

Spettroscopia degli adroni a quark pesanti

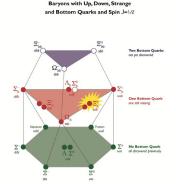
Andrea Ferretto Parodi¹, Daniele Fasanella², Marco Pappagallo³

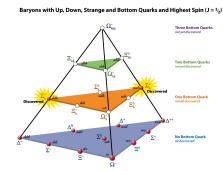
¹Università di Genova & INFN (Sezione di Genova)

²Università di Bologna & INFN (Sezione di Bologna)

³University of Glasgow

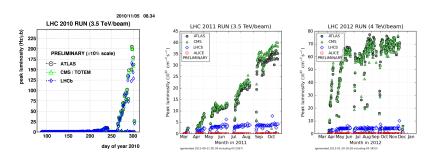
VI Workshop Italiano sulla Fisica p-p a LHC


Acquario di Genova, 8-10 Maggio 2013

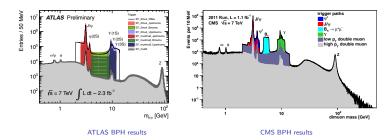

TRODUZIONE MISURE DI MASSA MESONE B_C NUOVI STATI ESOTICI CONCLUSIO

Introduzione

i diversi modelli QCD dipendono fortemente da osservabili relative agli adroni contenenti quark pesanti (come massa, vita media, spin, ...)

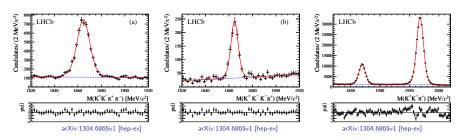

- la spettroscopia adronica fornisce la possibilità di testare i modelli di interazione dei quark pesanti
- l'osservazione di nuove particelle o nuovi canali di decadimento permette di arricchire il quadro teorico attuale

froduzione Misure di massa Mesone B_{Γ} Nuovi stati Esotici Conclusio:


Luminosità istantanea in ATLAS, CMS e LHCb

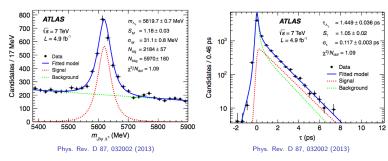
- risultati di spettroscopia adronica pubblicati utilizzano dati collezionati nel 2010 e 2011 a $\sqrt{s}=7$ TeV
- ▶ per ATLAS e CMS dati 2010 ideali per basse soglie di trigger e limitato pile-up $(<\mu>=1-3)$, utilizzati anche dati 2011 $(<\mu>\simeq 9)$. Ancora nessun risultato con dati 2012 $(<\mu>\simeq 21)$.
- per LHCb non ci sono differenze di condizioni tra 2011 e 2012 (anzi a 8 TeV aumentano le sezioni d'urto), analisi in aggiornamento

roduzione Misure di massa Mesone B_{C} Nuovi stati Esotici Conclusio


Trigger per fisica degli adroni a quark pesanti

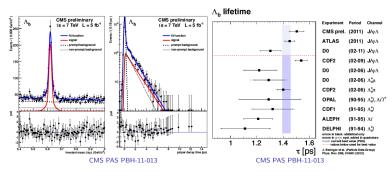
- gran parte degli stati finali provenienti dal decadimento di adroni pesanti contengono muoni (produzione di J/ψ , decadimenti semileptonici)
- trigger principali:
 - singolo e doppio muone
 - trigger topologici di J/ψ , Υ , B_s , ...: utilizzano specifiche regioni di massa invariate e richieste di vertice

troduzione Misure di massa Mesone $B_{\mathcal{C}}$ Nuovi stati Esotici Conclusion


