

Search for natural SUSY

Gabriella Gaudio - INFN Pavia Maurizio Pierini - CERN

VI Workshop Italiano sulla Fisica p-p a LHC
8-10 Maggio 2013 - Acquario di Genova

Natural SUSY

Hierarchy problem: requires cancellation of the quadratically divergent loop corrections to the Higgs boson mass in SM

$$
m_{Z}^{2}=-2 \frac{(\tan \beta)^{2} m_{H_{u}}^{2}-m_{H_{d}}^{2}}{(\tan \beta)^{2}-1}-2 \mu^{2}
$$

SUSY search strategy

* Strong production of squark and gluinos
* large cross-section
* inclusive searches: jet $+\mathrm{E}^{\text {miss }}+(0 / \mathrm{I} / 2)$ leptons
* EWKinos and third generation squarks
* low mass required by naturalness
* more likely accessible at the LHC, but cross sections are much smaller
* dedicated searches optimized on the signal kinematics

Look for:

* 3rd generation squarks in gluino decay
* direct production of light stop/sbottom
* EW production of gauginos

gluino mediated
production

direct
production

SUSY models

\uparrow CMSSM - UV models with few parameters, e.g., mSUGRA
\downarrow are very predictive and very constrained by multiple sources.
\downarrow They are phenomenologically limited, experiencing tension.

- pMSSM - reduces the number of MSSM parameters with experimentally motivated assumptions.
\downarrow Can lead to complex spectra and decay patterns.
- Less constrained SUSY.
\& Simplified Models - only constrain the sparticles populating a given channel, but there are no correlations
largely used in natural between different searches or other experiments (e.g., DM) and can be unphysical in some limits
- Generate events with given decay chain on both legs
\downarrow Assume 100\% BR in both legs and the
\downarrow SUSY production cross-section
\uparrow Express reach in the plane determined by the involved masses

SUSY Theory phase space

T. Rizzo (SLAC Summer Institute, 01-Aug-12)

MSSM: 29 sparticles + 5 Higgs undiscovered

Names	Spin	P_{R}	Gauge Eigenstates	Mass Eigenstates
Higgs bosons	0	+1	$H_{u}^{0} H_{d}^{0} H_{u}^{+} H_{d}^{-}$	$h^{0} H^{0} A^{0} H^{ \pm}$
squarks	0	-1	$\begin{array}{llll} \tilde{u}_{L} & \tilde{u}_{R} & \tilde{d}_{L} & \tilde{d}_{R} \\ \widetilde{s}_{L} & \tilde{s}_{R} & \tilde{c}_{L} & \tilde{c}_{R} \\ \tilde{t}_{L} & \tilde{t}_{R} & \tilde{b}_{L} & \tilde{b}_{R} \end{array}$	$\begin{gathered} \hline \text { (same) } \\ \text { (same) } \\ \tilde{\tilde{t}_{1}} \tilde{t}_{2} \widetilde{b}_{1} \widetilde{b}_{2} \end{gathered}$
sleptons	0	-1	$\widetilde{e}_{L} \tilde{e}_{R} \tilde{\nu}_{e}$ $\tilde{\mu}_{L} \tilde{\mu}_{R} \tilde{\nu}_{\mu}$ $\tilde{\tau}_{L} \tilde{\tau}_{R} \tilde{\nu}_{\tau}$	$\begin{aligned} & \text { (same) } \\ & \text { (same) } \\ & \tilde{\tau}_{1} \tilde{\tau}_{2}{\tilde{\tilde{\nu}_{\tau}}}^{2} \end{aligned}$
neutralinos	1/2	-1	$\widetilde{B}^{0} \widetilde{W}^{0} \widetilde{H}_{u}^{0} \widetilde{H}_{d}^{0}$	$\begin{array}{llll}\tilde{N}_{1} & \tilde{N}_{2} & \tilde{N}_{3} & \tilde{N}_{4}\end{array}$
charginos	1/2	-1	$\widetilde{W}^{ \pm} \widetilde{H}_{u}^{+} \widetilde{H}_{d}^{-}$	$\widetilde{C}_{1}^{ \pm} \tilde{C}_{2}^{ \pm}$
gluino	1/2	-1	\tilde{g}	(same)
$\begin{aligned} & \text { goldstino } \\ & \text { (gravitino) } \end{aligned}$	$\underset{(3 / 2)}{1 / 2}$	-1	\widetilde{G}	(same)

Strategies for natural SUSY search

\checkmark ATLAS

\downarrow Assumes a particular simplified model
\uparrow Identify the corresponding signatures based on the kinematics (depends on the decay and mass spectrum)
\downarrow CMS
\downarrow Maintain the characteristic of an inclusive search
\uparrow Specialize the SR on the base of the assumption of some simplified model

For both experiment then
\downarrow Cut \& count experiments (though work in progress on MVA)
\downarrow Derive the limits (so far)
\uparrow Reinterpretation on some compatible scenarios
\downarrow Common features to all these analysis:
\uparrow RPC assumed (LSP stable, large ETmiss)
\downarrow Signal discrepancy expected in the tails
\uparrow Fighting with low statistic
\uparrow Data @l3TeV is needed to progress in the searches

ATLAS-CONF-2012-167

CMS-SUS-12-028

Searches tools

A number of variables (sometimes quite complex) used to discriminate from signal to background

Scalar sum of the pT of jets (+ lepton)

$$
H_{T}=\sum p_{T}^{l}+\sum p_{T}^{j e t}
$$

Effective mass: $\mathrm{H}_{T}+\mathrm{E}_{T}$ miss

$$
m_{e f f}=\left(\sum_{i=1}^{N l e p} p_{T, i}^{l}\right)+\sum_{i=1}^{N j e t} p_{T, i}+E_{T}^{m i s s}
$$

