"Violazione di CP nei mesoni $B_s^{0"}$

S.Vecchi, Alessandro Cerri, Mario Galanti

VI workshop LHCpp, Acquario di Genova, 8-10 Maggio 2013

II Modello Standard ammette l'oscillazione $B_s^0 - \bar{B}_s^0$ attraverso i diagrammi a box:

$$\overline{B}^{\beta}_{s} \begin{pmatrix} b & t,c,u & s \\ W & W & \\ \underline{s} & t,c,u & b \\ \underline{s} & W & b \\ \end{pmatrix} B^{\beta}_{s} = \overline{B}^{\beta}_{s} \begin{pmatrix} b & W^{+} & s \\ t,c,u & \\ \underline{s} & W^{-} & b \\ W^{-} & b \\ \underline{s} & W^{-} & b \\ \end{bmatrix} B^{\beta}_{s}$$

$$irac{\partial}{\partial t} \begin{pmatrix} |\mathbf{B}^0_{\mathrm{s}}(t)
angle \\ |\overline{\mathbf{B}}^0_{\mathrm{s}}(t)
angle \end{pmatrix} = \left(\mathbf{M} - irac{\Gamma}{2}
ight) \begin{pmatrix} |\mathbf{B}^0_{\mathrm{s}}(t)
angle \\ |\overline{\mathbf{B}}^0_{\mathrm{s}}(t)
angle \end{pmatrix}$$

l mesoni B^0_s evolvono nel tempo secondo una sovrapposizione di autostati di sapore: $\begin{array}{l} |B^0_{s,H/L}\rangle = p|B^0_s\rangle \pm q|\bar{B}^0_s\rangle \\ B^0_{s,H} \in B^0_{s,L} \text{ autostati di massa: } \Delta m_s = M_H - M_L, \ \Delta\Gamma_s = \Gamma_L - \Gamma_H \end{array}$

Fenomenologia del sistema $B_s^0 - \bar{B}_s^0$: fase di mixing ϕ_s

Interferenza fra mixing e decadimento: $\phi_s = \Phi_M - 2\Phi_D$

"Golden Mode" : $b
ightarrow c \bar{c} s \; (B^0_s
ightarrow J/\psi \phi \,).$

• Nel Modello Standard: $\phi_s^{SM} = -2\beta_s + \delta_{penguin}^{SM}$

$$-2\beta_s = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$$

• contributi secondari di diagrammi a pinguino "trascurabili" ($\mathcal{O}(10^{-3}) \rightarrow$ slide 33)

$$ightarrow \phi_{s} = (-0.0364 \pm 0.0016)$$
rad http://cmkfitter.in2p3.fr

φ_s può cambiare in presenza di contributi di Nuova Fisica al diagramma a box:

 $\bullet \phi_s = \phi_s^{SM} + \phi_s^{NP}$

 \rightarrow importante misurare ϕ_s con grande precisione

 $\begin{array}{l} \mbox{Canali: } B^0_s \rightarrow J/\psi \phi \ , B^0_s \rightarrow J/\psi \pi^+ \pi^- \ , B^0_s \rightarrow J/\psi \eta , \\ B^0_s \rightarrow J/\psi \eta' \ , B^0_s \rightarrow D^+_s D^-_s \ , \ \ldots \end{array}$

Misurare ϕ_s : requisiti

In generale, come per le altre misure di violazione di CP "time-dependent" vogliamo determinare:

$$\begin{aligned} \mathcal{A}(t) &= \frac{\Gamma(B_{s}^{0}(t) \to f) - \Gamma(\bar{B}_{s}^{0}(t) \to f)}{\Gamma(B_{s}^{0}(t) \to f) + \Gamma(\bar{B}_{s}^{0}(t) \to f)} = \frac{A_{dir}^{Cp} \cos(\Delta m t) + A_{mix}^{Cp} \sin(\Delta m t)}{\cosh(\Delta \Gamma t/2) - A_{\Delta} \sinh(\Delta \Gamma t)} \to \sin\phi_{s} \sin(\Delta m_{s} t) \\ \mathcal{A}^{m}(t) &= \frac{N(t) - \bar{N}(t)}{N(t) + \bar{N}(t)} \quad \text{dove } N = S + B \qquad \sigma_{\mathcal{A}} \propto 1/\sqrt{\frac{S^{2}}{B + S} \varepsilon_{tag} \mathcal{D}_{tag}^{2} \mathcal{D}_{t}} \end{aligned}$$

Statistiche significative di segnale $\rightarrow \mathcal{L}$, trigger e selezione efficienti

$$\blacksquare \ \mathcal{B}(B^0_s \to J/\psi\phi) = \mathcal{O}(10^{-3}), \ \sigma^{\bar{b}b}_{pp}/\sigma^{inel}_{pp} \sim \mathcal{O}(10^{-3}), \ b \to B_s \sim 10\%$$

Luminosità integrata:

- LHCb \sim 3fb⁻¹ \rightarrow 1 fb⁻¹ (2011) "luminosity leveling": $\mathcal{L} = 4 \times 10^{32}$ cm⁻²
- ATLAS&CMS: \sim 30 fb⁻¹ \rightarrow 5 fb⁻¹ (2011)

Trigger:

• LHCb: singolo o di- μ (L0), HLT (J/ $\psi \rightarrow \mu^+\mu^-$, lifetime unbiased o biased)

ATLAS&CMS: $J/\psi \rightarrow \mu^+\mu^-$, ATLAS: .OR. di diversi trigger μ Selezione:

- Ricostruzione completa del decadimento (vincoli geometrici e cinematici) e tagli
- ATLAS&CMS: no PID per i K, LHCb: PID (RICH)
 - LHCb, CMS: soppressione fondo "prompt" con tagli sul tempo
 - ATLAS: nessun taglio sul tempo di decadimento

$$\mathcal{A}(t) = \frac{\Gamma(B_s^0(t) \to f) - \Gamma(\bar{B}_s^0(t) \to f)}{\Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)} \qquad \qquad \sigma_{\mathcal{A}} \propto 1/\sqrt{\frac{S^2}{B+S}} \varepsilon_{tag} \mathcal{D}_{tag}^2 \mathcal{D}$$

Bassa contaminazione di fondi $B/S \rightarrow PID$, risoluzione in massa, vertice/IP

$$\mathcal{A}(t) = \frac{\Gamma(B_s^0(t) \to f) - \Gamma(\bar{B}_s^0(t) \to f)}{\Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)} \qquad \qquad \sigma_{\mathcal{A}} \propto 1/\sqrt{\frac{S^2}{B+S}} \varepsilon_{tag} \mathcal{D}_{tag}^2 \mathcal{D}_t$$

Risoluzione temporale $\sigma_t \rightarrow risoluzione vertice$: $\mathcal{D}_t = exp(-(\Delta m_s \sigma_t)^2/2)$

$$\mathcal{A}(t) = rac{\Gamma(B_s^0(t) o f) - \Gamma(ar{B}_s^0(t) o f)}{\Gamma(B_s^0(t) o f) + \Gamma(ar{B}_s^0(t) o f)}$$

$$\sigma_{\mathcal{A}} \propto 1/\sqrt{rac{\mathcal{S}^2}{B+\mathcal{S}}arepsilon_{\textit{tag}}\mathcal{D}_{\textit{tag}}^2\mathcal{D}_{\textit{t}}}$$

Identificazione del flavour iniziale del *B* di segnale: $\varepsilon_{tag} D^2 = \varepsilon_{tag} (1 - 2\omega)^2 \rightarrow \text{PID}$, risoluzione IP, b-jet

OS tagging: studia i decadimenti di H_b opposto al B di signale

• μ , $e (b \rightarrow cl^{-}\bar{\nu}_{l})$, $K (b \rightarrow c \rightarrow s)$, Q_{vtx} (ricostruzione inclusive del vertice / b-jet)

SS tagging: sfrutta l'adronizzazione del *B* di segnale, o il decadimenti di stati risonanti eccitati B^{**}

SS
$$\pi$$
 (tag $B_d \in B^+$),

■ SSK (tag B_s)

Misurare ϕ_s : requisiti - TAGGING

LHCb: diversi algoritmi di tagging (OS e SS)

- decisione di tag: $q = \pm 1, 0$ dalla carica della particella di tagging
- probabilità di mistag: η basata su una rete neurale definita su eventi MC e calibrata sui canali di controllo B⁺ → J/ψK⁺ (OS) e B⁰_s → D⁻_sπ⁺ (SSK)
 - Utilizzata evento-per-evento nei fit di CP (migliora $\varepsilon_{tag} D^2$)
- Potere di Tagging in $B_s^0 \rightarrow J/\psi\phi$: SSK&OS $\varepsilon_{tag} D^2 = (3.13\pm0.12\pm0.20)\% (\varepsilon_{tag} = 39.4\%)$

prospettive di miglioramento in un prossimo futuro

ATLAS: due algoritmi di tagging OS: "muon-cone", "b-jet"

- $Q_{\mu/b-jet} = \sum_{i} q^{i} \cdot (p_{T}^{i})^{\mathcal{K}} / \sum_{i} \cdot (p_{T}^{i})^{\mathcal{K}} i = 1, ...N$ tracce nel cono attorno OS μ /nel b-jet
- **p**robabilità di *B*-tagging: $P(B|Q_n)$ definito nel canale di controllo $B^+ \rightarrow J/\psi K^+$, usata nei fit di CP (binnata)
- Potere di Tagging in $B^+ \rightarrow J/\psi K^+$: $\varepsilon_{tag} D^2 = (1.45 \pm 0.05)\% (\varepsilon_{tag} = 32.1\%)$

CMS: work in progress (tagging $OS-\mu$ in fase di ottimizzazione, altri tagger a venire)

Analisi del canale $B_s^0 \rightarrow J/\psi \phi$

 $B_s^0 \rightarrow J/\psi \phi (\rightarrow K^+ K^-)$ "Golden mode" per la misura di ϕ_s :

- $PS \rightarrow VV$: sovrapposizione di autostati CP-pari e CP-dispari
- contributo di K^+K^- in onda S: $f_0(980)$ + "non-risonante" (*CP*-dispari): $(1.1 \pm 0.1^{+0.2}_{-0.1})$ % in

 $m_{\phi} \pm 12$ MeV: arXiv:1302.1213

→ separazione dei contributi tramite l'analisi angolare (diversi approcci: elicità, trasversità)
$$\frac{d^4 \Gamma(B_s^{(-)} \to J/\psi\phi)}{dt \, d\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega)$$

 $h_k(t) = N_k e^{-\Gamma_s t} [a_k \cosh(\Delta \Gamma_s t/2) + b_k \sinh(\Delta \Gamma_s t/2) \pm c_k \cos(\Delta m_s t) \pm d_k \sin(\Delta m_s t)]$

 a_k , b_k , c_k e d_k dipendono dalle fasi relative e da ϕ_s (\rightarrow slide 24)

Analisi multidimensionale per separare segnale e fondo:

- LHCb analisi "taggata":
 - "c-Fit": fit completo alle distribuzioni di $(m, t, \Omega, \sigma_t, q, \eta)$ (segnale e fondo)
 - "s-Fit" in 2 step:
 - a) fit della distribuzione di massa (segnale e fondo) ightarrow s-Weight,
 - b) fit di $(t, \Omega, \sigma_t, q, \eta)$ pesato con s-Weight (solo segnale)
- ATLAS analisi "taggata":
 - fit completo alle distribuzioni di $(m, t, \Omega, \sigma_m, \sigma_t, P(B|Q))$ (segnale e fondo)
- **CMS** analisi "non-taggata" (hp: $\phi_s = 0$, no onda S): misura di $\Delta \Gamma_s$, τ_{B_s} , ampiezze angolari
 - fit completo alle distribuzioni di (m, t, Ω, σ_t) (segnale e fondo)

Risultati: ϕ_s in $B_s^0 \to J/\psi\phi$

(*) CMS: studi di sensibilità sull'analisi taggata: precisione attesa competitiva con quella di LHCb

Incertezze sistematiche principali (\rightarrow slide 28):

- su $\phi_s\,$ accettanza angolare (statistica MC) LHCb / tagging ATLAS
- su Γ_s descrizione/sottrazione del fondo, accettanza temporale
- su $\Delta\Gamma_s\,$ parametrizzazione del fondo (angolare) ATLAS&CMS, accettanza temporale, risoluzione temporale (CMS)

Risultati: plot della distribuzione temporale

Risultati: plot delle distribuzioni angolari

12/22

Misurare ϕ_s : analisi di $B_s^0 \to J/\psi \pi^+ \pi^-$

 $B_s^0\to J/\psi\pi^+\pi^-$ è un canale promettente per la misura di $\phi_s\colon \mathcal{B}$ è 19.79 $\pm 0.70\%$ di $B_s^0\to J/\psi\phi$

- il sistema π⁺π⁻ è dominato dall'onda S: >97.7% @95% C.L Phys. Rev. D 86, 052006 (2012)
- $\begin{array}{l} \hline & \mbox{ contributo dominante: } f_0(980) \to \pi^+\pi^-: \\ \mathcal{R}_{\substack{f_0 \to \pi^+\pi^- \\ \phi \to K^+K^-}} = 0.252^{+0.053}_{-0.046} \end{array} \begin{array}{l} \mbox{ Phys. Lett. B 698 (2011) 115-122} \\ \hline & \mbox{ Phys. Lett. B 698 (2011) 115-122} \end{array} \end{array}$
- $PS \rightarrow VS$: puro autostato CP-dispari
- \rightarrow misura di ϕ_s richiede "solo" un'analisi "taggata&time-dependent" (\rightarrow slide 29)

Analisi di LHCb:

- selezione multivariata (BTD), S~7400 eventi
- $\varepsilon_{tag} D^2 = 3.37 \pm 0.12 \pm 0.27 \% (\varepsilon_{tag} = 39.5\%), \langle \sigma_t \rangle = 40 \text{ fs.}$

 $\phi_s = -0.14^{+0.17}_{-0.16} \pm 0.01$ rad

Oltre a ciò si misura la vita media effettiva:

 $\Gamma^{eff}_{B^0_S \to J/\psi \pi^+\pi^-} = 0.605 \pm 0.009 \pm 0.009 \text{ ps}^{-1}$

ATLAS&CMS: analisi del canale in corso.

Phys. Lett. B 713 (2012) 378386

Misurare ϕ_s : combinazione dei risultati

Risultati in ottimo accordo con le previsioni del Modello Standard

Vincoli ulteriori a ϕ_s e $\Delta\Gamma_s$: misura della vita media effettiva

Da un'idea di Fleischer&Knegjens arXiv:1109.511 :

La misura delle vita media del B_s^0 in una coppia di decadimenti in stati finali puri CP-pari e CP-dispari e' sufficiente per determinare $\phi_s \in \Delta\Gamma_s^{-a}$: si sfrutta l'andamento non lineare con $\Delta\Gamma_s$

$$\begin{split} \langle \Gamma(B_{s}(t) \rightarrow f) \rangle &\propto e^{-\Gamma_{s}t} \left[\cosh(\frac{\Delta\Gamma_{s}t}{2}) + A_{\Delta\Gamma_{s}}^{f} \sinh(\frac{\Delta\Gamma_{s}t}{2}) \right] \\ \frac{\tau_{f}}{\tau_{B_{s}}} &= 1 + A_{\Delta\Gamma_{s}}^{f} \left(\frac{\Delta\Gamma_{s}}{2\Gamma_{s}} \right) + [2 - (A_{\Delta\Gamma_{s}}^{f})^{2}] \cdot \left(\frac{\Delta\Gamma_{s}}{2\Gamma_{s}} \right)^{2} + \mathcal{O} \left(\frac{\Delta\Gamma_{s}}{2\Gamma_{s}} \right)^{3} \end{split}$$

vantaggio: analisi semplificata ("non-taggata", solo "time dependent")

$$\label{eq:alpha} \begin{split} ^{a}\Gamma_{s} &= \big(\Gamma_{s}^{L} + \Gamma_{s}^{H}\big)/2 = \tau_{B^{-}}^{-1} \text{ and } \Delta\Gamma_{s} = \Gamma_{s}^{L} - \Gamma_{s}^{H} \\ A_{\Delta\Gamma_{s}}^{f} &= \frac{\Gamma(B_{s,H} \to f) - \Gamma(B_{s,L} \to f)}{\Gamma(B_{s,H} \to f) + \Gamma(B_{s,L} \to f)} = -\frac{2\eta_{f}\cos(\phi_{s} + \Delta\phi_{f})}{1 + |\lambda|^{2}} \end{split}$$