Misure di differenza di massa dei mesoni D in LHCb

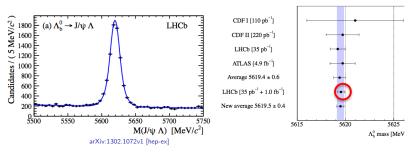
- LHCb ha misurato le differenze di massa dei mesoni D a $\sqrt{s}=7$ TeV utilizzando $1~{\rm fb}^{-1}$ di dati
- ▶ massa del D^0 misurata tramite decadimento $D^0 \to K^+K^-K^-\pi^+$: $m(D^0) = 1864.75 \pm 0.15(stat) \pm 0.11(syst)$ MeV
- misura che ha recentemente assunto interesse in seguito all'osservazione di X(3872) (vedi nel seguito)
- ▶ per le differenze di massa, ricostruiti i decadimenti $D^0 \to K^+K^-\pi^+\pi^-$, $D^+ \to K^+K^-\pi^+$ e $D_s^+ \to K^+K^-\pi^+$: $m(D^+) m(D^0) = 4.76 \pm 0.12(stat) \pm 0.07(syst)$ MeV $m(D_s^+) m(D^+) = 98.68 \pm 0.03(stat) \pm 0.04(syst)$ MeV

roduzione Misure di massa Mesone B_{Γ} Nuovi stati Esotici Conclusio


Misura di massa e vita media di Λ_b^0 in ATLAS

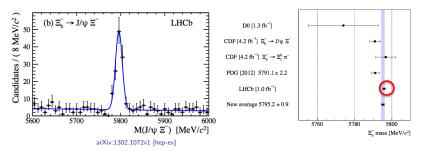
- ▶ Λ_b^0 ricostruiti attraverso il canale $\Lambda_b^0 \to J/\psi \Lambda$ (con $J/\psi \to \mu^+\mu^-, \Lambda \to p\pi^-$) in ATLAS
- lacktriangle analisi effettuata con 4.9 ${
 m fb}^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=7$ TeV
- valore di massa estratto in ATLAS da un fit unbinned max likelihood bidimensionale in massa/vita media: $m=5619.7\pm0.7(stat)\pm1.1(syst)$ MeV, $\tau=1.449\pm0.036(stat)\pm0.017(syst)$ ps

roduzione Misure di massa Mesone B_{Γ} Nuovi stati Esotici Conclusio


Misura della vita media di Λ_b^0 in CMS

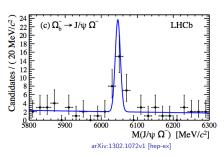
- ▶ Λ_b^0 ricostruiti attraverso il canale $\Lambda_b^0 \to J/\psi \Lambda$ (con $J/\psi \to \mu^+\mu^-, \Lambda \to p\pi^-$) in CMS
- lacktriangle analisi effettuata con circa 5 ${
 m fb}^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=7$ TeV
- effettuate misure di vita media e di sezione d'urto di produzione (con 1.9 fb⁻¹, Phys. Lett. B714, 136)
- ▶ misurato un valore di vita media $\tau = 1.503 \pm 0.052(stat) \pm 0.031(syst)$ ps, in buon accordo col valore misurato da ATLAS

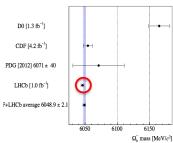
troduzione Misure di massa Mesone $B_{\mathcal{C}}$ Nuovi stati Esotici Conclusio


Misura della massa di Λ_b^0 in LHCb

- ▶ Λ_b^0 ricostruiti attraverso il canale $\Lambda_b^0 \to J/\psi \Lambda$ (con $J/\psi \to \mu^+\mu^-, \Lambda \to p\pi^-$) in LHCb
- lacktriangle analisi effettuata con 1 ${
 m fb^{-1}}$ di dati raccolti nel 2011 a $\sqrt{s}=$ 7 TeV
- valore di massa estratto da un fit unbinned max likelihood: $m_{\Lambda_b^0} = 5619.44 \pm 0.13(stat) \pm 0.38(syst)$ MeV
- miglior misura mondiale!

produzione Misure di massa Mesone $B_{\mathcal{C}}$ Nuovi stati Esotici Conclusio

