	$C_{7,9,10}'$
A_7	A_7		$-\frac{2}{3}A_{7}^{D}$			$C_{7,10}^{(\prime)}$

Table 1: Dictionary between different notations for the $B \to K^* \mu^+ \mu^-$ observables and Wilson coefficients they are most sensitive to (the sensitivity to $C_7^{(\ell)}$ is only present at low q^2).

$$S_i = \left(I_i + \overline{I}_i\right) \left/ rac{d(\Gamma + \overline{\Gamma})}{dq^2}, \qquad A_i = \left(I_i - \overline{I}_i\right) \left/ rac{d(\Gamma + \overline{\Gamma})}{dq^2}
ight.$$

see references in Altmannshofer, P.P., Straub, '11

New Physics scenarios

- Real left-handed currents, C_i ∈ R, C'_i = 0. This is realised e.g. in models with MFV in the definition of D'Ambrosio et al., i.e. no CP violation beyond the CKM phase.
- ② Complex left-handed currents, C_i ∈ C, C'_i = 0. This is realised e.g. in models with MFV and flavour-blind phases.
- **3** Complex right-handed currents, $C'_i \in \mathbf{C}$, $C_i = 0$.
- **4** Generic NP, $C_i \in \mathbf{C}, C'_i \in \mathbf{C}$.
- **6** Models with non-standard Z couplings: only $C_{9,10}^{(\prime)}$ with $C_{9}^{(\prime)} = -(1 4s_w^2)C_{10}^{(\prime)}$

$$\chi^2(ec{\mathcal{C}}) = \sum_i rac{\left(\mathcal{O}_i^{\mathsf{exp}} - \mathcal{O}_i^{\mathsf{th}}(ec{\mathcal{C}})
ight)^2}{(\sigma_i^{\mathsf{exp}})^2 + (\sigma_i^{\mathsf{th}}(ec{\mathcal{C}}))^2} \, .$$

Altmannshofer, P.P., Straub, '11

Figure 7: Fit predictions for the low- q^2 CP asymmetries $\langle A_{7,8} \rangle$ in $B \to K^* \mu^+ \mu^-$ in the case of complex left-handed currents (left), complex right-handed currents (centre) and generic NP (right). Shown are 68% and 95% C.L. regions.

Altmannshofer, P.P., Straub, '11

Figure 11: Fit predictions for the low- q^2 CP asymmetries $\langle A_{7,8} \rangle$ in $B \to K^* \mu^+ \mu^-$ for the scenario with left-handed (left), right-handed (centre) or generic (right) modified Z couplings. Shown are 68% and 95% C.L. regions.

Altmannshofer, P.P., Straub, '11

$B \rightarrow K^* \ell^+ \ell^-$ observables

Scenario	${\rm BR}(B_s\to \mu^+\mu^-)$	${\rm BR}(B_s\to\tau^+\tau^-)$	$ \langle A_7\rangle_{[1,6]} $	$ \langle A_8\rangle_{[1,6]} $	$ \langle A_9\rangle_{[1,6]} $	$\langle S_3 angle_{[1,6]}$
Real LH	$[1.0, 5.6] \times 10^{-9}$	$[2,12]\times 10^{-7}$	0	0	0	0
Complex LH	$[1.0, 5.4] \times 10^{-9}$	$[2,12]\times 10^{-7}$	< 0.31	< 0.15	0	0
Complex RH	$< 5.6 \times 10^{-9}$	$<12\times10^{-7}$	< 0.22	< 0.17	< 0.12	[-0.06, 0.15]
Generic NP	$< 5.5 \times 10^{-9}$	$<12\times10^{-7}$	< 0.34	< 0.20	< 0.15	[-0.11, 0.18]
LH ${\mathbb Z}$ peng.	$[1.4, 5.5] \times 10^{-9}$	$[3,12]\times 10^{-7}$	< 0.27	< 0.14	0	0
RH Z peng.	$< 3.8 \times 10^{-9}$	$<8\times10^{-7}$	< 0.22	< 0.18	< 0.12	$\left[-0.03, 0.18\right]$
Generic ${\cal Z}$ p.	$< 4.1 \times 10^{-9}$	$<9\times10^{-7}$	< 0.28	< 0.21	< 0.13	$\left[-0.07, 0.19 ight]$
scalar current	$< 1.1 \times 10^{-8}$	$< 1.3(2.3) \times 10^{-6}$	0	0	0	0

Table 3: Predictions at 95% C.L. for the branching ratios of $B_s \to \mu^+\mu^-$ and $B_s \to \tau^+\tau^$ and predictions for low- q^2 angular observables in $B \to K^*\mu^+\mu^-$ (neglecting tiny SM effects below the percent level) in all the scenarios. The scenarios "Real LH", "Complex LH", "Complex RH", "Generic NP", "LH Z peng.", "RH Z peng.", and "Generic Z p." correspond to the scenarios discussed in sec. [3.2.1] sec. [3.2.2] sec. [3.2.3] sec. [3.2.4] sec. [4.1.1] sec. [4.1.2] and sec. [4.1.3] respectively, assuming negligible (pseudo)scalar currents. In the scenario "scalar current" only scalar currents are considered. The number quoted for $B_s \to \tau^+\tau^-$ in the "scalar current" scenario refers to the maximum value for its branching ratio in the case of dominant scalar (pseudoscalar) currents.

• Experiment:
$$\Delta a_{CP} = a_{K^+K^-} - a_{\pi^+\pi^-}$$

 $\Delta a_{CP} = -(0.67\pm0.16)\%$ [LHCb '11, CDF '11, Belle '08 and BaBar '07]

$$a_f \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to f)}, \ f = K^+ K^-, \pi^+ \pi^-$$

Is it possible ∆a_{CP} @ % in the SM?

• Theory: SCS decay amplitude $A_f(\bar{A}_f)$ of $D^0(\bar{D}^0)$ to a CP eigenstate f

$$A_{f} = A_{f}^{T} e^{i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} + \phi_{f})} \right],$$

$$\bar{A}_{f} = \eta_{CP} A_{f}^{T} e^{-i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} - \phi_{f})} \right]$$

Direct CPV \iff $r_f \neq$ 0, $\delta \neq$ 0 and $\phi_f \neq$ 0

$$a_t^{\mathrm{dir}} \equiv \frac{|A_t|^2 - |\bar{A}_t|^2}{|A_t|^2 + |\bar{A}_t|^2} = -2r_t \sin \delta_t \sin \phi_t$$

Effective Hamiltonian for $D^0 \rightarrow K^+ K^-(\pi^+ \pi^-)$

General Effective Hamiltonian [Isidori, Kamenik, Ligeti & Perez, '11]

$$\mathcal{H}^{\rm eff-NP}_{|\Delta c|=1} \quad = \quad \frac{G_F}{\sqrt{2}} \sum_{i=1,2,5,6} (C^q_i Q^q_i + C^{q\prime}_i Q^{q\prime}_i) + \sum_{i=7,8} (C_i Q_i + C^\prime_i Q^\prime_i) + {\rm H.c.}\,,$$

$$\begin{array}{rcl} Q_{1}^{q} & = & (\bar{u}q)_{V-A}(\bar{q}c)_{V-A}, & Q_{2}^{q} = (\bar{u}_{\alpha}q_{\beta})_{V-A}(\bar{q}_{\beta}c_{\alpha})_{V-A}, \\ Q_{5}^{q} & = & (\bar{u}c)_{V-A}(\bar{q}q)_{V+A}, & Q_{6}^{q} = (\bar{u}_{\alpha}c_{\beta})_{V-A}(\bar{q}_{\beta}q_{\alpha})_{V+A}, \\ Q_{7} & = & -\frac{e}{8\pi^{2}}m_{c}\,\bar{u}\sigma_{\mu\nu}(1+\gamma_{5})F^{\mu\nu}\,c\,, \\ Q_{8} & = & -\frac{g_{s}}{8\pi^{2}}m_{c}\,\bar{u}\sigma_{\mu\nu}(1+\gamma_{5})T^{a}G_{a}^{\mu\nu}c\,, \end{array}$$