Transverse mass:

$$
m_{T}=\sqrt{2 p_{T} E_{T}^{m i s s}\left(1-\cos \left(\Delta \phi\left(p_{T}, E_{T}^{m i s s}\right)\right)\right)}
$$

Stransverse mass: minimization performed on all possible decomposition of the $\mathrm{P} \mathrm{T}^{\text {miss }}$
$m_{\mathrm{T} 2}\left(\mathbf{p}_{\mathrm{T}}^{\ell_{1}}, \mathbf{p}_{\mathrm{T}}^{\ell_{2}}, \mathbf{p}_{\mathrm{T}}^{\text {miss }}\right)=\min _{\mathbf{q}_{\mathrm{T}}+\mathbf{r}_{\mathrm{T}}=\mathbf{p}_{\mathrm{T}}^{\text {miss }}}\left\{\max \left[m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{\ell_{1}}, \mathbf{q}_{\mathrm{T}}\right), m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{\ell_{2}}, \mathbf{r}_{\mathrm{T}}\right)\right]\right\}$
Cotransverse mass: E_{T} and PT of the visible particle
in the event
$m_{C T}^{2}(v 1, v 2)=\left(E_{T}(v 1)+E_{T}(v 2)\right)^{2}-\left(\mathbf{p}_{T}(v 1)-\mathbf{p}_{T}(v 2)\right)^{2}$
\uparrow alpha_t
$\uparrow=0.5$ perfect balanced dijet event;
$\uparrow<0.5$ jet mismeasurement
$\downarrow>0.5$ recoil against genuine E_{T} miss

$$
\alpha_{\mathrm{T}}=\frac{E_{\mathrm{T}}^{\mathrm{jet}} \mathrm{~m}}{M_{\mathrm{T}}}=\frac{E_{\mathrm{T}}^{\text {jet }}}{\sqrt{\left(\sum_{i=1}^{2} E_{\mathrm{T}}^{\mathrm{jet}}\right)^{2}-\left(\sum_{i=1}^{2} p_{x}^{\mathrm{jet}_{i}}\right)^{2}-\left(\sum_{i=1}^{2} p_{y}^{\mathrm{jet}_{i}}\right)^{2}}} .
$$

\downarrow razor: decomposition of the particle boost,

$$
R=\frac{M_{R}^{T}}{M_{R}}
$$

M_{R} is defined using momentum after trasformation, assuming jet have the same momentum
$M_{R} \equiv \sqrt{\left(E_{\mathrm{j}_{1}}+E_{\mathrm{j}_{2}}\right)^{2}-\left(p_{z}^{\mathrm{j}_{1}}+p_{z}^{\mathrm{j}_{2}}\right)^{2}}$
$M_{T}{ }^{R}$ is defined using transverse quantities and it is MET-related
$M_{R}^{T}=\sqrt{\frac{\boldsymbol{E}_{T}\left(p_{T}^{j_{1}}+p_{T}^{j_{2}}\right)-\overrightarrow{\boldsymbol{E}}_{T} \cdot\left(\vec{p}_{T}^{j_{1}}+\vec{p}_{T}^{j_{i}}\right)}{2}}$

Cross Section and Limits

A common approach has been taken by ATLAS and CMS concerning

- SUSY cross sections with uncertainties
- https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections
\downarrow representation of the exclusion limits
\uparrow expected and observed limits (+ I σ band)

Gluino mediated searches

Sensitive to model in which squarks (except 3rd gen) are much heavier than gluinos
Depending on the decay of the stop/sbottom quarks, several signatures are possible
\uparrow multijet (>6, some of which b-tagged) $+E_{T}$ miss

- all hadronic or Ilepton signature

- Final states with multiple W bosons decaying leptonically (+bjets)
$\downarrow 2$ leptons SS signatures (gluino is a strongly interacting Majorana particle) \Rightarrow small SM background
\downarrow events with ≥ 3 lep + multiple jets \rightarrow suppression of charge flip and fakes

Gluino mediated (gtt) search

https://twiki.cern.ch/twiki/pub/AtlasPublic/
CombinedSummaryPlots/GttSummary_MoriondQCD2013.pdf

\uparrow full had. (\geq 4-6jet, $\geq 3 \mathrm{~b}$, Eт ${ }^{\text {miss }}$):
$m_{\text {eff }}+\mathrm{E}^{\text {miss }} \quad$ (ATLAS-CONF-20I2-I45)

\uparrow 2lep SS + jet, bjet, ETmiss:

$\mathrm{m}_{\mathrm{T}}+\mathrm{m}_{\text {eff }}$
(ATLAS-CONF-2013-007)

$$
\begin{aligned}
& \uparrow \text { full had. (} \geq \text { 3jet, } \geq \text { I b, ETmiss } \text {): } \\
& H_{T}+E_{T}{ }^{\text {miss }} \\
& \text { (CMS-SUS-12-024) } \\
& \uparrow \text { Ilep + } \geq \mathbf{6 j e t}, \geq \mathbf{2} \mathbf{b}, \mathrm{E}^{\text {miss }} \text { : } \\
& \mathrm{H}_{\mathrm{T}}+\mathrm{E}^{\text {miss }}+\mathrm{S}^{\prime}{ }^{1}+\Delta \varphi \\
& \text { (CMS-SUS-I2-007) } \\
& \uparrow \text { 2lep SS }+\geq \mathbf{2} \mathbf{b} \text { : } \\
& \mathrm{H}_{\mathrm{T}}+\mathrm{E}_{\mathrm{T}}^{\text {miss }}+\mathrm{Njet} \\
& \text { (CMS-SUS-I2-0I7) } \\
& \downarrow \geq 3 \text { lep + jets }+E_{T^{m i s s}} \text { : } \\
& \mathrm{H}_{\mathrm{T}}+\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}+\mathrm{Njet} \\
& \text { (CMS-SUS-I2-026) }
\end{aligned}
$$