Vincoli ulteriori a $\phi_s \in \Delta \Gamma_s$: misura della vita media effettiva del B_s^0

Vincoli introdotti dalle misure di vita media effettiva: misure di (CDF) e LHCb

- CP-pari $B_s^0 \to K^+ K^-$: $\tau_{KK} = 1.455 \pm 0.046 \pm 0.006$ ps arXiv:1207.0878
- CP-dispari $B_s^0 \rightarrow J/\psi f_0(980) \tau_{J/\psi f_0(980)} = 1.700 \pm 0.040 \pm 0.026$ ps arXiv:1207.0878

ATLAS: analisi in corso

 $B_s^0 \to J/\psi \pi^+\pi^- \ \tau_{J/\psi\pi\pi} = 1.652 \pm 0.024 \pm 0.024$ ps (\to slide 13) arXiv:1304.2600

•
$$CP$$
-pari $B_s^0
ightarrow J/\psi K_s^0 \ au_{J/\psi K_s^0} = 1.75 \pm 0.12 \pm 0.07$ ps

si tiene conto dei contributi di CPV nei decadimenti

R.Knegjens, private communication

Analisi del canale $B_s^0 \to \phi \phi$

Il decadimento $B_s^0 \rightarrow \phi \phi$:

- transizione $b \rightarrow s\bar{s}s$, procede solo attraverso diagrammi "pinguino-gluonici"
- **predizioni dello SM**: $|\phi_s^{\phi\phi}| < 0.02$ rad (cancellazione delle fasi di mixing e decadimento)
- ightarrow canale eccellente per "test" di contributi di NP nel loop b
 ightarrow s

Analisi di LHCb:

- Trigger (HLT): BDT vertice secondario di "B" a 2,3,4 tracce di alto p_T, φ-ID
- Decadimento PS → VV: misura di CP richiede un'analisi completa: angolare, taggata time-dependent come per B⁰_s → J/ψφ + contributi di (KK) in onda S (risonante r non ~ 2%, compatibile con 0)
- nel 2012: Phys. Lett. B 713 (2012) 369-377

misura dell'asimmetria dei prodotti tripli (hp: $\phi_s^{\phi\phi}=0$) Chiara indicazione di NP se diverse da zero.

 $A_U = -0.055 \pm 0.036 \pm 0.018 \ A_V = 0.010 \pm 0.036 \pm 0.018$

■ nel 2013 analisi *CP* completa: arXiv:1303.7125 "s-Fit" in 2 step (come per ϕ_s vedi slide 9) $\varepsilon_{tag} D^2 = 3.29 \pm 0.48\%$ ($\varepsilon_{tag} = 49.7\%$), $\langle \sigma_t \rangle \sim 40$ fs $\phi_s^{\phi\phi} = [-2.46, -0.76]$ rad @68% CL, p-value SM = 16%

contributo dell'incertezza sistematica = ± 0.22 rad (dominato da contributo di onda S)

ATLAS&CMS: difficilmente potranno contribuire (richiede trigger e identificazione di adroni)

Decadimenti flavour-specific del B_s permettono di misurare la CPV nel mixing $B_s^0 - \bar{B}_s^0$

$$a_{sl} = \frac{\Gamma(\bar{B}^0 \to \bar{f}) - \Gamma(B^0 \to f)}{\Gamma(\bar{B}^0 \to \bar{f}) + \Gamma(B^0 \to f)} = \frac{1 - |q/p|^2}{1 + |q/p|^2}$$

Previsioni SM: arXiv:1102.4274

•
$$a_{sl}^s = (1.9 \pm 0.3) \times 10^{-5}$$

$$a_{sl}^d = (4.1 \pm 0.6) \times 10^{-4}$$

B-factories:

■
$$a_{sl}^d = +0.02\pm0.3$$
 % (HFAG, Autunno 2012)

Babar: $a_{sl}^d = 0.06 \pm 0.17^{+0.36}_{-0.32}$ % (analisi taggata)

DØ ha misurato:

■
$$a_{sl}^b = C^d a_{sl}^d + C^s a_{sl}^s = -0.787 \pm 0.172 \pm 0.093$$
 % (3.9 σ fuori
dal SM) Phys. Rev. D 84, 052007 (2011)

$$a_{sl}^{s} = -1.12 \pm 0.74 \pm 0.17 \% \text{ PRL 110, 011801 (2013)}$$
$$a_{sl}^{d} = 0.68 \pm 0.45 \pm 0.14 \%$$

Misura dell'asimmetria nei decadimenti semi-leptonici del Bs

Misura di LHCb LHCb-CONF-2012-022

■ canale:
$$B_s^0 \to D_s^- \mu^+ X (D_s^- \to \phi \pi^-, \phi \to K^+ K^-)$$

 $A_{\text{raw}} \equiv \frac{N(D_s^- \mu^+) - N(D_s^+ \mu^-)}{N(D_s^- \mu^+) + N(D_s^+ \mu^-)} = \frac{a_{\text{sl}}^s}{2} + \left[a_p - \frac{a_{\text{sl}}^s}{2}\right] \frac{\int e^{-\Gamma_s t} \cos(\Delta M_s t)\epsilon(t)dt}{\int e^{-\Gamma_s t} \cosh(\Delta \Gamma_s t/2)\epsilon(t)dt}$
 $a_P \sim \mathcal{O}(\%)$, integrale $\mathcal{O}(0.2\%)$