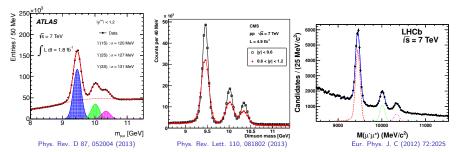

Misura della massa di Ξ_b^- in LHCb



- ▶ Ξ_b^- ricostruiti attraverso il canale $\Xi_b^- \to J/\psi \Xi^-$ (con $J/\psi \to \mu^+\mu^-$, $\Xi^- \to \Lambda \pi^-$, $\Lambda \to p \pi^-$) in LHCb
- lacktriangle analisi effettuata con 1 ${
 m fb}^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=$ 7 TeV
- valore di massa estratto da un fit unbinned max likelihood: $m_{\Xi_b^-} = 5795.8 \pm 0.9(stat) \pm 0.4(syst)$ MeV
- miglior misura mondiale!

troduzione Misure di massa Mesone B_C Nuovi stati Esotici Conclusio:

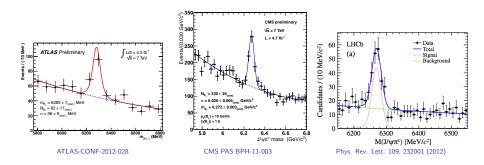
Misura della massa di Ω_b^- in LHCb



- Ω_b^- ricostruiti attraverso il canale $\Omega_b^- \to J/\psi\Omega^-$ (con $J/\psi \to \mu^+\mu^-$, $\Omega^- \to \Lambda K^-, \Lambda \to p\pi^-$) in LHCb
- lacktriangle analisi effettuata con 1 ${
 m fb}^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=$ 7 TeV
- valore di massa estratto da un fit unbinned max likelihood: $m_{\equiv_{b}^{-}} = 6046.0 \pm 2.2(stat) \pm 0.5(syst)$ MeV
- ightharpoonup fittati 19 ± 5 eventi, corrispondenti ad una significanza di 6σ
- miglior misura mondiale! in precedenza notevole discrepanza tra misure di CDF e D0

froduzione Misure di massa Mesone B_r Nuovi stati Esotici Conclusioi

Misure di $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S)$

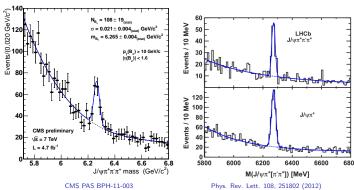


- ightharpoonup i tre stati $\Upsilon(nS) o \mu^+ \mu^-$ sono stati osservati dai tre esperimenti fin dai primi dati 2010
- ATLAS ha misurato la sezione d'urto di produzione a $\sqrt{s}=7$ TeV utilizzando $1.8~{
 m fb}^{-1}$ di dati
- ▶ CMS ha misurato la sezione d'urto di produzione a $\sqrt{s} = 7$ TeV utilizzando 36 pb⁻¹ di dati (CMS-BPH-11-001), e le polarizzazioni a $\sqrt{s} = 7$ TeV utilizzando 4.9 fb⁻¹ di dati
- lacktriangle LHCb ha misurato la sezione d'urto di produzione a $\sqrt{s}=7$ TeV utilizzando 25 ${
 m pb}^{-1}$ di dati
- ▶ valore di massa stimato da LHCb: $m(\Upsilon(1S)) = 9448.3 \pm 0.5$ MeV, $m(\Upsilon(2S)) = 10010.4 \pm 1.4$ MeV, $m(\Upsilon(3S)) = 10338.7 \pm 2.6$ MeV

troduzione Misure di massa Mesone $\mathcal{B}_{\mathcal{C}}$ Nuovi stati Esotici Conclusion