Gluino mediated (gbb) search

ATLAS-CONF-2012-145

\uparrow full had. (\geq 4-6jet, $\geq 3 \mathrm{~b}$, Eт ${ }^{\text {miss }}$): $m_{\text {eff }}+\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }} \quad$ (ATLAS-CONF-20I2-I45)
$\tilde{g}-\tilde{g}$ production, $\tilde{g} \rightarrow \mathrm{~b} \overline{\mathrm{~b}} \tilde{\chi}_{1}^{0}$

\downarrow full had. (jet $+E_{T}{ }^{\text {miss }}$): α_{T}, H_{T} (CMS-SUS-12-028)
\uparrow full had. (\geq 3jet, $\geq \mathbf{I} \mathbf{b}, \mathrm{E}_{\mathbf{T}}^{\text {miss }}$): $\mathrm{H}_{\mathrm{T}}+\mathrm{E}_{\mathrm{T}}^{\text {miss }}$ (CMS-SUS-I2-024)

Direct stop production searches

* The cross section for stop pair production falls rapidly with increasing stop mass
* region at high mass: small cross section, irreducible top pair background but one can cut on hard kinematics if $m($ stop $)$-m(LSP) large
* for mass stop around mass top: need for powerful
for mass stop around
discriminating variables
* it's about 10 times smaller then ttbar production since stop is a scalar

Mass difference among sparticles is an important parameter for the kinematic of the events
\rightarrow analysis sensitivity highly affected

Direct Stop results

$$
\begin{aligned}
& \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\
&{\tilde{t_{1}}} \rightarrow b \tilde{\chi}_{1}^{ \pm}
\end{aligned}
$$

https://twiki.cern.ch/twiki/pub/
AtlasPublic/CombinedSummaryPlots/ ATLAS_directstop_all_March13.pdf
 $\mathfrak{t} \mathfrak{t}$ (medium), $\widetilde{\mathrm{t}} \rightarrow \mathrm{b} \widetilde{\chi}^{ \pm}: 1$ lep +b -jet $+E_{T \text {,miss }}^{\text {,miss }}$ \tilde{t} (medium), $\tilde{t} \rightarrow \mathrm{~b} \tilde{\chi}_{1}^{ \pm}: 2$ lep $+E_{T, \text { miss }}^{T, \text { miss }}$
$\tilde{t} \tilde{t}$ (heavy), $\tilde{\mathrm{t}} \rightarrow t \tilde{\chi}_{1}^{0}: 1$ lep +b -jet $+E_{T, \text { miss }}$ $\tilde{\mathrm{t}}$ (heavy), $\widetilde{\mathrm{t}} \rightarrow \mathrm{t} \tilde{\chi}^{0}: 0$ lep $+6(2 \mathrm{~b}-)$ jets $+E_{T, \text { miss }}$ tt (natural GMSB) : $\mathrm{Z}(\rightarrow \mathrm{II})+\mathrm{b}$-jet $+E$ $\widetilde{\mathrm{t}}_{0} \widetilde{\mathrm{t}}_{0}, \widetilde{\mathrm{t}}_{0} \rightarrow \widetilde{\mathrm{t}}_{1}+\mathrm{Z}: \mathrm{Z}(\rightarrow \mathrm{II})+1$ lep $+\mid \mathrm{b}$-jet $+E_{\tau \text { minn }}^{T, \text { miss }}$
$L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1208.4305, 1209.2102]
$L=20.7 \mathrm{fb}^{-1}$, 8 TeV [ATLAS-CONF-2013-037]
$L=13.0 \mathrm{fb}^{-1}, 8 \mathrm{TeV}$ [ATLAS-CONF-2012-167]
$L=20.7 \mathrm{fb}^{-1}$, 8 TeV [ATLAS-CONF-2013-037]
L=20.5 fb ${ }^{-1}$, 8 TeV [ATLAS-CONF-2013-024]
$L=20.7 \mathrm{fb}^{-1}, 8 \mathrm{TeV}$ [ATLAS-CONF-2013-025]
$L=20.7 \mathrm{fb}^{-1}, 8 \mathrm{TeV}$ [ATLAS-CONF-2013-025]

Direct Stop results

llep + jets, $\geq \mathbf{I} \mathbf{b}, E_{T}{ }^{\text {miss }}: M_{T}+E_{T}{ }^{\text {miss }}$

(CMS-SUS-I2-023)

Exclusive analysis published so far
More exclusive analysis (Atlas-like) coming soon with full statistics

Direct Sbottom search

Olep + 2b $+\mathbf{E T}^{\text {miss }}$
cut on $\mathrm{E}^{\text {miss }}$, b-tagging, $\mathrm{E}_{\mathrm{T}}^{\text {miss }} / \mathrm{m}_{\text {eff, }} \mathrm{mcT}, \mathrm{H}_{\mathrm{T}}$ mct limited from above by:

$$
M_{C T}^{M A X}=\frac{m^{2}(\tilde{b})-m^{2}\left(\tilde{\chi}_{1}^{0}\right)}{m(\tilde{b})}
$$

$\tilde{b} \rightarrow t \tilde{\chi}_{1}^{ \pm}$
2lep SS $+\geq \mathbf{2} \mathbf{b}: \mathrm{H}_{\top}+\mathrm{E}^{\text {miss }}+$ Njet (CMS-SUS-I2-017)
full had. (jet $+E_{T}{ }^{\text {miss }}$): α_{T}, H_{T} (CMS-SUS-12-028)

$$
\tilde{b}_{1} \tilde{b}_{1} \rightarrow\left(b \tilde{\chi}_{1}^{0}\right)\left(b \tilde{\chi}_{1}^{0}\right)
$$