• $D - \overline{D}$ and ϵ' / ϵ constraints: $|\Delta c| = 2$ and $|\Delta s| = 1$ eff. ops are generated by "dressing" $T \{ \mathcal{H}_{|\Delta c|=1}^{\mathrm{eff}-\mathrm{NP}}(x) \mathcal{H}_{|\Delta c|=1}^{\mathrm{SM}}(0) \}$ and $T \{ \mathcal{H}_{|\Delta c|=1}^{\mathrm{eff}-\mathrm{NP}}(x) \mathcal{H}_{c.c}^{\mathrm{SM}}(0) \}$

Allowed	Ajar	Disfavored	
$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{aligned} &Q^{(c-u,8d,b,0)}_{1,2}, \ &Q^{(0)}_{5,6}, \ Q^{(8d)\prime}_{5,6} \end{aligned}$	$Q^{s-d}_{1,2}, \ C^{(s-d)\prime}_{5,6}, \ C^{s-d,c-u,8d,b}_{5,6}$	

• The effects induced by $Q_{7,8}^{(\prime)}$ are suppressed by $m_c^2/M_W^2!!$

Paride Paradisi (CERN)

Time-integrated CP asymmetries in $D^0 \rightarrow K^+ K^-(\pi^+\pi^-)$

"Relevant" Effective Hamiltonian

$$\mathcal{H}^{\mathrm{eff-NP}}_{|\Delta c|=1} = rac{G_F}{\sqrt{2}}\sum_i C_i Q_i + \mathrm{h.c.}\,,$$

$$\begin{aligned} Q_8 &= \frac{m_c}{4\pi^2} \, \bar{u}_L \sigma_{\mu\nu} \, T^a g_s G_a^{\mu\nu} c_R \,, \\ \tilde{Q}_8 &= \frac{m_c}{4\pi^2} \bar{u}_R \sigma_{\mu\nu} \, T^a g_s G_a^{\mu\nu} c_L \,. \end{aligned}$$

△a_{CP}: SM + NP

$$\Delta a_{CP} \approx \frac{-2}{\sin \theta_c} \left[\operatorname{Im}(V_{cb}^* V_{ub}) \operatorname{Im}(\Delta R^{SM}) + \sum_i \operatorname{Im}(C_i^{NP}) \operatorname{Im}(\Delta R^{NP_i}) \right]$$

= -(0.13%) Im(\Delta R^{SM}) - 9 \sum_i Im(C_i^{NP}) Im(\Delta R^{NP_i})

 $\Delta R^{\rm SM} \approx \alpha_s(m_c)/\pi \approx 0.1$ in perturbation theory and $a_K^{\rm dir} = -a_\pi^{\rm dir}$ in the SU(3) limit. In naive factorization $\left| \operatorname{Im}(\Delta R^{\operatorname{NP}_{\vartheta,\tilde{\vartheta}}}) \right| \approx 0.2$ [Grossman, Kagan & Nir, '06]

$$\Delta a_{CP}^{
m NP}pprox 2~{
m Im}(\mathit{C}_8^{
m NP}+\mathit{C}_8'^{
m NP})$$

Paride Paradisi (CERN)

Lessons:

- On general grounds, models in which the primary source of flavor violation is linked to the breaking of chiral symmetry (left-right flavor mixing) are natural candidates to explain this effect, via enhanced chromomagnetic operators.
- The challenge of model building is to generate the ΔC = 1 chromomagnetic operator without inducing dangerous 4-fermion operators that lead to unacceptably large effects in D⁰ D⁰ mixing or in flavor processes in the down-type quark sector.

• Questions:

- ▶ Which are the most natural NP theories to account for $\Delta a_{CP} @ \%$?
- ► How to test and discriminate among different new-physics models? Looking at connections between Δa_{CP} and other independent observables.

[G.F.Giudice, G.Isidori, & P.P, '12]

Testing direct charm-CPV

• Δa_{CP} vs. direct CP violation in $D \rightarrow V \gamma$ [Isidori & Kamenik, '12]

Paride Paradisi (CERN)
• Δa_{CP} in SUSY: two scenarios

$$\left|\Delta a_{CP}^{\rm SUSY}\right|\approx 0.6\% \left(\frac{\left|{\rm Im}\left(\delta_{12}^u\right)_{LR}^{\rm eff}\right|}{10^{-3}}\right) \left(\frac{{\rm TeV}}{\tilde{m}}\right)\;,$$

Disoriented A terms (proportionality but not alignment with Yukawas)

$$\mathrm{Im} \left(\delta_{12}^u \right)_{LR} \approx \frac{\mathrm{Im}(A) \, \theta_{12} \, m_c}{\tilde{m}} \approx \left(\frac{\mathrm{Im}(A)}{3} \right) \left(\frac{\theta_{12}}{0.5} \right) \left(\frac{\mathrm{TeV}}{\tilde{m}} \right) \times 10^{-3} \, ,$$

• Split families: $m_{ ilde q_{1,2}} \gg m_{ ilde q_3}$, $(\delta^u_{33})_{BL} = A \, m_t / m_{ ilde q_3}$

$$(\delta_{12}^{u})_{RL}^{\text{eff}} = (\delta_{13}^{u})_{RR} (\delta_{33}^{u})_{RL} (\delta_{32}^{u})_{LL} , \qquad (\delta_{12}^{u})_{LR}^{\text{eff}} = (\delta_{13}^{u})_{LL} (\delta_{33}^{u})_{RL} (\delta_{32}^{u})_{RR} .$$

$$\begin{split} & \left(\delta_{32}^{u} \right)_{LL} = O(\lambda^2), \quad \left(\delta_{13}^{u} \right)_{RR} = O(\lambda^2) \quad \rightarrow \quad \left(\delta_{12}^{u} \right)_{RL}^{\mathrm{eff}} = O(\lambda^4) = O(10^{-3}) \,, \\ & \left(\delta_{13}^{u} \right)_{LL} = O(\lambda^3), \quad \left(\delta_{32}^{u} \right)_{RR} = O(\lambda) \quad \rightarrow \quad \left(\delta_{12}^{u} \right)_{LR}^{\mathrm{eff}} = O(\lambda^4) = O(10^{-3}) \,. \end{split}$$

[G.F.Giudice, G.Isidori, & P.P, '12]

• Disoriented A terms

$$(\delta^q_{ij})_{LR}\sim rac{{\cal A} heta^q_{ij}m_{q_j}}{ ilde m} ~~q=u,d\;,$$

	θ_{11}^q	θ_{12}^q	θ_{13}^q	θ_{23}^q
q=d	< 0.2	< 0.5	< 1	_
q=u	< 0.2	-	< 0.3	< 1

[G.F.Giudice, G.Isidori, & P.P, '12]

- Down-quark FCNC (in particular ϵ'/ϵ and $b \to s\gamma$) are under control thanks to the smallness of m_{down}
- EDMs are suppressed by $m_{u,d}$ (yet they are quite enhanced)
- Up-quark FCNC (induced by gluino & up-squarks) and Down-quark FCNC like $K \rightarrow \pi \nu \nu$ and $B_{s,d} \rightarrow \mu \mu$ (induced by charginos & up-squarks) receive the largest effects from disoriented *A* terms.

MSSM soft terms in SUSY with Partial Compositeness [Rattazzi & collaborators, '12]:

$$(\delta_{ij}^{u,d})_{LL} \sim \frac{\tilde{m}_0^2}{\tilde{m}^2} \epsilon_i^q \epsilon_j^q, \qquad (\delta_{ij}^{u,d})_{RR} \sim \frac{\tilde{m}_0^2}{\tilde{m}^2} \epsilon_i^{u,d} \epsilon_j^{u,d}, (\delta_{ij}^{u,d})_{LR} \sim g_\rho \epsilon_i^q \epsilon_j^{u,d} \frac{v_{u,d} A_0}{\tilde{m}^2}, \qquad (\delta_{ij}^{u,d})_{RL} \sim g_\rho \epsilon_i^{u,d} \epsilon_j^q \frac{v_{u,d} A_0}{\tilde{m}^2},$$
(1)

$$(Y_u)_{ij} \sim g_\rho \epsilon^q_i \epsilon^u_j, \qquad (Y_d)_{ij} \sim g_\rho \epsilon^q_i \epsilon^d_j.$$
 (2)

$$(L_u)_{ij} \sim (L_d)_{ij} \sim \frac{\epsilon_i^q}{\epsilon_j^q}, \qquad (R_{u,d})_{ij} \sim \frac{\epsilon_i^{u,d}}{\epsilon_j^{u,d}}$$
(3)

$$(L_{u}^{\dagger}Y_{u}R_{d})_{ij} = g_{\rho}\epsilon_{i}^{u}\epsilon_{i}^{q}\delta_{ij} \equiv y_{i}^{u}\delta_{ij}, \qquad (L_{d}^{\dagger}Y_{d}R_{d})_{ij} = g_{\rho}\epsilon_{i}^{d}\epsilon_{i}^{q}\delta_{ij} \equiv y_{i}^{d}\delta_{ij}, \qquad (4)$$

$$\frac{\epsilon_1^q}{\epsilon_2^q} \sim \lambda \qquad \qquad \frac{\epsilon_2^q}{\epsilon_3^q} \sim \lambda^2 \qquad \qquad \frac{\epsilon_1^q}{\epsilon_3^q} \sim \lambda^3, \tag{5}$$