Osservazione del mesone B_c^+

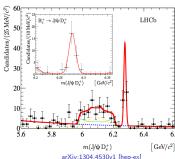
 $B_c^+ \to J/\psi \pi^+$

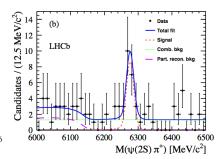


- ▶ B_c^+ osservato per la prima volta da CDF, che ha misurato una massa $m = 6275.6 \pm 2.9(stat) \pm 2.5(syst)$ MeV
- ▶ osservato nel canale di decadimento $J/\psi\pi^+$ da ATLAS e CMS, analizzando 4.9 fb $^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=7$ TeV, e da LHCb, analizzando 0.37 fb $^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=7$ TeV
- misura di massa in LHCb: $m = 6273.0 \pm 1.3(stat) \pm 1.6(syst)$ MeV

roduzione Misure di massa $egin{aligned} ext{Mesone $B_{ extsf{C}}$} & ext{Nuovi stati} & ext{Esotici} & ext{Conclusion} \end{aligned}$

Osservazione del mesone B_c^+

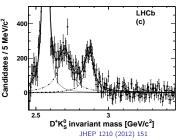

 $B_c^+ \rightarrow J/\psi \pi^+ \pi^+ \pi^-$

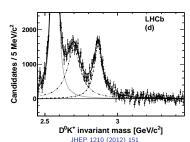


- ▶ B_c^+ osservato nel canale di decadimento $J/\psi\pi^+\pi^+\pi^-$ da CMS, analizzando 4.7 ${\rm fb}^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=7$ TeV, e da LHCb, analizzando 0.8 ${\rm fb}^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=7$ TeV
- LHCb ha misurato il rapporto tra i branching ratio $\mathcal{B}(B_c^+ \to J/\psi \pi^+ \pi^+ \pi^-)/\mathcal{B}(B_c^+ \to J/\psi \pi^+) = 2.41 \pm 0.30(stat) \pm 0.33(syst)$, in accordo con le predizioni teoriche

Osservazione del mesone B_c^+

$$B_c^+ \rightarrow J/\psi D_s^+$$
 e $B_c^+ \rightarrow \psi(2S)\pi^+$

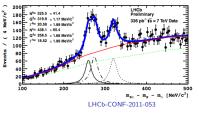


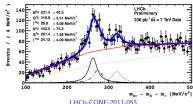

Phys. Rev. D 87, 071103(R) (2013)

- **b** B_c^+ osservato per la prima volta nel canale di decadimento $J/\psi D_s^+ (\to \pi^+ \phi (\to K^+ K^-))$ da LHCb, analizzando 3 fb⁻¹ di dati raccolti a $\sqrt{s}=7$ e 8 TeV
- ▶ il valore di massa misurato con questo canale è attualmente il più preciso: $m = 6276.28 \pm 1.44(stat) \pm 0.36(syst)$ MeV
- ▶ il bump tra 5.9-6.2 GeV è dovuto al decadimento $B_c^+ \to J/\psi D_s^{*+}$, con $D_s^{*+} \to D_s^+ \gamma$ o $D_s^{*+} \to D_s^+ \tau^0$, con le particelle neutre non ricostruite
- **b** B_c^+ osservato nel canale di decadimento $\psi(2S)\pi^+$ da LHCb, analizzando 1 fb $^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=7$ TeV