EWKino search

- Mass eigenvalues generated through the mixing of gauge eigenvalues
\uparrow Depending on the mixing matrix neutralinos and charginos may be wino-, bino- or higgsino- like
\downarrow this affects the preferred decay mode through bosons (W,Z,H)
\uparrow naturalness requires that the higgsino is light
\downarrow Depending of the mass hierarchy, chargino and neutralino decay can proceed either via sleptons or via SM boson
- Preferred signature for direct ewkino pair production is multilepton final state $+\mathrm{E}_{\mathrm{T}}$ miss

EWKino search

Limits drawn in simplified models scenario with decay either via slepton and gauge boson

CMS-SUS-I2-022

Italian contrib. to ATLAS natural SUSY search

- Italian SUSY group: Lecce, Milano, Pavia, Udine
- working together since few years as a group (regular weekly meeting, mailing list and twiki page for info sharing)
- different experience and competence complements each other
- well integrated in the DirectStop subgroup (T. Lari convener of the subgroup)
- 2-lepton signature investigated

Paper \& conf note

Search for a heavy top-quark partner in final states with two leptons with the ATLAS detector at the LHC - JHEP11(2012)094-Sept. 2012 top+neutralino, $7 \mathrm{TeV}, 4.7 \mathrm{fb}^{-1}$

Search for a supersymmetric top-quark partner in final states with two leptons in sqrt(s)=8 TeV pp collisions using $13 \mathrm{fb}^{-1}$ of ATLAS data - ATLAS-CONF-2012-167-Dec.2012 b+chargino

Update of the analysis for $20 \mathrm{fb}^{-1}$ to be shown at LHCp, results still embargoed

Italian contrib. to ATLAS natural SUSY search

* Sensitive to direct stop pair production, with stop decaying in

$$
{\tilde{t_{1}}} \rightarrow b \tilde{\chi}_{1}^{ \pm} \rightarrow b l \nu \tilde{\chi}_{1}^{0}
$$

on both legs (2-lep OS signature)

* Main backgrounds:
* tt, dibosons
* fake or non isolated lepton, $\mathrm{tt}+\mathrm{W} / \mathrm{Z}$,
 Wt, Z+jet

Selection mainly based on $\mathrm{m}_{\mathrm{T} 2}$
$m_{\mathrm{T} 2}\left(\mathbf{p}_{\mathrm{T}}^{\ell_{1}}, \mathbf{p}_{\mathrm{T}}^{\ell_{2}}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}\right)=\min _{\mathbf{q}_{\mathrm{T}}+\mathbf{r}_{\mathrm{T}}=\mathbf{p}_{\mathrm{T}}^{\mathrm{mss}}}\left\{\max \left[m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{\ell_{1}}, \mathbf{q}_{\mathrm{T}}\right), m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{\ell_{2}}, \mathbf{r}_{\mathrm{T}}\right)\right]\right\}$
4 different signal regions ($\mathrm{m}_{\mathrm{T}_{2}}>90,100, \mathrm{IIO}$)
2 channels (same and different flavor of the lepton)
updated to $21 \mathrm{fb}^{-1}$ - results not yet public

Conclusions

\uparrow Huge effort in addressing search for natural SUSY search
\downarrow 3rd generation squark in either direct or gluino mediated production

- EWKinos
- Most of the analysis have been already updated with the full 2012 data statistic
\uparrow Some new results at various stage of the approval procedure both analysis update and new analysis
\uparrow No evidence found so far, limits mostly drawn in simplified model scenario
- Large fraction of the analysis optimized using simplified models:
\downarrow check that all possible model grids are covered
- try to cover the "holes" as much as possible
- Looking for signals in the tails: higher statistic and higher $\sqrt{ } s$ will help
\checkmark Start thinking about 13 TeV analysis
\downarrow Large phase-space of the SUSY models still uncovered
- Still a lot of work to do

Backup slides

Analysis Details ATLAS

$21 \mathrm{fb}^{-1} @ 8 \mathrm{TeV}$

ATLAS Direct Stop search (0-lep)

* Sensitive to direct stop pair production

$$
\tilde{t_{1}}{\tilde{t_{1}}} \rightarrow\left(t \tilde{\chi}_{1}^{0}\right)\left(t \tilde{\chi}_{1}^{0}\right)
$$

with top decaying fully hadronic

* Main backgrounds:
* semilep tt (lepton mis-id), $\mathrm{Z}(\rightarrow \mathrm{VV})+\mathrm{HF}$, $\mathrm{tt}+\mathrm{Z}(\rightarrow \mathrm{VV})$
* QCD multijets, W/Z+jets, W+HF, $\mathrm{tt}+\mathrm{W}(\mathrm{W})$, dibosons
E_{T} miss trigger: E^{T} miss $>130 \mathrm{GeV}$
Request of
\downarrow at least 6 jets ($\mathrm{PT}>80,80,35,35,35,35 \mathrm{GeV}$)
$\uparrow 2$ b-tagged jets
Three Signal region based on $\mathrm{E}^{\text {miss }}(200,300,350 \mathrm{GeV})$

$21 \mathrm{fb}^{-1} @ 8 \mathrm{TeV}$

ATLAS Direct Stop search (I-lep)

* Sensitive to direct stop pair production with both stop decaying either

$$
\tilde{t_{1}} \rightarrow t \tilde{\chi}_{1}^{0} \quad \text { or } \quad \tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{ \pm} \quad\left(\tilde{\chi}_{1}^{ \pm} \rightarrow W^{(*)} \tilde{\chi}_{1}^{0}\right)
$$

(two different simplified model, BR I00\%)

* Main background:
* dilep tt (Ilepton mis-id, ouside acceptance, hadronically decaying T lep)

6 SR:
3 for top-neutralino scenarion + 3 for b+chargino scenario)
signature: I lepton + jets $+\mathrm{E}_{T^{\text {miss }}}$ quite complex event selection:
\uparrow using combination of b-tagging, E_{T} miss,
$E_{T}{ }^{\text {miss }} / \sqrt{ } H_{T}, m_{T 2}, m_{\text {eff }}, H_{T}$
\downarrow shape-fit in ($\mathrm{m}_{\mathrm{T}}-\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}$)