- \blacksquare misura integrata nel tempo: S $\sim D_s^- \mu^+$ e $D_s^+ \mu^-$ per Bup e Bdown (${\sim}40{\rm k}$ e ${\sim}55{\rm k}$ ciascuno)
- minimizzazione delle potenziali asimmetrie di rivelazione&trigger&µ-ID
- Risultato: $a_{sl}^s = -0.24 \pm 0.54 \pm 0.33$ %
 - sistematica dominante: errore statistico nel rapporto delle efficienze, asimmetria di trigger, asimmetria µ-ID (→slide 31)

CMS: misura dell'asimmetria di-leptonica a_{sl}^b (taggata) con i dati 2012 (trigger dedicato) analoga a DØ, con possibile separazione di B_d^0 e B_s

- prospettive: errore statistico 0.1% (come DØ), sistematico dominato dalla correzione delle efficienze possibile limitazione: polarità del campo magnetico fissa
- step intermedio: misura della probabilità di mixing integrata

Prospettive di misura

Run1 di LHC: $\sqrt{s} = 7 - 8$ **TeV** si e' concluso con $\int \mathcal{L} \cdot dt \sim 3$ fb⁻¹ (LHCb) e ~ 30 fb⁻¹ (ATLAS&CMS)

- LHCb: condizioni di run stabili \rightarrow + fattore 2 in statistica dai dati del 2012 ($\mathcal{L}\sim4\times10^{32}cm^{-2}s^{-1}$, 50ns)
- ATLAS&CMS: trigger in evoluzione ($L \sim 1 7 \times 10^{33}$ cm⁻²s⁻¹, 50ns) \rightarrow + fattore 4 in statistica dai dati del 2012

Run2 di LHC: 2015 \rightarrow 2018 $\sqrt{s} = 13$ TeV $\sigma_{14TeV}^{\bar{b}b} \sim \times 2\sigma_{7TeV}^{\bar{b}b}$

- LHCb: condizioni di run stabili ($\mathcal{L} \sim 4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$, 25s) $\rightarrow \int \mathcal{L} \cdot dt \sim 5 7 \text{fb}^{-1}$
- ATLAS&CMS: ($\mathcal{L} \sim 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$, 25ns) $\rightarrow \int \mathcal{L} \cdot dt \sim 100 \mathrm{fb}^{-1}$

chiaro vantaggio rispetto a LHCb in termini di luminosità: x10 \rightarrow per rimanere competitivi occorre mantenere alte le efficienze di trigger

- bandwidth dedicata ai trigger per B-physics potrebbe essere abbassata nel futuro (di-muoni di basso p_T saturano L1)
- per non alzare troppo le soglie su p_T occorre rendere "più intelligente" il trigger L1: ATLAS: trigger topologico (angolo fra i 2 muoni), ricostruzione dell'evento più completa al L2

aggiunta di eventi con trigger a 3 muoni per flavour tag.

CMS: studi in corso (soglie/bandwidth L1). HLT: il trigger "di-muone" poco sensibile al pile-up.

Run3 di LHC: 2019 \rightarrow 2022 $\sqrt{s} = 14$ TeV

- LHCb Upgrade: ($\mathcal{L} \sim 1-2 imes 10^{33} ext{cm}^{-2} ext{s}^{-1}$, 25s) $ightarrow \int \mathcal{L} \cdot dt \sim 50 ext{fb}^{-1}$
 - mantenere alte le efficienze del trigger di muoni
 - incrementare le efficienze di trigger di adroni (fattore 2)
- \rightarrow readout 1 \rightarrow 40MHz (L0 \rightarrow LLT), HLT
 - ATLAS&CMS Upgrade: $(\mathcal{L} \sim 2 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}, 25 \text{ns}) \rightarrow \int \mathcal{L} \cdot dt \sim 350 \text{fb}^{-1}$
 - Trigger di B-physics ancora possibile ?
 - CMS: previsto upgrade del trigger L1 che potrebbe permettere selezioni "più intelligenti" per B-physics e/o abbassare le soglie in p_T

Prospettive di misura dopo il Run 2

		Tabella aggiornata a Maggi	o 2012	EPJ C 73	(2013) 2373		
-	Type	Observable	(Current	LHCb	Upgrade	Theory
			p	recision	2018	(50fb^{-1})	uncertainty
	B_s^0 mixing	$2\beta_s (B_s^0 \rightarrow J/\psi \phi)$	0.	10 [137]	0.025	0.008	~ 0.003
		$2\beta_s (B_s^0 \rightarrow J/\psi f_0(980))$	0.	17 [213]	0.045	0.014	~ 0.01
		$a_{\rm sl}^s$	6.4 >	< 10 ⁻³ [43]	0.6×10^{-3}	0.2×10^{-3}	$0.03 imes 10^{-3}$
	Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \rightarrow \phi \phi)$		-	0.17	0.03	0.02
	penguins	$2\beta_s^{\text{eff}}(B_s^0 \rightarrow K^{*0}\overline{K}^{*0})$		-	0.13	0.02	< 0.02
		$2\beta^{\text{eff}}(B^0 \rightarrow \phi K_S^0)$	0	.17 [43]	0.30	0.05	0.02

LHCb: basandosi sulle attuali prestazioni (risoluzioni, efficienze di selezione, ecc.)

- in vista: miglioramenti nel tagging (20-30%), nella selezione (10-20%)

- in più: analisi di canali aggiuntivi: $B_s^0 \rightarrow J/\psi \eta'$, $B_s^0 \rightarrow D_s^+ D_s^-$, ...