NTRODUZIONE MISURE DI MASSA MESONE B_C NUOVI STATI ESOTICI CONCLUSIONI

Studio di stati eccitati $D_{sJ} \rightarrow D^+ K_S^0$ e $D^0 K^+$ in LHCb

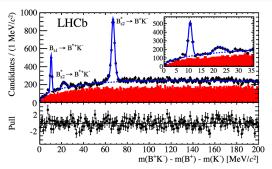




- analisi effettuata con 1 ${
 m fb}^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=7$ TeV
- stati finali ricostruiti attraverso $D^+ o K^-\pi^+\pi^+$, $K^0_s o \pi^+\pi^-$ e $D^0 o K^-\pi^+$
- ▶ picco a 2.57 GeV corrisponde alla risonanza $D_{s2}^*(2573)^+$, osservate due ulteriori strutture intorno a 2.7 GeV e 2.86 GeV, interpretati come stati $D_{s1}^*(2700)^+$ e $D_{sJ}^*(2860)^+$ precedentemente osservati alle B-factories
- misurate masse e larghezze di decadimento: $m(D_{s1}^*(2700)^+) = 2709.2 \pm 1.9(stat) \pm 4.5(syst)$ MeV $\Gamma(D_{s1}^*(2700)^+) = 115.8 \pm 7.3(stat) \pm 12.1(syst)$ MeV $m(D_{sJ}^*(2860)^+) = 2866.1 \pm 1.0(stat) \pm 6.3(syst)$ MeV $\Gamma(D_{sJ}^*(2860)^+) = 69.9 \pm 3.2(stat) \pm 6.6(syst)$ MeV
- ightharpoonup in corso analisi angolare per stabilire spin-parità di $D_{\rm sJ}^*(2860)^+$, ancora controverso

froduzione Misure di Massa Mesone $B_{\mathbb{C}}$ Nuovi stati Esotici Conclusio:

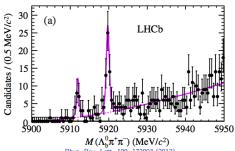
Osservazione di mesoni eccitati $B^{**} \rightarrow B\pi$



- ▶ stati eccitati B_1^0 e B_2^{*0} già osservati da CDF e D0 in stati finali $B^+\pi^-$ e $B^{*+}\pi^-$: attesi partner di isospin in stati finali $B^0\pi^+$ non ancora osservati
- ▶ LHCb ha osservato per la prima volta stati orbitali eccitati B_1^+ e B_2^{*+} , analizzando 336 pb $^{-1}$ di dati raccolti nel 2011 a $\sqrt{s} = 7$ TeV (in corso aggiornamento a 8 TeV, 3 fb $^{-1}$)
- mesoni B^+ ricostruiti in stati finali $J/\psi(\to \mu^+\mu^-)K^+$, $\bar{D}^0(\to K^+\pi^-)\pi^+$, $\bar{D}^0(\to K^+\pi^-\pi^+\pi^-)\pi^+$, $\bar{D}^0(\to K^+\pi^-\pi^+\pi^-)\pi^+$, $\bar{D}^0(\to K^+\pi^-)\pi^+\pi^-$; mesoni B^0 ricostruiti in stati finali $J/\psi(\to \mu^+\mu^-)K^{*0}(\to K^+\pi^-)$, $D^-(\to K^+\pi^-\pi^-)\pi^+$, $D^-(\to K^+\pi^-\pi^-)\pi^+\pi^+\pi^-$; fotone da B^{*+} non ricostruito
- osservati tre picchi distinti in $B^+\pi^-$: $B_1^0\to B^{*+}\pi^-$, $B_2^{*0}\to B^{*+}\pi^-$, $B_2^{*0}\to B^+\pi^-$
- lacktriangle osservati tre picchi distinti in $B^0\pi^+$: $B_1^+ \to B^{*0}\pi^+$, $B_2^{*+} \to B^{*0}\pi^+$, $B_2^{*+} \to B^0\pi^+$

troduzione Misure di massa Mesone B- Nuovi stati Esotici Conclusio

Osservazione del decadimento $B_{s2}^*(5840)^0 \rightarrow B^{*+}K^-$

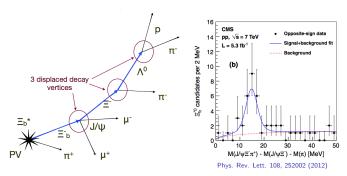


Phys. Rev. Lett. 110, 151803 (2013)

- LHCb ha osservato stati orbitali eccitati B_s^{**} , attraverso il decadimento in stati finali B^+K^- e $B^{*+}K^-$, analizzando $1.0~{\rm fb}^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=7$ TeV)
- mesoni B^+ ricostruiti in stati finali $J/\psi(\to \mu^+\mu^-)K^+$, $\bar{D}^0(\to K^+\pi^-)\pi^+$, $\bar{D}^0(\to K^+\pi^-)\pi^+\pi^+\pi^-$; fotone da B^{*+} non ricostruito
- ▶ osservati tre picchi distinti in B^+K^- : $B_{s1} \to B^{*+}K^-$, $B_{s2}^* \to B^{*+}K^-$ (mai osservato prima), $B_{s2}^* \to B^+K^-$