G. Gaudio M. Pierini- VI Workshop Italiano sulla Fisica p-p a LHC - May 8-10th, 2013

$21 \mathrm{fb}^{-1} @ 8 \mathrm{TeV}$

ATLAS Direct Stop search (Z+bjet)

\downarrow Sensitive to direct stop pair production with stop mass

$$
m\left(\tilde{t_{1}}\right) \geq m(t)+m\left(\tilde{\chi}_{1}^{0}\right)
$$

interpreted both in
\downarrow GMSB models (stop decaying to neutralino, being NLSP)

$$
\tilde{\chi}_{1}^{0} \rightarrow Z \tilde{G}
$$

- Simplified model with

$$
\tilde{t_{2}} \rightarrow Z \tilde{t_{1}}
$$

\uparrow Looking for signature with 2-3 lep $+b+E_{T}$ miss
$\uparrow m(I I)=m(Z)$

- Main background:
- dilep tt, Z+jets (2-lep)
$\uparrow \mathrm{tt}+\mathrm{Z}$, di- and tri-boson, fake lepton (3-lep)
$\downarrow 5$ SR: $\mathrm{E}^{\text {miss }}$ and $\mathrm{PT}^{(I I)}$ selection
+3 for 2lep
$\rightarrow 2$ for 3lep

ATLAS Direct EWKino search (3lep)

- Sensitive to associated production of

$$
\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{2}^{0} \rightarrow\left(l^{+} \nu \tilde{\chi}_{1}^{0}\right)\left(l^{+} l^{-} \tilde{\chi}_{1}^{0}\right)
$$

\uparrow decay can proceed either via slepton or bosons (only W,Z considered in the simplified model)
\uparrow looking for 3-lep $+\mathrm{E}^{\text {miss }}$ final state

- Main background:
\uparrow reducible (fakes) : tt,Wt,WW, Z/W+jet/ γ
\uparrow irreducible: di- and tri- boson, tt+W/Z

ATLAS-CONF-2013-035

ATLAS-CONF-2013-035

6 SR (targetting different neutralino decays):
3 Z-depleted (Z off-shell or slepton decay)
3 Z-enriched (Z on-shell decay)
\rightarrow Selection based on

- m(II), b-veto, $m_{T}, E_{T}{ }^{\text {miss }}$,

ATLAS-CONF-2013-035

ATLAS Direct Sbottom search

* Sensitive to direct sbottom pair production

$$
\tilde{b}_{1} \tilde{b}_{1} \rightarrow\left(b \tilde{\chi}_{1}^{0}\right)\left(b \tilde{\chi}_{1}^{0}\right)
$$

with different kinematics driven by:

$$
\Delta m=m_{\tilde{b_{1}}}-m_{\tilde{\chi_{1}^{0}}}^{\tilde{0}}
$$

* Main backgrounds:
* $\mathrm{tt}, \mathrm{W}+\mathrm{HF}, \mathrm{Z}(\rightarrow \mathrm{Vv})+\mathrm{HF}, \mathrm{QCD}$ multijet
* $\mathrm{tt}+\mathrm{W} / \mathrm{Z}, \mathrm{tt}+\mathrm{bb}$

Selection based on lepton veto, $\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}$, b-tagging, E_{T} miss $/ m_{\text {eff, }} \mathrm{m}_{\mathrm{CT}}, \mathrm{H}_{\mathrm{T}}$

$$
m_{C T}^{2}(v 1, v 2)=\left(E_{T}(v 1)+E_{T}(v 2)\right)^{2}-\left(\mathbf{p}_{T}(v 1)-\mathbf{p}_{T}(v 2)\right)^{2}
$$

m_{Ct} in bounded from above by

$$
M_{C T}^{M A X}=\frac{m^{2}(\tilde{b})-m^{2}\left(\tilde{\chi}_{1}^{0}\right)}{m(\tilde{b})}
$$

no excess observed \rightarrow limits Simplified model scenario:

$$
\begin{array}{ll}
m\left(\tilde{\chi}_{1}^{0}\right)<150 \mathrm{GeV} & m\left(\tilde{b}_{1}\right)>620 \mathrm{GeV} \\
m\left(\tilde{b}_{1}\right) \sim 550 \mathrm{GeV} & m\left(\tilde{\chi}_{1}^{0}\right)>320 \mathrm{GeV} \\
m\left(\tilde{b}_{1}\right)<300 \mathrm{GeV} & \Delta m\left(\tilde{b}_{1}, \tilde{\chi}_{1}^{0}\right)<40 \mathrm{GeV}
\end{array}
$$

update to $21 \mathrm{fb}^{-1}$ ongoing

Analysis Details CMS

Kinematic plane binned in 4×4 regions in slices of btag multiplicity

Bin	$H_{T}(\mathrm{GeV})$	$\mathrm{E}_{T}^{\text {miss }}(\mathrm{GeV})$
1	$400-500$ (HT1)	$125-150$ (MET1)
2	$500-800$ (HT2)	$150-250$ (MET2)
3	$800-1000$ (HT3)	$250-350$ (MET3)
4	>1000 (HT4)	>350 (MET4)

> ZL = Zero Lepton; signal sample

$$
\begin{gathered}
S L=\text { Single Lepton; } \\
\text { top \& W+jets control } \\
\text { sample }
\end{gathered}
$$

$$
\begin{aligned}
& L D P=\text { low } \Delta \hat{\phi}_{\text {min }} ; \\
& \text { QCD control } \\
& \text { sample }
\end{aligned}
$$

Zee $=\mathrm{Z} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} ;$
Z to $\mathrm{v} \overline{\mathrm{v}}$ control
sample
$Z m m=Z \rightarrow \mu^{+} \mu^{-} ;$
Z to $v \bar{v}$ control
sample