• "We argued that Supersymmetric models of Partial Compositeness realize the 'disoriented A-terms' scenario advocated in [18], and therefore provide an ideal framework to explain the LHCb result. [Rattazzi & collaborators, '12]"

Paride Paradisi (CERN)

Flavor physics in the LHC era

Left: 0.5 TeV $\leq \tilde{m}, \tilde{m}_g \leq 2$ TeV, tan $\beta = 10, |A| \leq 3$. Right: $|\text{Im}[(\delta_{32}^u)_{RR}(\delta_{31}^u)_{LL}]| = 10^{-2}, \tilde{m} \leq 2$ TeV, and A = 0.5, 1, 1.5, 2.

Paride Paradisi (CERN)

Left:
$$(\delta_{32}^{\nu})_{RR} = 0.2$$
 and $\phi_{\delta_{31}^{L}} \in \pm (30^{\circ}, 60^{\circ}), |(\delta_{31}^{d})_{LL}| < 0.1.$
Right: $(\delta_{13}^{\mu})_{LL} = 10^{-2}, (\delta_{32}^{\mu})_{RR} = 0.2i.$

Paride Paradisi (CERN)

Top and stop phenomenology

- The effective $\Delta C = 1$ transition through stops opens up the possibility of observing flavor violations in the up-quark sector at the LHC.
 - ▶ **Production processes:** $pp \rightarrow \tilde{t}^* \tilde{u}_i$, where $\tilde{u}_i = \tilde{u}, \tilde{c}$. The rate for single \tilde{u}_i production in association with a single stop is proportional to $(\delta^u_{i3})^2_{RR}$, since the mixings in the right-handed sector are larger then in the left sector.
 - Flavor-violating stop decays

$$\frac{\Gamma(\tilde{t}\to c\chi^0)}{\Gamma(\tilde{t}\to t\chi^0)} = \left| (\delta^{u}_{l3})_{RR} \right|^2 \left(1 - \frac{m_t^2}{\tilde{m}_t^2} \right)^{-2},$$

where $u_i = u, c$ and χ^0 is the lightest neutralino.

Flavor-violating gluino decays

$$\frac{\Gamma(\tilde{g} \to \tilde{t}u_i)}{\Gamma(\tilde{g} \to \tilde{t}t)} = \left| (\delta^{u}_{i3})_{RR} \right|^2 \left[1 + O\left(\frac{m_t}{\tilde{m}_g}\right) \right]$$

In models with split families, the gluino can decay only into $\tilde{g} \to \tilde{t}\tilde{t}, \ b\tilde{b}$. Once we include flavor violation, the decay $\tilde{g} \to \bar{\iota}_i \tilde{t}$ is also allowed

Flavor-violating top decays [De Divitiis, Petronzio, Silvestrini, '97]

$$\mathrm{BR}(t \to qX) \sim \left(\frac{\alpha}{4\pi}\right)^2 \left(\frac{m_W}{m_{\mathrm{SUSY}}}\right)^4 |\delta^u_{3q}|^2$$

where $m_{SUSY} = \max(m_{\tilde{g}}, m_{\tilde{t}})$ for $X = \gamma, g, Z$ and $m_{SUSY} = m_A$ for X = h. Even for $\delta_{3g}^{u} \sim 1$ and $m_{SUSY} \gtrsim 3m_W$, BR $(t \to qX) \lesssim 10^{-6}$.

Effective Lagrangian for FCNC couplings of the Z-boson to fermions

$$\mathcal{L}_{ ext{eff}}^{Z- ext{FCNC}} = -rac{g}{2\cos heta_W}ar{\mathcal{F}}_i\gamma^\mu\left[(g_L^Z)_{ij}\,\mathcal{P}_L + (g_R^Z)_{ij}\,\mathcal{P}_R
ight]q_j\,Z_\mu + \, ext{h.c.}$$

F can be either a SM quark (F=q) or some heavier non-standard fermion. If F is a SM fermion

$$(g_L^Z)_{ij}=rac{v^2}{M_{
m NP}^2}(\lambda_L^Z)_{ij} \qquad (g_R^Z)_{ij}=rac{v^2}{M_{
m NP}^2}(\lambda_R^Z)_{ij}$$

Direct CPV in charm

$$\left|\Delta a_{CP}^{Z-\text{FCNC}}\right| \approx 0.6\% \, \left|\frac{\text{Im}\left[(g_L^Z)_{ut}^*(g_R^Z)_{ct}\right]}{2 \times 10^{-4}}\right| \approx 0.6\% \, \left|\frac{\text{Im}\left[(\lambda_L^Z)_{ut}^*(\lambda_R^Z)_{ct}\right]}{5 \times 10^{-2}}\right| \left(\frac{1 \text{ TeV}}{M_{\text{NP}}}\right)^4$$

Neutron EDM

$$|d_n| \approx 3 \times 10^{-26} \, \left| rac{\mathrm{Im}\left[(g_L^Z)_{ut}^* (g_R^Z)_{ut}
ight]}{2 \times 10^{-7}}
ight| \, e\,\mathrm{cm}$$

Top FCNC

$$ext{Br}(t
ightarrow cZ) pprox 0.7 imes 10^{-2} \left|rac{(g_R^Z)_{tc}}{10^{-1}}
ight|^2$$

Effective Lagrangian for FCNC scalar couplings to fermions

$$\mathcal{L}_{ ext{eff}}^{h- ext{FCNC}} = -ar{q}_i \left[(g_L^h)_{ij} \, P_L + (g_R^h)_{ij} \, P_R
ight] q_j \; h + \; ext{h.c.} \; ,$$

$$(g^h_L)_{ij} = rac{v^2}{M^2_{
m NP}} (\lambda^h_L)_{ij}\,, \qquad (g^h_R)_{ij} = rac{v^2}{M^2_{
m NP}} (\lambda^h_R)_{ij}\,,$$

Direct CPV in charm

$$\left|\Delta a_{CP}^{h-\rm FCN\,C}\right|\approx 0.6\% \left|\frac{{\rm Im}\left[(g_L^h)_{ut}^*(g_R^h)_{tc}\right]}{2\times 10^{-4}}\right|\approx 0.6\% \left|\frac{{\rm Im}\left[(\lambda_L^h)_{ut}^*(\lambda_R^h)_{cl}\right]}{5\times 10^{-2}}\right| \left(\frac{1~{\rm TeV}}{M_{\rm N\,P}}\right)^4$$

Neutron EDM

$$|d_n| \approx 3 \times 10^{-26} \left| \frac{\mathrm{Im}\left[(g_L^h)_{ut}^* (g_R^h)_{tu} \right]}{2 \times 10^{-7}} \right| e \mathrm{cm},$$

Top FCNC

$${
m Br}(t o qh) pprox 0.4 imes 10^{-2} \left| rac{(g_R^h)^{tq}}{10^{-1}}
ight|^2 \, ,$$

Δa_{CP} in scenarios with Z- and scalar-mediated FCNC (G.F.Giudice, G.Isidori, & P.P.

Left: BR($t \to cZ$) vs. $\Delta a_{CP}^{Z-\text{FCNC}}$. Right: BR($t \to ch$) vs. $\Delta a_{CP}^{h-\text{FCNC}}$. The plots have been obtained by means of the scan: $|(g_L^X)_{ut}| > 10^{-3}$, $|(g_R^X)_{ct}| > 10^{-2}$, where X = Z, h, with $\arg[(g_L^X)_{ut}] = \pm \pi/4$ and $\arg[(g_R^X)_{ct}] = 0$. The points in the red regions solve the tension in the CKM fits through a non-standard phase in $B_d - \overline{B}_d$ mixing, assuming for the corresponding down-type coupling $(g_L^X)_{db} = 5 \times 10^{-2} (g_L^X)_{ut}$.