ATLAS&CMS: sulle analisi qui presentate le prospettive per il futuro dipendono da quanta bandwidth sarà destinata alla "B-physics".

- ATLAS: stime sull'analisi di $B^0_s
 ightarrow J/\psi \phi$
 - perdita $\varepsilon^{Trigger}$ di un 50% (i dati triggerati avranno risoluzioni migliori $\langle \sigma_t \rangle$)
 - $\varepsilon_{tag} D^2$ non ci si aspettano grossi miglioramenti (1/2 di LHCb) né peggioramenti (maggiore PU)
 - luminosità "effettiva" integrata x1.5-2 LHCb
 - estrapolando: errori statistici \sim 1/5 quelli attuali (per LHCb si avrà \sim 1/4 di quelli attuali).
 - \blacksquare In più: analsi di $B^0_s
 ightarrow J/\psi f_0(980)$ e/o $B^0_s
 ightarrow J/\psi \pi \pi$
- CMS: flavour tagging \rightarrow analisi taggate ($B_s^0 \rightarrow J/\psi \phi \in B_s^0 \rightarrow J/\psi f_0(980)$)
- possibili misure di vita media effettiva: $B_s^0 \rightarrow J/\psi f_0(980)$ (ATLAS&CMS)
- lacksquare possibili misure di altri canali di CPV del B_s ? (per esempio $B_s^0 o J/\psi K_s^0)$

Backup slides

 $B_s^0 \rightarrow J/\psi \phi \dot{\phi}$ una somma coerente di state CP-pari e CP-dispari \rightarrow richiede un'analisi angolare&time-dependent:

$$rac{d^4 \Gamma(B^0_s o J/\psi \phi)}{dt \, d\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega)$$

10 termini = 3 ampiezze per le once P, 1 per l'onda S + interferenze

$$h_k(t) = N_k e^{-\Gamma_s t} [a_k \cosh(\Delta \Gamma_s t/2) + b_k \sinh(\Delta \Gamma_s t/2) \pm c_k \cos(\Delta m_s t) \pm d_k \sin(\Delta m_s t)]$$

\boldsymbol{k}	$f_k(heta,\psi,arphi)$	N_k	a_k	b_k	c_k	d_k
1	$2\cos^2\psi\left(1-\sin^2\theta\cos^2\phi\right)$	$ A_0(0) ^2$	1	$-\cos\phi_s$	0	$\sin \phi_s$
2	$\sin^2\psi\left(1-\sin^2 heta\sin^2\phi ight)$	$ A_{\ }(0) ^2$	1	$-\cos\phi_s$	0	$\sin \phi_s$
3	$\sin^2\psi\sin^2\theta$	$ A_{\perp}(0) ^2$	1	$\cos \phi_s$	0	$-\sin\phi_s$
4	$-\sin^2\psi\sin 2\theta\sin\phi$	$ A_{\parallel}(0)A_{\perp}(0) $	0	$-\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}$	$\sin(\delta_{\perp}-\delta_{\parallel})$	$-\cos(\delta_{\perp}-\delta_{\parallel})\cos\phi_{s}$
5	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin^2\theta \sin 2\phi$	$ A_0(0)A_{\parallel}(0) $	$\cos(\delta_{\parallel}-\delta_{0})$	$-\cos(\delta_{\parallel}-\delta_{0})\cos\phi_{s}$	0	$\cos(\delta_{\parallel} - \delta_0)\sin\phi_s$
6	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin 2\theta \cos \phi$	$ A_0(0)A_\perp(0) $	0	$-\cos(\delta_{\perp}-\delta_0)\sin\phi_s$	$\sin(\delta_\perp - \delta_0)$	$-\cos(\delta_{\perp}-\delta_0)\cos\phi_s$
7	$\frac{2}{3}(1-\sin^2\theta\cos^2\phi)$	$ A_{\rm S}(0) ^2$	1	$\cos \phi_s$	0	$-\sin\phi_s$
8	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin 2\phi$	$ A_{\mathrm{S}}(0)A_{\parallel}(0) $	0	$-\sin(\delta_{\parallel}-\delta_{ m S})\sin\phi_{s}$	$\cos(\delta_{\parallel}-\delta_{ m S})$	$-\sin(\delta_{\parallel}-\delta_{ m S})\cos\phi_s$
9	$\frac{1}{3}\sqrt{6}\sin\psi\sin 2\theta\cos\phi$	$ A_{ m S}(0)A_{\perp}(0) $	$\sin(\delta_\perp - \delta_{ m S})$	$\sin(\delta_{\perp}-\delta_{ m S})\cos\phi_s$	0	$-\sin(\delta_{\perp}-\delta_{ m S})\sin\phi_s$
10	$\left \frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)\right $	$ A_{\rm S}(0)A_0(0) $	0	$ -\sin(\delta_0-\delta_{ m S})\sin\phi_s $	$\cos(\delta_0-\delta_{ m S})$	$ -\sin(\delta_0-\delta_{ m S})\cos\phi_s $

sensibilità a ϕ_s anche dal campione non taggato.