TRODUZIONE MISURE DI MASSA MESONE B_{C} NUOVI STATI ESOTICI CONCLUSIO

Osservazione di barioni eccitati Λ_b^0 in LHCb

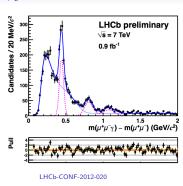


Phys. Rev. Lett. 109, 172003 (2012)

- prima osservazione in LHCb di stati eccitati $\Lambda_b^{*0} \to \Lambda_b^0 \pi^+ \pi^-$ (con $\Lambda_b^0 \to \Lambda_c^+ \pi^-, \Lambda_c^+ \to p K^- \pi^+$)
- ▶ distribuzione di massa invariante $\Lambda_b^0\pi^+\pi^-$ presenta due strutture, interpretate come stati eccitati $\Lambda_b^{*0}(5912)$ e $\Lambda_b^{*0}(5920)$
- $\Lambda_b^{*0}(5912)$: $m = 5911.97 \pm 0.12$ MeV, $N = 17.6 \pm 4.8$ (5.2 σ)
- \wedge $\Lambda_b^{*0}(5920)$: $m = 5919.77 \pm 0.08$ MeV, $N = 52.5 \pm 8.1$ (10.2 σ)

froduzione Misure di massa Mesone B_{Γ} Nuovi stati Esotici Conclusio:

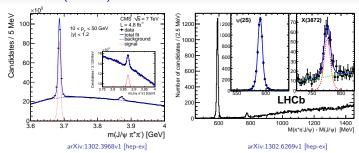
Osservazione di un nuovo barione Ξ_b^* in CMS



- ightharpoonup prima osservazione in CMS del decadimento forte $\Xi_b^{*0} o \Xi_b^- \pi^+$
- complessa catena di decadimento con tre vertici secondari
- ▶ fit della distribuzione Q $(m(J/\psi \Xi^-\pi^+) m(J/\psi \Xi^-) m(\pi^+))$ con Breit-Wigner \otimes Gaussiana + fondo: $Q = 14.84 \pm 0.74(stat) \pm 0.28(syst)$ MeV, $\Gamma_{BW} = 2.1 \pm 1.7$ MeV
- lacktriangle accordo con previsioni da Lattice QCD: 0 < Q < 50 MeV, Γ = 0.51 \pm 0.16 MeV

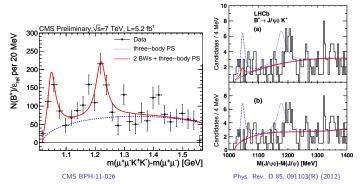
roduzione Misure di massa Mesone B_C Nuovi stati Esotici Conclusion

Osservazione di un nuovo stato χ_b in ATLAS



- ATLAS ha osservato per primo un nuovo stato in transizioni radiative $\chi_b(nP) \to \Upsilon(1S,2S)(\to \mu\mu)\gamma$
- interpretato come stato $\chi_b(3P)$, con massa $m_{\chi_b(3P)} = 10.530 \pm 0.005(stat) \pm 0.009(syst)$ GeV
- osservazione confermata da D0 e LHCb
- ightharpoonup massa misurata da LHCb: $m_{\chi_h(3P)} = 10.535 \pm 0.010 (stat)$ GeV, in accordo

roduzione Misure di massa Mesone $B_{\mathcal{C}}$ Nuovi stati Esotici Conclusion