Paride Paradisi (CERN)

CPV in D-physics

$$\begin{aligned} \mathbf{CPV} &\text{ in } \mathbf{D}^{0} - \overline{\mathbf{D}}^{0} \sim \operatorname{Im}((V_{cb} V_{ub})/(V_{cs} V_{us})) \sim \mathbf{10}^{-3} \text{ in the SM} \\ \bullet & \langle D^{0} | \mathcal{H}_{eff} | \overline{D}^{0} \rangle = M_{12} - \frac{i}{2} \Gamma_{12}, \qquad | D_{1,2} \rangle = \rho | D^{0} \rangle \pm q | \overline{D}^{0} \rangle \\ \bullet & \frac{q}{\rho} = \sqrt{\frac{M_{12}^{*} - \frac{i}{2} \Gamma_{12}^{*}}{M_{12} - \frac{i}{2} \Gamma_{12}}}, \qquad \phi = \operatorname{Arg}(q/\rho) \\ \bullet & x = \frac{\Delta M_{D}}{\Gamma} = 2\tau \operatorname{Re} \left[\frac{q}{\rho} \left(M_{12} - \frac{i}{2} \Gamma_{12} \right) \right] \\ \bullet & y = \frac{\Delta \Gamma}{2\Gamma} = -2\tau \operatorname{Im} \left[\frac{q}{\rho} \left(M_{12} - \frac{i}{2} \Gamma_{12} \right) \right] \end{aligned}$$

The 95% C.L. allowed ranges by HFAG are

$$\begin{split} x_{12} &\in [0.25, \ 0.99] \,\%, \qquad y_{12} \in [0.59, \ 0.99] \,\%, \qquad \phi_{12} \in [-7.1^{\circ}, \ 15.8^{\circ}] \,, \\ \mathbf{S}_{f} &= 2\Delta Y_{f} = \frac{1}{\Gamma_{D}} \left(\hat{\Gamma}_{\bar{D}^{0} \to f} - \hat{\Gamma}_{D^{0} \to f} \right) \\ \eta_{f}^{\text{CP}} \, S_{f} &= x \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \sin \phi - y \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \cos \phi \\ \mathbf{a}_{\text{SL}} &= \frac{\Gamma(D^{0} \to K^{+}\ell^{-}\nu) - \Gamma(\bar{D}^{0} \to K^{-}\ell^{+}\nu)}{\Gamma(D^{0} \to K^{+}\ell^{-}\nu) + \Gamma(\bar{D}^{0} \to K^{-}\ell^{+}\nu)} = \frac{|q|^{4} - |p|^{4}}{|q|^{4} + |p|^{4}} \\ \text{[Nir et al., Kagan et al., Petrov et al., Bigi et al., Buras et al., ...]} \end{split}$$

Paride Paradisi (CERN)

Flavor physics in the LHC era

CPV in D-physics vs. neutron EDM in SUSY (Altmannsholer, Buras, & P.F

FIG. 3: Correlations between d_n and S_f (left), d_n and a_{SL} (middle) and a_{SL} and S_f (right) in SUSY alignment models. Gray points satisfy the constraints (8)-(10) while blue points further satisfy the constraint (11) from ϕ . Dashed lines stand for the allowed range (18) for S_f .

FIG. 2: Examples of relevant Feynman diagrams contributing (a) to $D^0 - \overline{D}^0$ mixing and (b) to the up quark (C)EDM in SUSY alignment models.

• Longstanding muon g - 2 anomaly

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = 2.90(90) \times 10^{-9}$$
, 3.5 σ discrepancy

- Main question: how to check if the a_µ discrepancy is due to NP?
- Answer: testing NP effects in a_e [Giudice, P.P. & Passera, '12]
 - a_e has never played a role in testing ideas beyond the SM. In fact, it is believed that new-physics contaminations of a_e are too small to be relevant and, with this assumption, the measurement of a_e is employed to determine the value of the fine-structure constant α .
 - The situation has now changed, thanks to advancements both on the theoretical and experimental sides.
- "Naive scaling": $\Delta a_{\ell_i}/\Delta a_{\ell_j}=m_{\ell_i}^2/m_{\ell_i}^2$

$$\Delta a_{e} = \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right) \ \mathbf{0.7} \times \mathbf{10^{-13}}, \qquad \Delta a_{\tau} = \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right) \ \mathbf{0.8} \times \mathbf{10^{-6}}.$$

The Standard Model prediction of the electron g - 2

QED contribution [Kinoshita & Marciano, in Quantum Electrodynamics (1990)]

$$\begin{aligned} \boldsymbol{a}_{e}^{\text{QED}} &= \boldsymbol{A}_{1} + \boldsymbol{A}_{2} \left(\frac{m_{e}}{m_{\mu}} \right) + \boldsymbol{A}_{2} \left(\frac{m_{e}}{m_{\tau}} \right) + \boldsymbol{A}_{3} \left(\frac{m_{e}}{m_{\mu}}, \frac{m_{e}}{m_{\tau}} \right), \\ \boldsymbol{A}_{i} &= \boldsymbol{A}_{i}^{(2)} \left(\alpha / \pi \right) + \boldsymbol{A}_{i}^{(4)} \left(\alpha / \pi \right)^{2} + \boldsymbol{A}_{i}^{(6)} \left(\alpha / \pi \right)^{3} + \cdots. \end{aligned}$$

QED @ 1 loop [Schwinger, Phys. Rev. 73 (1948)]

$$C_1 = A_1^{(2)} = 1/2$$
,

- QED @ 2 loop [Sommerfield, Phys. Rev. 107 (1957); A. Petermann, Nucl. Phys. 5 (1958) 677.] $C_2 = A_1^{(4)} + A_2^{(4)}(m_e/m_\mu) + A_2^{(4)}(m_e/m_\tau) = -0.328\,478\,444\,002\,55\,(33).$
- QED @ 3 loop [Laporta & Remiddi, PLB 301 (1993), PLB 379 (1996)]

$$\mathcal{C}_{3}=$$
 1.181 234 016 816 (11) , $\delta a_{e}^{
m QED}\sim 10^{-19}$

QED @ 4 loop [Kinoshita and collaborators, PRL 99 (2007); PRD 77 (2008)]

$$C_4 = -1.9097(20), \qquad \qquad \delta a_e^{
m QED} \sim 5.8 imes 10^{-14}$$

QED @ 5 loop [Kinoshita and collaborators, 2012]

$$C_5 = 9.16 (58)$$
 $\delta a_e^{
m QED} \sim 3.9 imes 10^{-14}$

The Standard Model prediction of the electron g - 2

Electroweak contribution [Czarnecki, Krause and Marciano, PRL 76 (1996)]

$$a_e^{
m EW} = 0.3854(42) imes 10^{-13}$$
.

• Hadronic contribution [Jegerlehner & and Nyffeler, Phys. Rept. 477 (2009), Nomura & Teubner, '12]

$$a_e^{\mathrm{HAD}} = 16.82(16) \times 10^{-13},$$

• Standard Model prediction of a_e and value of α

$$a_e^{\text{SM}}(\alpha) = a_e^{\text{QED}}(\alpha) + a_e^{\text{EW}} + a_e^{\text{HAD}}$$

Experimental situation [Gabrielse & collaborators, PRL 100 (2008), PRL 97 (2006), PRA 83 (2011)]

$$a_e^{
m EXP} =$$
 11596521807.3(2.8) $imes$ 10 $^{-13}$

• Extracting α from $a_e^{SM}(\alpha) = a_e^{EXP}$

 α (g-2) = 1/137.035 999 174 (34) [0.25 ppb],

This is the most precise value of α available today!

• Second best determination of α from atomic physics

 α (⁸⁷Rb) = 1/137.035 999 049 (90) [0.66 ppb].