ATLAS

τ > 0.3 ps

Tagging ATLAS

ATLAS-CONF-2013-039

Flavor Tagging

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]
Segment Tagged muon	1.08 ± 0.02	36.7 ± 0.7	0.15 ± 0.02
Combined muon	3.37 ± 0.04	50.6 ± 0.5	0.86 ± 0.04
Jet charge	27.7 ± 0.1	12.68 ± 0.06	0.45 ± 0.03
Total	32.1 ± 0.1	21.3 ± 0.08	1.45 ± 0.05

- Combined muon: combination of Inner Detector track and Muon spectrometer track
- Segment Tagged muon: full Inner Detector track matched to track segment in the muon spectrometer

Tag probabilities

Angular analysis: transversity vs helicity frame

Coordinate system in the transversity basis

The x-axis is determined by the direction of the Φ meson in the J/ ψ rest frame. The K*K-plane defines the xy-plane, where $p_v(K+) > 0$.

- + θ is the angle between $p(\mu^*)$ and the xy plane in the J/ψ meson rest frame
- Φ is the angle between the x- axis and p_n(µ⁺), the projection of the µ+ momentum in the xy plane, in the J/ψ meson rest frame
- ψ is the angle between $p(K^{*})$ and $-p(J/\psi)$ in the Φ meson rest frame

Figure 3: Definition of helicity angles as discussed in the text.

Fig. [3] The polar angle $\theta_{K}(\hat{\theta}_{\mu})$ is the angle between the $K^{+}(\mu^{+})$ momentum and the direction opposite to the B_{μ}^{0} momentum in the $K^{+}K^{-}(\mu^{+}\mu^{-})$ centre-of-mass system. The azimuthal angle between the $K^{+}K^{-}$ and $\mu^{+}\mu^{-}$ decay planes is φ_{μ} . This angle is defined by a rotation from the K^{-} side of the $K^{+}K^{-}$ plane to the μ^{+} side of the $\mu^{+}\mu^{-}$ plane. The rotation is positive in the $\mu^{+}\mu^{-}$ direction in the B_{μ}^{0} rest frame. A definition of the angles in terms of the particle momenta is given in Appendix[X].

Incertezze sistematiche nell'analisi di $B^0_s ightarrow J/\psi \phi$

LHCb	arXiv:1304	l:2600			ATLAS	AT	LAS-CO	NF-201	3-039
Source		$[ps^{-1}]$	$\Delta\Gamma_s$ [ps ⁻¹]	ϕ_s [rad]			¢s (rad)	$\Delta\Gamma_s$ (ps ⁻¹)	Γs (ps ⁻¹)
Stat. uncertainty		0.0048	0.016	0.091	ID alignment		<10-2	<10-3	<10-
Background subtraction		0.0041	0.002	0.003	Trigger efficiency		<10 ⁻²	<10-3	0.002
$B^0 \rightarrow J/\psi K^{*0}$ background		-	0.001	0.004	B ⁰ contribution	n	0.03	0.001	<10-3

0.0007

0.0002

0.0023

0.0040

0.0002

_

0.0063

0.0079

Ó, $\Delta \Gamma_s$ Γ_x (ps⁻¹) (ps⁻¹) (rad)) alignment $< 10^{-2}$ $< 10^{-3}$ $< 10^{-3}$ $< 10^{-2}$ $< 10^{-3}$ igger efficiency 0.002 0.001 0.004 B^0 , contribution 0.03 0.001 $< 10^{-3}$ 0.003 $< 10^{-3}$ _ Tagging 0.10 0.001 Models: _ 0.007 default fit $< 10^{-2}$ 0.002 $< 10^{-3}$ 0.002 _ $< 10^{-2}$ $< 10^{-3}$ signal mass 0.001 _ $< 10^{-2}$ 0.001 background mass 0.001 _ 0.02 $< 10^{-3}$ resolution 0.001 _ _ $< 10^{-3}$ background time 0.01 0.001 0.003 0.009 background angles 0.02 0.008 0.002 0.016 0.091 Total 0.11 0.009 0.003

CMS CMS PAS BPH-11-006

Uncertainty source	$\Delta \Gamma_s [ps^{-1}]$	cτ [cm]
Signal PDF modeling		
Signal mass model	0.00072	0.00012
Proper time resolution	0.00170	0.00006
ϕ_s approximation	0.00000	0.00001
S-wave assumption	0.00109	0.00001
Background PDF modeling		
Background mass model	0.00019	0.00000
Background lifetime model	0.00040	0.00000
Peaking B ⁰ background	0.00025	0.00006
Background angular model	0.00175	0.00003
Limited simulation statistics		
Angular efficiency parameters	0.00019	0.00002
Temporal efficiency parameters	0.00000	0.00005
Temporal efficiency parametrization	0.00181	0.00014
Angular efficiency parametrization	0.00063	0.00003
Likelihood function bias	0.00000	0.00004
Total uncertainty	0.00341	0.00022

back to slide 10

Ang. acc. reweighting

Lower decay time acc. model

Upper decay time acc. model

Length and mom. scales

Quadratic sum of syst.

Total uncertainties

Ang. acc. statistical

Fit bias

Amplitudes for $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

 $B_s^0\to J/\psi\pi^+\pi^-$ is a pure CP-odd final state ($\pi\pi$ in s-wave) \to simple differential decay rates:

$$\begin{split} &\Gamma(B^0_s \to J/\psi(\pi\pi)_s) \propto e^{-\Gamma_s t} \{ e^{\Delta\Gamma_s t/2} (1 + \cos\phi_s) + e^{-\Delta\Gamma_s t/2} (1 - \cos\phi_s) - \sin\phi_s \sin(\Delta m_s t) \} \\ &\Gamma(\bar{B}^0_s \to J/\psi(\pi\pi)_s) \propto e^{-\Gamma_s t} \{ e^{\Delta\Gamma_s t/2} (1 + \cos\phi_s) + e^{-\Delta\Gamma_s t/2} (1 - \cos\phi_s) + \sin\phi_s \sin(\Delta m_s t) \} \end{split}$$