QCD
Bkg predicted from data control samples x scal factors, bin by bin in 3D space (HT vs MET vs btag)

Signal contamination in SL reduced with mT cut and taken into account when not negligible Other control samples defined signal free

$19 \mathrm{fb}^{-1}$

bin-by-bin scale factor (constrained

expected
to MC with sys error)
observed yield in background in
bin ijk

$$
\mu_{Z L ; i, j, k}^{t t W j}=S_{i, j, k}^{t t W j} \cdot R_{Z L / S L}^{t t W j}\left(\mu_{S L ; i, j, k}^{t t W j}\right.
$$

overall normalization (unconstrained nuisance) CMS Preliminary, $L_{\text {int }}=19.4 \mathrm{fb}^{-1}, \sqrt{s}=8 \mathrm{TeV} \quad$ Full fit \rightarrow Data

16 most sensitive bins shown

Data agree with prediction
No evidence for excess

Other

$\alpha_{\mathrm{T}}:$ Rejecting QCD

$$
\alpha \equiv \frac{p_{T 2}}{m_{j j}}
$$

Randall \& Tucker-Smith

- After α_{T} cut the signal looks similar to bkg in α_{T}
- another variable needs to be used to characterize the signal
- Back to the "classic" paradigm": signal as a tail on H_{T} used by CMS
$-\alpha_{T}=0.5$ for perfectly balanced dijet events
$-\alpha_{T}<0.5$ for dijet + mismeasurements
- EW main bkg after $\alpha_{\text {T cut }}$
- QCD events could leak to $\alpha_{\top}>0.5$ because of detector effects (rare)
- large fraction of signal events removed (efficiency vs purity)

$\alpha_{т}:$ BKG Estimate

- EW bkg is estimated using the $\mathrm{R}_{\alpha \mathrm{T}}\left(^{*}\right)$ ratio

$$
R_{\alpha_{\mathrm{T}}}=N^{\alpha_{\mathrm{T}}>\theta} / N^{\alpha_{\mathrm{T}}<\theta}
$$

- This is computed scaling the PT of the jets with the HT threshold, to event topology
- The ratio is found to be compatible with the flat hypothesis within the available data and SM MC statistics

- This is used to predict the bkg expected in each bin of HT. Then a fit to the HT shape is used
${ }^{(*)}$ Number of EW events with $\alpha \mathrm{T}>\theta$ / number o 3 BQCD events with $\alpha \mathrm{T}<\theta$

The Razor

- The prototype process is squark-squark $\rightarrow j$ + 2 LSD
- If we could put the squarks in their rest frames, we would see two jest with same $|p|$

$$
M_{\Delta} \equiv \frac{M_{\tilde{q}}^{2}-M_{\tilde{\chi}}^{2}}{M_{\tilde{q}}}=2 M_{\tilde{\chi}} \gamma_{\Delta} \beta_{\Delta}
$$

- We observe the jets in the lab frame, boosted by relative squark momentum and parton boost
- We would like to undo the two boosts

Squark rest frames

Center mass frame

Lab frame

The Razor
(3) In reality, the best we can do is to compensate the missing degrees of freedom with assumptions on the boost direction

- The parton boost is forced to be longitudinal
- The squark boost in the CM frame is assumed to be transverse
- We require that the two jets have the same momentum after the transformation, and we solve for the boost
- The transformed momentum defines the MR variable

$$
M_{R} \equiv \sqrt{\left(E_{\mathrm{j}_{1}}+E_{\mathrm{j}_{2}}\right)^{2}-\left(p_{z}^{\mathrm{j}_{1}}+p_{z}^{\mathrm{j}_{2}}\right)^{2}}
$$

- M_{R} is boost invariant, even if defined from 3D momenta
- No information on the MET is used
- The peak of the Mr distribution provides an estimate of M_{Δ}
- M_{Δ} could be also estimated as "edge" of $M T^{R}$

$$
M_{T}^{R} \equiv \sqrt{\frac{E_{T}^{m i s s}\left(p_{T}^{i 1}+p_{T}^{i 2}\right)-\vec{E}_{T}^{m i s s} \cdot\left(\vec{p}_{T}^{i l}+\vec{p}_{T}^{i 2}\right)}{2}}
$$

- $M_{T}{ }^{R}$ is defined using transverse quantities and it is MET-related
- The Razor (aka R) is defined as the ratio of the two variables

$$
R \equiv \frac{M_{T}^{R}}{M_{R}}
$$

BUSy Search As a Bump Hunting

- Peaking signal at $M_{R}{ }^{\sim} M_{\Delta}$ (discovery and characterization)
- R^{2} is determined by the topology, but not changes too much vs particle masses

Cut \& Count Approach

The contransverse mass (MCT) and stransverse mass (MT2) show end points at approximately:

$$
\begin{aligned}
& M_{C T}^{M A X}\left(l_{1}, l_{2}\right)=\frac{m^{2}(W)-m^{2}(\nu)}{m(W)}=80.4 \mathrm{GeV} \\
& M_{C T}^{M A X}\left(b_{1}, b_{2}\right)=\frac{m^{2}(t)-m^{2}(W)}{m(t)}=135.0 \mathrm{GeV}
\end{aligned}
$$

In stop decay one has two invisible particles among the - upstream particles and two among the downstream particles. Both classes of particles are summed up in MET

P. Pralavorio, SUSY 2012

Exclusion Limit

Exclusion limits : a new standard ATLAS/CMS procedure (>June 2012)

- Ease the life of theorist by separating the signal theoritical and experimental systematics

Expected limit:
-Central value: all uncertainties included in the fit as nuisance parameters, except theoretical signal uncertainties (PDF,scales)
$\pm \pm 1 \sigma$ band : $\pm 1 \sigma$ results of the fit

Observed limit:

-Central value: Idem as for expected limit
$- \pm \mathbf{1 \sigma}$ band : re-run and increase/decrease the signal cross section by the theoretical signal uncertainties (PDF, scales)

\rightarrow Number quoted in paper correspond to observed -1 σ observed (conservative)

Summary ATLAS searches

ATLAS SUSY Searches* - 95\% CL Lower Limits (Status: March 26, 2013)
MSUGRA/CMSSM : 0 lep $+j$'s $+E_{T, \text { miss }}$ MSUGRA/CMSSM : 1 lep +j 's $+E_{T, \text { miss }}$ Pheno model : 0 lep $+j$'s $+E_{T, \text { miss }}$ Pheno model : 0 lep $+j$'s $+E_{T, \text {,miss }}$ Gluino med. $\tilde{\chi}^{ \pm}\left(\widetilde{\mathrm{g}} \rightarrow \mathrm{q} \widetilde{\chi}^{ \pm}\right): 1$ lep +j 's $+E_{T \text { miss }}$ GMSB (INLSP): 2 lep (OS) + j's $+E^{T, \text { miss }}$
GMSB $\left(\widetilde{\tau}\right.$ NLSP) $: 1-2 \tau+j$ j's $+E^{2}$ GGM (bino NLSP) : $\gamma \gamma+E^{T, \text { miss }}$
GGM (wino NLSP) : $\gamma+\mathrm{lep}+E^{T, \text { miss }}$ GGM (higgsino-bino NLSP) : $\gamma+\mathrm{b}+E_{T \text { miss }}^{T, \text { mis }}$ GGM (higgsino NLSP) : $\mathrm{Z}+$ jets $+E_{T, \text { miss }}^{T, \text { mis }}$

 $\tilde{\mathrm{bb}}, \widetilde{\mathrm{b}}_{1} \rightarrow+\tilde{\mathrm{x}}^{ \pm}: 2$ SS-lep + (0-3b-)j's $+E_{T, \text { miss }}$ $\tilde{\mathrm{t}}($ light $), \widetilde{\mathrm{t}} \rightarrow \mathrm{b} \widetilde{\chi}_{1}^{ \pm}: 1 / 2$ lep (+b-jet) $+E_{T \text {,miss }}^{T, \text { mis }}$ $\tilde{\mathrm{tt}}$ (medium) $, \mathfrak{t} \rightarrow \mathrm{b} \widetilde{\chi}^{ \pm}: 1$ lep +b -jet $+E_{T}^{T, \text { miss }}$ $\tilde{\mathrm{t}}$ (medium), $\tilde{\mathrm{t}} \rightarrow \mathrm{b} \widetilde{\chi}_{1}^{ \pm}: 2$ lep $+E_{T, \text { miss }}^{T, \text { miss }}$ $\tilde{\mathrm{t}}$ (heavy), ${\widetilde{\mathrm{t}} \rightarrow t \tilde{\chi}_{1}^{0}: 1 \text { lep }+\mathrm{b}-\mathrm{jet}+E_{T, \text { miss }}}^{2}$ $\tilde{\mathrm{tt}}$ (heavy), $\tilde{\mathrm{t}} \rightarrow \mathrm{t} \tilde{\chi}^{0}: 0$ lep $+6\left(2 \mathrm{~b}-\right.$-jets $+E_{T, \text { miss }}$ $\tilde{\sim} \tilde{\mathfrak{t}} \tilde{\mathfrak{t}}$ GMSB) : Z 1 $\tilde{\tau}_{2} \mathrm{t}_{2}, \mathrm{t}_{2} \rightarrow \tilde{t}+\mathrm{Z}: \mathrm{Z}(\rightarrow \tilde{\sim}$

 $\tilde{\chi}^{ \pm} \tilde{\chi}_{2}^{0} \rightarrow \tilde{T} v \tilde{\tau} \perp\left(\chi_{1} \chi_{1}, \chi_{1} \rightarrow \tilde{\tau} v(\tau \tilde{v}): 2 \tau+E_{T, \text { miss }}^{\tau, \text { miss }}\right.$
 Direct χ_{1}^{-}pair prod. (AMSB) : Iong-IIved χ

Stable $\widetilde{\mathrm{g}}, \mathrm{R}$-hadrons: low $\beta, \beta \gamma$
GMSB, stable $\tilde{\tau}$: low β
L=20.7 fb ${ }^{-1}, 8$ TeV [ATLAS-CONF-2013-007]
430 GeV b mass $\quad\left(m \tilde{\chi}_{\mathrm{x}}^{*}\right)=2 m\left(\tilde{x}_{1}^{0}\right)$

$L=4.7 \mathrm{fb} b^{-1}, 7 \mathrm{TeV}[1208.4305,1209.2102] \quad 167 \mathrm{GeV} \quad \mathrm{t}$ mass $\quad\left(m \tilde{x}^{0}\right)=55 \mathrm{GeV}$)

L=20.7 fb ${ }^{-1}$, 8 Tev [ATLAS-CONF-2013-037]
$L=13.0 \mathrm{fb}{ }^{-1}, 8 \mathrm{TeV}$ [ATLAS-CONF-2012-167] $L=20.7 \mathrm{fb}^{-1}, 8$ TeV [ATLAS-CONF-2013-037] $=20.5 \mathrm{fb}^{-1}, 8 \mathrm{TeV}$ [ATLAS-CONF-2013-024] $L=20.7 \mathrm{fb}^{-1}, 8 \mathrm{TeV}$ [ATLAS-CONF-2013-025] $L=20.7 \mathrm{fb}{ }^{-1}, 8$ TeV [ATLAS-CONF-2013-025]