- ▶ α (⁸⁷Rb) is deduced from the ratios $h/M_{\rm Rb}$ where $M_{\rm Cs,Rb}$ is from the mass ratios $M_{\rm Cs,Rb}/m_{\theta}$ [CODATA 2010].
- The experimental scheme combines atom interferometry with Bloch oscillation [Cladé et al., PRL 96 (2006), Cadoret et al., PRL 101 (2008), Bouchendira et al., PRL 106 (2011)].
- $\alpha(^{87}\text{Rb})$ agrees with $\alpha(g-2)$ at the 1.3 σ level, and its uncertainty $\delta\alpha(^{87}\text{Rb})$ is larger than $\delta\alpha(g-2)$ just by a factor of 2.7.
- Determination of $a_e^{SM}(\alpha)$ from $\alpha(^{87}Rb)$

 $a_e^{\rm SM} = 115\,965\,218\,17.9\,(0.6)(0.4)(0.2)(7.6) \times 10^{-13}.$

- ► The first (second) error is from four(five)-loop QED coefficient, the third one is $\delta a_e^{\rm HAD}$, and the last (7.60 × 10⁻¹³) from $\delta \alpha (^{87} {\rm Rb})$.
- ► The uncertainties of the EW and two/three-loop QED contributions are negligible.
- ► $\delta a_e^{\text{SM}} = 7.64 \times 10^{-13}$ is about three times worse than δa_e^{exp} almost due to the uncertainty of the fine-structure constant α (⁸⁷Rb).

The Standard Model prediction of the electron g - 2

Standard Model vs. measurement

$$\Delta a_e = a_e^{\text{EXP}} - a_e^{\text{SM}} = -10.6 \,(8.1) \times 10^{-13},$$

- Beautiful test of QED at four-loop level!
- $\delta \Delta a_e = 8.1 \times 10^{-13}$ is dominated by δa_e^{SM} through $\delta \alpha ({}^{87}\text{Rb})$.
- Future improvements in the determination of ∆a_e

$$\underbrace{(0.6)_{\rm QED4}, \ (0.4)_{\rm QED5}, \ (0.2)_{\rm HAD}}_{(0.7)_{\rm TH}}, \ (7.6)_{\delta\alpha}, \ (2.8)_{\delta a_e^{\rm EXP}}.$$
(6)

- The first error, 0.6 × 10⁻¹³, stems from numerical uncertainties in the four-loop QED. It can be reduced to 0.1 × 10⁻¹³ with a large scale numerical recalculation [Kinoshita]
- > The second error, from five-loop QED term may soon drop to 0.1×10^{-13} .
- Experimental uncertainties 2.8×10^{-13} ($\delta a_{\theta}^{\rm EXP}$) and 7.6×10^{-13} ($\delta \alpha$) dominate. We expect a reduction of the former error to a part in 10^{-13} (or better) [Gabrielse]. Work is also in progress for a significant reduction of the latter error [Nez].
- Δa_e at the 10^{-13} (or below) is not too far! This will bring a_e to play a pivotal role in probing new physics in the leptonic sector.

Paride Paradisi (CERN)

Flavor physics in the LHC era

 Violations of "naive scaling" for (g − 2)_ℓ can arise in SUSY through sources of non-universalities in the slepton mass matrices with or without lepton flavor violating sources.

$$\Delta a_e pprox \Delta a_\mu \; rac{m_e^2}{m_\mu^2} rac{m_{ ilde{\mu}}^2}{m_e^2} pprox rac{m_{ ilde{\mu}}^2}{m_e^2} \left(rac{\Delta a_\mu}{3 imes 10^{-9}}
ight) 10^{-13} \,,$$

- In turn, these non-universalities will induce violations of lepton flavor universality such as $P \rightarrow \ell \nu$, $\tau \rightarrow P \nu$ (where $P = \pi, K$), $\ell_i \rightarrow \ell_j \bar{\nu} \nu$, $Z \rightarrow \ell \ell$ and $W \rightarrow \ell \nu$ through loop effects, which have been already tested at the 0.1% level
- Taking for example the process $P \rightarrow \ell \nu$, we can define the quantity

$$\frac{(R_{P}^{e/\mu})_{_{\rm EXP}}}{(R_{P}^{e/\mu})_{_{\rm SM}}} = 1 + \Delta r_{P}^{e/\mu} \,, \ \Delta r_{P}^{e/\mu} \sim \frac{\alpha}{4\pi} \left(\frac{m_{\tilde{e}}^{2} - m_{\tilde{\mu}}^{2}}{m_{\tilde{e}}^{2} + m_{\tilde{\mu}}^{2}}\right) \frac{v^{2}}{\min(m_{\tilde{e},\tilde{\mu}}^{2})} \,,$$

$$\blacktriangleright R_P^{e/\mu} = \Gamma(P \to e\nu) / \Gamma(P \to \mu\nu)$$

• $\Delta r_P^{e/\mu} \neq 0$ signals the presence of new physics violating LFU.

Lepton flavor conserving case

Left: Δa_e as a function of $X_{e\mu} = (m_{\tilde{e}}^2 - m_{\tilde{\mu}}^2)/(m_{\tilde{e}}^2 + m_{\tilde{\mu}}^2)$. Right: Δa_{τ} as a function of $X_{\mu\tau} = (m_{\tilde{\mu}}^2 - m_{\tilde{\tau}}^2)/(m_{\tilde{\mu}}^2 + m_{\tilde{\tau}}^2)$. Black points satisfy the condition $1 \le \Delta a_{\mu} \times 10^9 \le 5$, while red points correspond to $2 \le \Delta a_{\mu} \times 10^9 \le 4$.

Lepton flavor conserving case

Left: $\Delta r_{\rm P}^{e/\mu}$ vs. Δa_e , where $\Delta r_{\rm P}^{e/\mu}$ measures violations of lepton universality in $\Gamma(P \to e\nu)/\Gamma(P \to \mu\nu)$ with $P = K, \pi$. Right: $\Delta r_{\rm P}^{\mu/\tau}$ vs. Δa_{τ} where $\Delta r_{\rm P}^{\mu/\tau}$ measures violations of lepton universality in $\Gamma(P \to \mu\nu)/\Gamma(\tau \to P\nu)$.

Lepton flavor violating case

Left: BR($\tau \rightarrow e\gamma$) vs. $|\Delta a_e|$. Right: $\Delta r_K^{e/\mu}$ vs. $|\Delta a_e|$. The vertical line corresponds to the prediction for Δa_e assuming NS, setting Δa_{μ} equal to its central value $\Delta a_{\mu} = 3 \times 10^{-9}$.

Higgs boson properties

The experimental situation can roughly summarized as follow:

- ▶ The $h \rightarrow b\bar{b}$ search is performed via Higgs production in association with a W(Z).
- The search of $\gamma \gamma jj$ has been done mostly through VBF (with a partial contamination from *ggh*) but also by means of inclusive analyses.
- > All the other channels can be considered basically as inclusive.

• The overall picture emerging from the new LHC data is the following:

- ▶ *WW**, *ZZ** data are in a quite good agreement with the SM expectations.
- $h \rightarrow \gamma \gamma$ shows an excess.
- Taking into account all data the weighted average of all rates reads

$$\frac{\text{Measured Higgs rate}}{\text{SM prediction}} = 1.02 \pm 0.15 \qquad 6.9\sigma \text{ away from 0}!$$

• Signal strength parameters $\mu = \sigma \times BR/(\sigma \times BR)_{SM}$

$$\begin{aligned} (\mu_i)_{incl.} &= \frac{\sum_j \sigma_j \times \operatorname{Br}[h \to i]}{\left(\sum_j \sigma_j \times \operatorname{Br}[h \to i]\right)_{\mathrm{SM}}}, \qquad j = ggh, VBF, Vh, \\ (\mu_i)_{excl.} &= \frac{\sigma_j \times \operatorname{Br}[h \to i]}{(\sigma_j \times \operatorname{Br}[h \to i])_{SM}}, \qquad j = VBF, Vh, \end{aligned}$$

Enhancing $h \rightarrow \gamma \gamma$ in SUSY

- In SUSY, many new particles can affect $\Gamma(h \rightarrow \gamma \gamma)$, however most of them do not lead to the desired effect.
 - Stops give contributions to the $h \rightarrow gg$ coupling that overcompensate the effect in the photon coupling, thus reducing $\sigma(pp \rightarrow h)BR(h \rightarrow \gamma\gamma)$.
 - > The charged Higgs and charginos give small effects in the Higgs-photon coupling.
 - The only viable SUSY candidate for an increased di-photon rate is a light stau which, in presence of a large left-right mixing, increases the Higgs-photon coupling.