Misure di X(3872) in CMS e LHCb

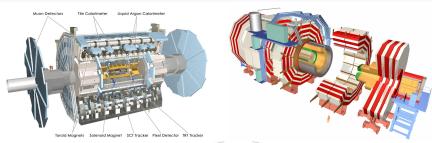
- osservato per la prima volta da Belle circa 10 anni fa, ma ancora controverso ruolo nel modello a quark: molecola $D^{*0}\bar{D}^0$? tetra-quark? stato di charmonio $\chi_{c1}(2^3P_1)$? misto molecola-charmonio? determinazione dei numeri quantici cruciale
- \blacktriangleright X(3872) ricostruita da CMS e LHCb tramite canale di decadimento $J/\psi(\to \mu^+\mu^-)\pi^+\pi^-$
- ▶ CMS ha misurato sezione d'urto di produzione (e la frazione da beauty) analizzando 4.8 ${
 m fb}^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=7$ TeV
- LHCb ha misurato sezione d'urto di produzione e massa analizzando 34.7 pb $^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=7$ TeV (Eur. Phys. J. C (2012) 72:1972): $m_{X(3872)}=3871.95\pm0.48(stat)\pm0.12(syst)$ MeV
- LHCb ha misurato i numeri quantici $J^{PC}=1^{++}$, analizzando correlazioni angolari in 1.0 fb⁻¹ di dati raccolti nel 2011 a $\sqrt{s}=7$ TeV. $J^{PC}=2^{-+}$ esclusa a più di 8σ , risultato che favorisce fortemente interpretazione esotica

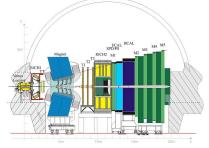
roduzione Misure di massa Mesone $B_{\mathcal{C}}$ Nuovi stati Esotici Conclusion

Due strutture osservate nello spettro $J/\psi\phi$ in CMS

- ▶ analizzato spettro $B^+ \to K^+ J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-)$ da CMS 5.2 fb⁻¹ di dati raccolti nel 2011 a $\sqrt{s}=7$ TeV
- ▶ osservate due nuove strutture nello spettro di massa $J/\psi\phi$: $m_1 = 4148.2 \pm 2.0(stat) \pm 4.6(syst)$ MeV e $m_2 = 4316.7 \pm 3.0(stat) \pm 7.3(syst)$ MeV
- strutture simili osservate da CDF, da verificare consistenza e compatibilità
- ▶ LHCb ha cercato lo stato X(4140) nello stesso stato finale, analizzando $0.37~{\rm fb}^{-1}$ di dati raccolti nel 2011 a $\sqrt{s}=7~{\rm TeV}$
- ightharpoonup nessuna evidenza, misurando un disaccordo di 2.4σ rispetto alla misura di CDF

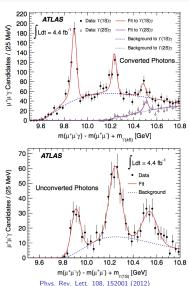
TRODUZIONE MISURE DI MASSA MESONE B_C NUOVI STATI ESOTICI CONCLUSIO

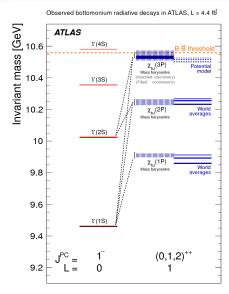

Conclusioni


- spettroscopia di adroni a quark pesanti molto attiva in ATLAS, CMS e soprattutto LHCb
- lacktriangle analizzando finora i dati a $\sqrt{s}=7~{
 m TeV}$ si sono già osservati diversi nuovi stati
- ▶ aggiornamento in corso a $\sqrt{s} = 8$ TeV: anche grazie all'aumento di sezione d'urto, possibile osservazione di nuovi barioni
- ▶ il quadro è ben lontano dall'essere completo

Backup slides

roduzione Misure di massa Mesone B_σ Nuovi stati Esotici Conclusio


Esperimenti ATLAS, CMS e LHCb



froduzione Misure di Massa Mesone $B_{\mathcal{C}}$ Nuovi stati Esotici Conclusion

Osservazione di un nuovo stato χ_b in ATLAS