Time dependent asymmetry A(t) is a sinusoidal function of the time:

- amplitude $\propto \sin \phi_s$
- initial flavour tagging is required
- measured amplitude is diluted by the probability of mistag (ω) and by limited time resolution (σ_t)

 $\mathcal{A}(t) \simeq \sin \phi_{s} \times (1 - 2\omega) \times e^{-(\Delta m_{s}\sigma_{t})^{2}/2} \times \sin(\Delta m_{s}t) = \sin \phi_{s} \times \mathcal{D}_{tag} \times \mathcal{D}_{t} \times \sin(\Delta m_{s}t)$

If $\Delta\Gamma_s \neq 0$ also the untagged sample is sensitive to ϕ_s

$$\Gamma((B_s^0 + \bar{B}_s^0) \to J/\psi(\pi\pi)_s) \propto e^{-\Gamma_s t} \{ e^{\Delta\Gamma_s t/2} (1 + \cos\phi_s) + e^{-\Delta\Gamma_s t/2} (1 - \cos\phi_s) \}$$

$B_s^0 \to \phi\phi$: results

triple products asymmetry probe CPV:

$$\begin{array}{l} A_U = \frac{N^{U>0} - N^{U<0}}{N^{U>0} + N^{U<0}} \qquad U = \sin(2\Phi)/2 \\ A_V = \frac{N^{V>0} - N^{V<0}}{N^{V>0} + N^{V<0}} \qquad V = \pm \sin \Phi \text{ (depending on the sign of } \cos \theta_1 \cos \theta_2^{-a}) \end{array}$$

previous measurement by CDF: Phys. Rev. Lett. 107 (2011) 261802

 $A_U = -0.007 \pm 0.064 \pm 0.018 \quad A_V = -0.120 \pm 0.064 \pm 0.016$

consistent with the hypothesis of CP conservation

^aangles defined in the helicity frame

Sistematiche nella misura di LHCb a^s_{sl}

Source	δa _{si} (%)
Signal model in D _s mass fit	0.12
Background from other b hadrons	0.10
Kinematic difference between π and μ	0.12
Kaon asymmetries	0.04
Varying run conditions between field-up and field-down	0.02
Muon corrections	0.10
Muon related software trigger biases	0.10
Statistical uncertainty on efficiency ratios	0.20
Total	0.33

Contributi di processi a pinguino nelle transizioni $b ightarrow c ar{c} s$

Nel modello standard, il decadimento $B_s^0 \rightarrow J/\psi \phi$ è dominato da una singola fase debole $V_{cs} V_{cb}^*$ Diagramma ad albero

$$\begin{aligned} A(\bar{b} \to \bar{c}c\bar{s}) &= V_{cs}V_{cb}^*(A_T + P_c) + V_{us}V_{ub}^*P_u + V_{ts}V_{tb}^*P_t \\ &= V_{cs}V_{cb}^*(A_T + P_c - P_t) + V_{us}V_{ub}^*(P_u - P_t) \\ &\sim A\lambda^2(1 - \lambda^2/2)(A_T + P_c - P_t) + A\lambda^4(\rho + i\eta)(P_u - P_t) \end{aligned}$$

I contributi pinguino sono soppressi di un fattore λ^2 (~5%) rispetto quelli ad albero

Contributi di processi a pinguino nelle transizioni $b \rightarrow c \bar{c} s$

Il decadimento $B_s^0 \to J/\psi \bar{K}^{*0}$ invece i due tipi di diagrammi contribuiscono con lo stesso peso $(b \to c\bar{c}d, U$ -spin $s \to d)$ Diagramma ad albero

Diagramma da albero \overline{b} \overline{c} W^+ \overline{c} \overline{c} J/ψ $\overline{d}(\overline{s})$ $\overline{K}^{*0}(\phi)$ \overline{b} \overline{c} \overline{c} J/ψ \overline{b} W^+ $\overline{d}(\overline{s})$ $\overline{K}^{*0}(\phi)$

$$\begin{aligned} A(\bar{b} \to \bar{c}c\bar{d}) &= V_{cd} V_{cb}^* (A_T + P_c) + V_{ud} V_{ub}^* P_u + V_{td} V_{tb}^* P_t \\ &= V_{cd} V_{cb}^* (A_T + P_c - P_t) + V_{ud} V_{ub}^* (P_u - P_t) \\ &\sim A\lambda^3 (A_T + P_c - P_t) + A\lambda^3 (\rho - i\eta) (P_u - P_t) \end{aligned}$$

L'effetto dei contributi dei diagrammi pinguino richiede calcoli di QCD. Possibile valutazione attraverso la misura delle ampiezze di polarizzazione, analisi time dependent (+assunzioni SU(3))

S.Faller, R.Fleischer, T.Manner, PRD 79, 014005 (2009)

- prime misure LHCb: $\sqrt{s} = 7 \text{ TeV}, 0.37 \text{fb}^{-1}$, PRD 86, 071102 (2012)
- $\blacksquare \ \mathcal{B}(B_s^0 \to J/\psi \bar{K}^{*0}) = (4.4^{+0.5}_{-0.4} \pm 0.8) \times 10^{-5}$
- $f_L = 0.50 \pm 0.08 \pm 0.02$, $f_{||} = 0.19 \pm 0.09 \pm 0.02$

114 \pm 11 eventi di segnale $B_{\rm S}^0 \rightarrow J/\psi \bar{K}^{*0}$