$$\Gamma(h \to \gamma \gamma) \sim \left| F_1\left(\frac{4M_W^2}{m_h^2}\right) + N_c Q_t^2 F_{1/2}\left(\frac{4m_t^2}{m_h^2}\right) + \sum_{i=1,2} g_{h\bar{\tau}_i \bar{\tau}_i} \frac{M_Z^2}{m_{\bar{\tau}_i}^2} F_0\left(\frac{4m_{\bar{\tau}_i}^2}{m_h^2}\right) \right|^2,$$

$$\frac{\Gamma(h \to \gamma \gamma)}{\Gamma(h \to \gamma \gamma)_{\rm SM}} \approx \left(1 + 0.025 \frac{|m_\tau \mu \tan \beta \sin 2\theta_{\bar{\tau}}|}{m_{\bar{\tau}_1}^2}\right)^2, \qquad \sin 2\theta_{\bar{\tau}} \approx -\frac{2m_\tau \mu \tan \beta}{m_{\bar{\tau}_1}^2 - m_{\bar{\tau}_2}^2}$$

- A significant enhancement of $\Gamma(h \rightarrow \gamma \gamma)$ requires:
 - $m_{\tilde{\tau}_1} \sim 100 \text{ GeV}$ and must correspond to a maximally mixed state.
 - Higgsinos are around or even above the TeV. The Wino, gluino, and squarks must be sufficiently heavy to avoid LHC bounds and to explain the Higgs mass.
 - The LSP condition corners the Bino to have the right properties to account for dark matter, through Bino-stau coannihilation.

Paride Paradisi (CERN)

Flavor physics in the LHC era

Correlation between $h \rightarrow \gamma \gamma$ and $(g - 2)_{\mu}$

• Leading SUSY effects to δa_{μ} captured by the approximate expression

$$\delta a_{\mu} \approx 2.8 \times 10^{-9} \left(\frac{\tan\beta}{20}\right) \left(\frac{300 \text{ GeV}}{\tilde{m}}\right)^2 \left[\frac{1}{8} \frac{10}{\mu/\tilde{m}} + \frac{\mu/\tilde{m}}{10}\right] \,.$$

- The first contribution comes from chargino exchange with an underlying Higgsino/Wino mixing and it decouples for large µ.
- The second term arises from pure Bino exchange with an underlying smuon left-right mixing and therefore it grows with μ and therefore correlated with Γ(h → γγ)

$$\frac{\Gamma(h \to \gamma \gamma)}{\Gamma(h \to \gamma \gamma)_{\rm SM}} \approx \left(1 + 0.025 \; \frac{|m_{\tau} \mu \tan \beta \sin 2\theta_{\bar{\tau}}|}{m_{\tilde{\tau}_1}^2}\right)^2$$

• EWPOs (Δρ) induced by large LR soft terms which break SU(2)

$$\Delta \rho = \frac{G_{\rm F}}{4\sqrt{2}\pi^2} \left[\sin^2 \theta_{\tilde{\tau}} f(m_{\tilde{\nu}}^2, m_{\tilde{\tau}_1}^2) + \cos^2 \theta_{\tilde{\tau}} f(m_{\tilde{\nu}}^2, m_{\tilde{\tau}_2}^2) - \sin^2 \theta_{\tilde{\tau}} \cos^2 \theta_{\tilde{\tau}} f(m_{\tilde{\tau}_1}^2, m_{\tilde{\tau}_2}^2) \right]$$

- *h* → *Z*γ is suppressed since *Z*τ̃_iτ̃_i is proportional to 1 − 4 sin² θ_W, which is accidentally small.
- LFU breaking effects in the $\mu(e)/\tau$ sector are generated up to the per-mill level.

Paride Paradisi (CERN)

Correlation between $h \rightarrow \gamma \gamma$ and $(g - 2)_{\mu}$

[Giudice, P.P., Strumia, '12]

• Neutrino Oscillation $\Rightarrow m_{\nu_i} \neq m_{\nu_j} \Rightarrow LFV$

• see-saw:
$$m_
u = rac{(m_
u^D)^2}{M_R} \sim eV, \, M_R \sim 10^{14-16} \Rightarrow m_
u^D \sim m_{top}$$

- LFV transitions like $\mu \rightarrow e\gamma$ @ 1 loop with exchange of
 - W and ν in the SM framework (GIM) with $\Lambda_{NP} \equiv M_R$

$$Br(\mu
ightarrow e\gamma) \sim rac{m_{
u}^{D\,4}}{M_R^4} \leq 10^{-50}$$

• \tilde{W} and $\tilde{\nu}$ in the MSSM framework (SUPER-GIM) with $\Lambda_{NP} \equiv \tilde{m}$

$$Br(\mu
ightarrow e\gamma) \sim rac{m_{
u}^{D\,4}}{ ilde{m}^4} \leq 10^{-11}$$

• LFV signals are undetectable (detectable) in the SM (MSSM)

∜

Process	Present	Future	Experiment
BR($\mu ightarrow e \gamma$)	1.2×10^{-11}	$O(10^{-13})$	MEG, PSI
$BR(\mu o eee)$	1.1×10^{-12}	$O(10^{-14})$?
$BR(\mu + \mathrm{Ti} ightarrow e + \mathrm{Ti})$	1.1×10^{-12}	$O(10^{-18})$	J-PARC
$BR(au o oldsymbol{e} \gamma)$	1.1×10^{-7}	$O(10^{-8})$	SuperB
$BR(au o {\it eee})$	$2.7~ imes~10^{-7}$	$O(10^{-9})$	SuperB
$BR(au o {m e}\mu\mu)$	2. \times 10 ⁻⁷	$O(10^{-9})$	SuperB
$BR(au o \mu \gamma)$	6.8×10^{-8}	$O(10^{-8})$	SuperB
$BR(au o \mu \mu \mu)$	2×10^{-7}	$O(10^{-9})$	LHCb
$BR(au o \mu {\it e} {\it e})$	$2.4 imes 10^{-7}$	$O(10^{-9})$	SuperB
<i>d</i> _{TI} [<i>e</i> cm]	$< 9.0 imes 10^{-25}$	pprox 10 ⁻²⁹	Pospelov & Ritz, 2005
<i>d</i> _{Hg} [<i>e</i> cm]	< 3.1 $ imes$ 10 ⁻²⁹	?	?
<i>d</i> _n [<i>e</i> cm]	$< 2.9 imes 10^{-26}$	$pprox 10^{-28}$	PSI, Institute Laue-Langevin

LFV: model-independent analysis

 $au\mu Z$ effective operators

$$g_Z m_Z^2 \left[A_L^Z \mu \tau + A_R^Z \mu^c \tau^c + \text{h.c.} \right] Z_\mu, \tag{7}$$

$$g_{Z}\left[C_{L}^{Z}\mu\tau+C_{R}^{Z}\mu^{c}\tau^{c}+\text{h.c.}\right]\Box Z_{\mu},$$
(8)

$$g_{Z}\left[iD_{L}^{Z}\mu\tau^{c}+iD_{R}^{Z}\mu^{c}\tau+\text{h.c.}\right]Z_{\mu\nu},$$
(9)

• The operators in (7) are chirality conserving and have no derivatives, so they originate from $SU(2)_W \times U(1)_Y$ -invariant operators with two Higgs $\Rightarrow m_Z^2$

$$(L_{\mu}L_{\tau})\left(H_{1}^{\dagger}iD_{\mu}H_{1}
ight), \quad (L_{\mu}\sigma^{a}L_{\tau})\left(H_{1}^{\dagger}\sigma^{a}iD_{\mu}H_{1}
ight), \quad (\mu^{c}\tau^{c})\left(H_{1}^{\dagger}iD_{\mu}H_{1}
ight).$$

- The operators in (8) are chirality conserving with two derivatives, so they originate from $SU(2)_W \times U(1)_Y$ -invariant operators with no Higgs.
- The operators in (9) are chirality flipping (dipole) and come from $SU(2)_W \times U(1)_Y$ -invariant operators with one Higgs field $\Rightarrow m_{\tau}$.