60-410 GeV \quad ~~Ss $\left(m \tilde{\chi}_{1}^{0}\right)=0 \mathrm{GeV}, m\left(\tilde{x}_{1}^{*}\right)=150 \mathrm{GeV}$)
$160-440 \mathrm{GeV}$ t mass $\left(m \widetilde{x}_{1}^{0}\right)=0 \mathrm{GeV}, m(\widetilde{t})-m\left(\widetilde{x}_{1}^{*}\right)=10 \mathrm{GeV}$
$200-610 \mathrm{Gev}$ t mass $\left(m \tilde{x}^{0}\right)=0$
$320-660 \mathrm{GeV} \tilde{\mathrm{t}}$ mass $\quad\left(m \tilde{x}_{\mathrm{x}}^{0}\right)=0$)
$L=4.7 \mathrm{fb} \mathrm{b}^{-1}, 7 \mathrm{TeV}[1208.2884] \quad$. $\quad 520 \mathrm{GeV} \quad \tilde{\mathrm{t}}_{2}$ mass $\quad\left(m\left(\tilde{\mathrm{t}}_{1}\right)=m\left(\widetilde{x}_{1}^{0}\right)+180 \mathrm{GeV}\right.$

L=4.7 $\mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1208.2884]	$110-340 \mathrm{GeV}$	$\widetilde{\chi}^{ \pm}$mass	$10 \mathrm{GeV}, \mathrm{m}\left(\mathrm{I}_{1}\right.$
$L=20.7 \mathrm{fb}{ }^{-1}, 8$ TeV [ATLAS-CONF-2013-028]	$180-330 \mathrm{GeV}$	$\widetilde{\chi}^{ \pm} \mathrm{m}$	$\left(m\left(\widetilde{x}^{(0)}\right)<10 \mathrm{GeV}, m(\widetilde{\tau}, \tilde{v})=\frac{1}{2}\left(m\left(\tilde{x}^{\top}\right)+m\left(\tilde{x}^{\mathrm{d}}\right)\right)\right.$)

$L=20.7 \mathrm{fb}^{-1}, 8 \mathrm{TeV}$ [ATLAS-CONF-2013-035] $\quad{ }_{600 \mathrm{GeV}} \quad \tilde{\chi}_{1}^{ \pm}$mass $\quad\left(m\left(\tilde{\chi}_{1}^{ \pm}\right)=m\left(\tilde{\chi}_{2}^{0}\right), m\left(\tilde{\chi}_{1}^{0}\right)=0, m(\tilde{1}, \tilde{v})\right.$ as above $)$
$L=20.7 \mathrm{fb}^{-1}, 8$ TeV [ATLAS-CONF-2013-035] $\quad 315 \mathrm{GeV} \tilde{\chi}_{1}^{ \pm}$mass $\quad\left(m \widetilde{\chi}_{\mathrm{X}}^{ \pm}\right)=m\left(\tilde{\chi}_{0}^{0}\right), m\left(\widetilde{\chi}_{,}^{0}\right)=0$, sleptons decoupled)
 WIMP interaction (D5, Dirac α) : 'monojet' $+E$
L=4.6 fb-1, 7 TeV [1210.4826]
$100-287 \mathrm{GeV}$ sgluon mass (incl. limit from 1110.2693)
$L=10.5 \mathrm{fb}^{-1}, 8$ TeV [ATLAS-CONF-2012-147] $\quad 704 \mathrm{GeV} \mathrm{M}^{*}$ Scale ($m_{x}<80 \mathrm{GeV}$, limit of $<687 \mathrm{GeV}$ for D8)

Sparticle spectrum

Chiral supermultiplet

Names		Spin 0	Spin $\frac{1}{2}$
Squarks, quarks ($x 3$ families)	$\begin{aligned} & \bar{Q} \\ & \bar{u} \\ & \bar{d} \end{aligned}$	$\begin{gathered} \left(\widetilde{\boldsymbol{u}}_{L} \widetilde{\boldsymbol{a}}_{L}\right) \\ \widetilde{\boldsymbol{u}}_{R}^{\prime \prime} \\ \widetilde{\boldsymbol{d}}_{R}^{*} \end{gathered}$	$\begin{array}{cc} \left(\boldsymbol{u}_{L}\right. & \left.\boldsymbol{d}_{L}\right) \\ \boldsymbol{u}_{R}^{T} \\ \boldsymbol{d}_{R}^{T} \end{array}$
Sleptons,leptons ($\times 3$ families)	\boldsymbol{L}	$\left(\begin{array}{ll} \widetilde{\boldsymbol{v}} & \widetilde{e}_{L} \end{array}\right)$	$\left(\begin{array}{ll} v & e_{L} \\ e_{R}^{T} \end{array}\right)$
Higgs, higgsinos	$\begin{aligned} & \boldsymbol{H}_{u} \\ & \boldsymbol{H}_{a} \end{aligned}$	$\left(\begin{array}{ll}\left(\begin{array}{ll}\boldsymbol{H}_{u}^{+} & \boldsymbol{H}_{u}^{0}\end{array}\right) \\ \left(\boldsymbol{H}_{d}^{0}\right. & \boldsymbol{H}_{d}^{-}\end{array}\right)$	$\left(\begin{array}{cc}\widetilde{\boldsymbol{H}}_{u}^{+} & \widetilde{\boldsymbol{H}}_{a}^{0} \\ \left(\widetilde{\boldsymbol{H}}_{d}^{0}\right. & \widetilde{\boldsymbol{H}}_{a}^{-}\end{array}\right)$

Gauge supermultiplet

Names	Spin $\frac{1}{2}$	Spin 1
Gluino, gluons	$\widetilde{\boldsymbol{g}}$	\boldsymbol{g}
Winos, W bosons	$\widetilde{\boldsymbol{W}}^{ \pm} \widetilde{\boldsymbol{W}}^{\mathbf{0}}$	$\boldsymbol{W}^{ \pm} \boldsymbol{W}^{\mathbf{0}}$
Bino, B boson	$\widetilde{\boldsymbol{B}}^{\mathbf{0}}$	$\boldsymbol{B}^{\mathbf{0}}$