[see e.g., Brignole & Rossi, '04]

Flavor physics in the LHC era

$au\mu\gamma$ effective operators

$$\boldsymbol{e}\left[\boldsymbol{C}_{L}\,\boldsymbol{\mu}\boldsymbol{\tau}+\boldsymbol{C}_{R}\,\boldsymbol{\mu}^{c}\boldsymbol{\tau}^{c}+\mathrm{h.c.}\right]\Box\boldsymbol{A}_{\boldsymbol{\mu}},\tag{10}$$

$$e\left[iD_L \mu \tau^c + iD_R \mu^c \tau + \text{h.c.}\right] F_{\mu\nu}.$$
(11)

 $au\mu$ ff effective operators

$$\sum_{f} \left[(\mu\tau) \left(B_{L}^{f_{L}} f + B_{L}^{f_{R}} f^{c} \right) + (\mu^{c} \tau^{c}) \left(B_{R}^{f_{L}} f + B_{R}^{f_{R}} f^{c} \right) + \text{h.c.} \right].$$
(12)

 $\tau\mu$ Higgs effective operators

$$\mathcal{L}_{\mathrm{Higgs}\ \mu\tau}^{\mathrm{eff}} = -\frac{h_{\tau}}{\sqrt{2}c_{\beta}} (\Delta_{L}^{*} \tau^{c} \mu + \Delta_{R} \mu^{c} \tau) \left[c_{\beta-\alpha} h - s_{\beta-\alpha} H - iA \right] + \mathrm{h.c.}, \qquad (13)$$

[see e.g., Brignole & Rossi, '04]

LFV: model-independent analysis

Figure 1: The different contributions to $\tau \rightarrow \mu \gamma$, $Z \rightarrow \mu \tau$ and $\tau \rightarrow \mu f f$ decays.

LFV: model-independent analysis

Figure 4: Δ -contributions to the Higgs boson decays $A, H, h \rightarrow \mu \tau$ and to the decays $\tau \rightarrow 3\mu, \tau \rightarrow \mu \pi, \tau \rightarrow \mu \eta, \tau \rightarrow \mu \eta'$. In the last diagram, curly lines denote gluons.

Correlations

• **D-dominance**

$$\frac{BR(\tau^- \to \mu^- e^+ e^-)}{BR(\tau^- \to \mu^-)} \simeq \frac{\alpha}{3\pi} \left(\log \frac{2}{m_e^2} - 3\right) \simeq 10^{-2}$$
(14)

$$\frac{BR(\tau^- \to \mu^- \mu^+ \mu^-)}{BR(\tau^- \to \mu^-)} \simeq \frac{\alpha}{3\pi} \left(\log \frac{2}{m_{\mu}^2} - \frac{11}{4} \right) \simeq 2.2 \times 10^{-3}$$
(15)

$$\frac{BR(\tau^- \to \mu^- \rho^0)}{BR(\tau^- \to \mu^-)} \simeq 2.5 \times 10^{-3}.$$
 (16)

• <u>C-dominance.</u>

$$BR(\tau^{-} \to \mu^{-} \rho^{0}) \simeq BR(\tau^{-} \to \mu^{-} \mu^{+} \mu^{-}) \simeq 1.5 \times BR(\tau^{-} \to \mu^{-} e^{+} e^{-}).$$
(17)

• <u>A^Z-dominance.</u>

$$BR(Z \to \mu^+ \tau^-) \simeq 3 \times BR(\tau^- \to \mu^- e^+ e^-), \tag{18}$$

$$BR(\tau^- \to \mu^- \rho^0) \simeq 1.8 \times BR(\tau^- \to \mu^- e^+ e^-), \tag{19}$$

$$BR(\tau^- \to \mu^- \pi^0) \simeq 2.7 \times BR(\tau^- \to \mu^- e^+ e^-), \qquad (20)$$

$$BR(\tau^- \to \mu^- \eta) \simeq 0.8 \times BR(\tau^- \to \mu^- e^+ e^-), \tag{21}$$

$$BR(\tau^- \to \mu^- \eta') \simeq 0.7 \times BR(\tau^- \to \mu^- e^+ e^-), \qquad (22)$$

$$BR(\tau^- \to \mu^- \mu^+ \mu^-) \simeq 1.5 \times BR(\tau^- \to \mu^- e^+ e^-).$$
 (23)

Paride Paradisi (CERN)

Pattern of LFV in NP models

- Ratios like $Br(\mu \rightarrow e\gamma)/Br(\tau \rightarrow \mu\gamma)$ probe the NP flavor structure
- Ratios like $Br(\mu \rightarrow e\gamma)/Br(\mu \rightarrow eee)$ probe the NP operator at work

ratio	LHT	MSSM	SM4
$rac{Br(\mu ightarrow eee)}{Br(\mu ightarrow e\gamma)}$	0.02 1	$\sim 2 \cdot 10^{-3}$	0.062.2
$rac{Br(au ightarrow eee)}{Br(au ightarrow e\gamma)}$	0.040.4	$\sim 1 \cdot 10^{-2}$	0.07 2.2
$rac{Br(au ightarrow \mu \mu \mu)}{Br(au ightarrow \mu \gamma)}$	0.04 0.4	$\sim 2 \cdot 10^{-3}$	0.062.2
$rac{Br(au ightarrow e \mu \mu)}{Br(au ightarrow e \gamma)}$	0.04 0.3	$\sim 2 \cdot 10^{-3}$	0.031.3
$rac{Br(au ightarrow \mu ee)}{Br(au ightarrow \mu \gamma)}$	0.04 0.3	$\sim 1 \cdot 10^{-2}$	0.04 1.4
$rac{Br(au ightarrow eee)}{Br(au ightarrow e\mu\mu)}$	0.82	~ 5	1.52.3
$rac{Br(au ightarrow \mu\mu\mu)}{Br(au ightarrow \mu$ ee)}	0.71.6	\sim 0.2	1.4 1.7
$rac{\mathrm{R}(\mu\mathrm{Ti} ightarrow e\mathrm{Ti})}{Br(\mu ightarrow e\gamma)}$	$10^{-3} \dots 10^2$	$\sim 5\cdot 10^{-3}$	$10^{-12} \dots 26$

[Buras et al., '07, '10]

General structure of new-physics contributions

• NP effects are encoded in the effective Lagrangian

$$\mathcal{L} = \boldsymbol{e} \frac{m_{\ell}}{2} \left(\bar{\ell}_{\mathsf{R}} \sigma_{\mu\nu} \boldsymbol{A}_{\ell\ell'} \ell'_{\mathsf{L}} + \bar{\ell}'_{\mathsf{L}} \sigma_{\mu\nu} \boldsymbol{A}^{\star}_{\ell\ell'} \ell_{\mathsf{R}} \right) \boldsymbol{F}^{\mu\nu} \qquad \ell, \ell' = \boldsymbol{e}, \mu, \tau \,,$$

• The amplitude $A_{\ell\ell'}$ and therefore Δa_{ℓ} can be written as

$$A_{\ell\ell'} = \frac{1}{(4\pi\,\Lambda_{\rm NP})^2} \left[\left(g_{\ell k}^L \, g_{\ell' k}^{L*} + g_{\ell k}^R \, g_{\ell' k}^{R*} \right) f_1(x_k) + \frac{v}{m_\ell} \left(g_{\ell k}^L \, g_{\ell' k}^{R*} \right) f_2(x_k) \right] \,,$$

▶ The leptonic *g* − 2 is given by

$$\Delta a_{\ell} = 2m_{\ell}^2 \operatorname{Re}(A_{\ell\ell}).$$

• The leptonic EDM, d_{ℓ} , is given by

$$\frac{d_\ell}{e} = m_\ell \operatorname{Im}(A_{\ell\ell}).$$

• The branching ratio of $\ell \rightarrow \ell' \gamma$ is given by

$$\frac{\mathrm{BR}(\ell \to \ell' \gamma)}{\mathrm{BR}(\ell \to \ell' \nu_{\ell} \bar{\nu}_{\ell'})} = \frac{48\pi^3 \alpha}{G_F^2} \left(|\mathsf{A}_{\ell\ell'}|^2 + |\mathsf{A}_{\ell'\ell}|^2 \right)$$

• Challenge: Large effects for g-2 keeping under control $\mu \rightarrow e\gamma$ and d_e

Paride Paradisi (CERN)

A concrete SUSY scenario: "Disoriented A-terms"

• "Disoriented A-terms" [Giudice, Isidori & P.P., '12]:

$$(\delta^{ij}_{LR})_f \sim rac{A_f heta^f_{ij} m_{f_j}}{m_{\tilde{f}}} \quad f = u, d, \ell \; ,$$

- Flavor and CP violation is restricted to the trilinear scalar terms (invoked in [Giudice, Isidori & P.P., '12] to explain direct CP violation in charm decays $D \rightarrow KK, \pi\pi$).
- Flavor bounds of the down-sector are naturally satisfied thanks to the smallness of down-type quark/lepton masses.
- A natural realization of this ansatz arises in scenarios with partial compositeness where $\theta_{ii}^{\ell} \sim \sqrt{m_i/m_i}$ [Rattazzi et al.,12].
- $\mu \rightarrow e\gamma$ and d_e are generated only by U(1) interactions

$$A_L^{\mu e} = \frac{\alpha \ M_1 \ \delta_{LR}^{\mu e}}{2\pi \cos^2 \theta_W \ m_{\tilde{\ell}}^2 \ m_{\mu}} \ f_n(x_1) \,, \qquad \frac{d_e}{e} = \frac{\alpha \ \mathrm{Im} \left(M_1 \delta_{LR}^{ee}\right)}{2\pi \cos^2 \theta_W \ \tilde{m}^2} \ f_n(x_1) \,.$$

• $(g-2)_{\mu}$ is generated by SU(2) interactions and is $\tan \beta$ enhanced therefore the relative enhancement w.r.t. $\mu \rightarrow e\gamma$ and d_e is $\tan \beta / \tan^2 \theta_W \approx 100 \times (\tan \beta/30)$

$$\Delta a_\ell \simeq rac{lpha m_\ell^2 \, an eta}{\pi \sin^2 heta_W \, ilde{m}^2} \, f'(x_2)$$

A concrete SUSY scenario: "Disoriented A-terms"

• Numerical example: $\tilde{m} = |A_e| = 1$ TeV, $\sin \phi_{A_e} = 1$, $M_2 = \mu = 2M_1 = 0.2$ TeV, and $\tan \beta = 30$

$$\begin{split} \mathrm{BR}(\mu \to \boldsymbol{e}\gamma) &\approx \mathbf{6} \times \mathbf{10^{-13}} \left| \frac{A_{\ell}}{\mathrm{TeV}} \frac{\theta_{12}^{\ell}}{\sqrt{m_{e}/m_{\mu}}} \right|^{2} \left(\frac{\mathrm{TeV}}{m_{\tilde{\ell}}} \right)^{4}, \\ d_{e} &\approx \mathbf{4} \times \mathbf{10^{-28}} \mathrm{Im} \left(\frac{A_{\ell}}{\mathrm{TeV}} \frac{\theta_{11}^{\ell}}{\mathrm{TeV}} \right) \left(\frac{\mathrm{TeV}}{m_{\tilde{\ell}}} \right)^{2} \boldsymbol{e} \mathrm{\,cm}, \\ \Delta a_{\mu} &\approx \mathbf{1} \times \mathbf{10^{-9}} \left(\frac{\mathrm{TeV}}{m_{\tilde{\ell}}} \right)^{2} \left(\frac{\mathrm{tan} \beta}{\mathbf{30}} \right). \end{split}$$

- Disoriented A-terms can account for (g−2)_μ, satisfy the bounds on μ → eγ and d_e, while giving predictions for μ → eγ and d_e within experimental reach.
- ▶ The lightest Higgs boson mass $m_h \approx 125$ GeV can be naturally accounted for thanks to large A-terms.
- ► The electron (g 2) follows "naive scaling".

A concrete SUSY scenario: "Disoriented A-terms"

Predictions for $\mu \to e\gamma$, Δa_{μ} and d_e in the disoriented A-term scenario with $\theta_{ij}^{\ell} = \sqrt{m_i/m_j}$. Left: $\mu \to e\gamma$ vs. Δa_{μ} . Right: d_e vs. Δa_{μ} [Giudice, P.P., & Passera, '12]
RG induced Quark & Lepton FV interactions in SUSY GUTs

• SUSY SU(5) [Barbieri & Hall, '95]

$$(\delta_{LL}^{\tilde{q}})_{ij} \sim h^u h^{u\dagger}{}_{ij} \sim h_t^2 V_{CKM}^{ik} V_{CKM}^{kj*}
ightarrow (\delta_{RR}^{\tilde{\ell}})_{ij} \simeq (\delta_{LL}^{\tilde{q}})_{ij}$$

• SUSY SU(5)+RN [Yanagida et al., '95]

$$(\delta^{ ilde{\ell}}_{LL})_{ij}\sim (h^{
u}h^{
u\dagger})_{ij} \qquad \& \qquad (\delta^{ ilde{\ell}}_{RR})_{ij}\sim (h^{u}h^{u\dagger})_{ij}$$

SUSY SU(5)+RN [Moroi, '00] & SO(10) [Chang, Masiero & Murayama, '02]

$$\sin heta_{\mu au} \sim rac{\sqrt{2}}{2} \Rightarrow (\delta^{ ilde{\ell}}_{LL})_{23} \sim 1 \Rightarrow (\delta^{ ilde{q}}_{RR})_{23} \sim 1$$

hierarchical ν_L and N_R

[Hisano, Nagai, P.P. & Shimizu, '09]

- Main messages:
 - ▶ Parameter scan: $(m_0, M_{1/2}) < 1$ TeV, $|A_0| < 3m_0$, tan $\beta = 10$ and $\mu > 0$. Hierarchical $\nu_L \& N_B$, $10^{11} \le M_{\nu_3}$ (GeV) $\le 10^{15}$ and $10^{-5} \le U_{e3} \le 0.1$.
 - ► The "UT tension" is "solved" through SUSY effects in $\epsilon_{\mathcal{K}}$ implying a lower bound for BR($\mu \rightarrow e\gamma$) in the reach of MEG.
 - A simultaneous explanation for both the $(g 2)_{\mu}$ and the UT anomalies implies BR $(\mu \rightarrow e\gamma) \ge 10^{-12}$ and SUSY particles in the LHC reach.

[Buras, Nagai & P.P., '10]

Flavor physics in the LHC era

- Main messages:
 - ▶ Parameter scan: $(m_0, M_{1/2}) < 1$ TeV, $|A_0| < 3m_0$, tan $\beta = 10$ and $\mu > 0$. Hierarchical $\nu_L \& N_R$, $10^{11} \le M_{\nu_3}$ (GeV) $\le 10^{15}$ and $10^{-5} \le U_{e3} \le 0.1$.
 - Sizable non-standard effects in ε_K always implies large values for the electron and neutron EDMs, in the reach of the planned experimental resolutions.

[Buras, Nagai & P.P., '10]

hierarchical ν_L and N_R

[Buras, Nagai & P.P., '10]

hierarchical ν_L and N_R

[Buras, Nagai & P.P., '10]

Conclusions and future prospects

- The important questions in view of ongoing/future experiments are:
 - What are the expected deviations from the SM predictions induced by TeV NP?
 - Which observables are not limited by theoretical uncertainties?
 - In which case we can expect a substantial improvement on the experimental side?
 - What will the measurements teach us if deviations from the SM are [not] seen?

(Personal) answers:

- The expected deviations from the SM predictions induced by NP at the TeV scale with generic flavor structure are already ruled out by many orders of magnitudes.
- On general grounds, we can expect any size of deviation below the current bounds.
- The theoretical limitations are highly process dependent. Several channels involving leptons in the final state, and selected time-dependent asymmetries, have a theoretical errors well below the current experimental sensitivity.
- On the experimental side there are still excellent prospects of improvements in several clean channels like B_{s,d}, D, K, π (LFU tests in K, π_{ℓ2}), LFV processes (μ → eγ, μTi → eTi), EDMs (d_n, d_{Tl}) and (g − 2)_e.

- There is no doubt that new low-energy flavor data will be complementary with the high- p_T part of the LHC program.
- The synergy of both data sets (including the Higgs boson properties, which are certainly very much related to flavor,) can teach us a lot about the new physics at the TeV scale.