

Search for natural SUSY

Gabriella Gaudio - INFN Pavia Maurizio Pierini - CERN

VI Workshop Italiano sulla Fisica p-p a LHC 8–10 Maggio 2013 – Acquario di Genova

Natural SUSY

SUSY search strategy

* Strong production of squark and gluinos

- * large cross-section
- * inclusive searches: jet + E_T^{miss} + (0/1/2) leptons

* EWKinos and third generation squarks

- * low mass required by naturalness
- * more likely accessible at the LHC, but cross sections are much smaller
- * dedicated searches optimized on the signal kinematics

Look for:

- * 3rd generation squarks in gluino decay
- * direct production of light stop/sbottom
- * EW production of gauginos

<mark>largely used in natural</mark>

susy search

SUSY models

- CMSSM UV models with few parameters, e.g., **mSUGRA**
 - are very predictive and very constrained by multiple sources.
 - They are phenomenologically limited, experiencing tension.
- **pMSSM** reduces the number of MSSM parameters with experimentally motivated assumptions.
 - Can lead to complex spectra and decay patterns.
 - Less constrained SUSY.
- Simplified Models only constrain the sparticles populating a given channel, but there are no correlations between different searches or other experiments (e.g., DM) and can be unphysical in some limits
 - Generate events with given decay chain on both legs
 - Assume 100% BR in both legs and the
 - SUSY production cross-section
 - Express reach in the plane determined by the involved masses

MSSM: 29 sparticles + 5 Higgs undiscovered

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates
Higgs bosons	0	+1	$H^0_u \ H^0_d \ H^+_u \ H^d$	$h^0 H^0 A^0 H^{\pm}$
squarks	0	-1	$\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$ $\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$ $\widetilde{t}_L \ \widetilde{t}_R \ \widetilde{b}_L \ \widetilde{b}_R$	(same) (same) $\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$
sleptons	0	-1	$egin{array}{lll} \widetilde{e}_L & \widetilde{e}_R & \widetilde{ u}_e \ \widetilde{\mu}_L & \widetilde{\mu}_R & \widetilde{ u}_\mu \ \widetilde{ au}_L & \widetilde{ au}_L & \widetilde{ au}_ au \end{array}$	(same) (same) $\widetilde{\tau}_1 \ \widetilde{\tau}_2 \ \widetilde{\nu}_{\tau}$
neutralinos	1/2	-1	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^{\pm} \widetilde{C}_2^{\pm}
gluino	1/2	-1	\widetilde{g}	(same)
goldstino (gravitino)	$\frac{1/2}{(3/2)}$	-1	\widetilde{G}	(same)

ATLAS

- Assumes a particular simplified model
- Identify the corresponding signatures based on the kinematics (depends on the decay and mass spectrum)

+ CMS

- Maintain the characteristic of an inclusive search
- Specialize the SR on the base of the assumption of some simplified model
- ✤ For both experiment then
 - Cut & count experiments (though work in progress on MVA)
 - Derive the limits (so far)
 - Reinterpretation on some compatible scenarios
- Common features to all these analysis:
 - RPC assumed (LSP stable, large ET^{miss})
 - Signal discrepancy expected in the tails
 - Fighting with low statistic
 - Data @I3TeV is needed to progress in the searches

CMS-SUS-12-028

Searches tools

A number of variables (sometimes quite complex) used to discriminate from signal to background

CMS

Scalar sum of the pT of jets (+ lepton)

 $H_T = \sum p_T^l + \sum p_T^{jet}$

Effective mass: H_T + E_T^{miss}

$$m_{eff} = \left(\sum_{i=1}^{Nlep} p_{T,i}^l\right) + \sum_{i=1}^{Njet} p_{T,i} + E_T^{miss}$$

Transverse mass:

$$m_T = \sqrt{2p_T E_T^{miss} (1 - \cos(\Delta \phi(p_T, E_T^{miss})))}$$

Stransverse mass: minimization performed on all possible decomposition of the pr^{miss}

$$m_{\rm T2}(\mathbf{p}_{\rm T}^{\ell_1}, \mathbf{p}_{\rm T}^{\ell_2}, \mathbf{p}_{\rm T}^{\rm miss}) = \min_{\mathbf{q}_{\rm T} + \mathbf{r}_{\rm T} = \mathbf{p}_{\rm T}^{\rm miss}} \left\{ \max[\ m_{\rm T}(\mathbf{p}_{\rm T}^{\ell_1}, \mathbf{q}_{\rm T}), m_{\rm T}(\mathbf{p}_{\rm T}^{\ell_2}, \mathbf{r}_{\rm T}) \] \right\}$$

Cotransverse mass: E_{T} and p_{T} of the visible particle in the event

$$m_{CT}^2(v1, v2) = (E_T(v1) + E_T(v2))^2 - (\mathbf{p}_T(v1) - \mathbf{p}_T(v2))^2$$

alpha_t
 = 0.5 perfect balanced dijet event;
 < 0.5 jet mismeasurement
 > 0.5 recoil against genuine ET^{miss}

$$\alpha_{\rm T} = \frac{E_{\rm T}^{\rm jet_2}}{M_{\rm T}} = \frac{E_{\rm T}^{\rm jet_2}}{\sqrt{\left(\sum_{i=1}^2 E_{\rm T}^{\rm jet_i}\right)^2 - \left(\sum_{i=1}^2 p_x^{\rm jet_i}\right)^2 - \left(\sum_{i=1}^2 p_y^{\rm jet_i}\right)^2}},$$

 razor: decomposition of the particle boost,

$$R = \frac{M_R^T}{M_R}$$

 M_R is defined using momentum after trasformation, assuming jet have the same momentum

$$M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$$

 M_T^R is defined using transverse quantities and it is MET-related

A common approach has been taken by ATLAS and CMS concerning

- SUSY cross sections with uncertainties
 - https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections
- representation of the exclusion limits
 - expected and observed limits (+ 1σ band)

Sensitive to model in which squarks (except 3rd gen) are much heavier than gluinos Depending on the decay of the stop/sbottom quarks, several signatures are possible

$$\begin{array}{c} \widetilde{g} \rightarrow b \ b_{1} \\ \widetilde{g} \rightarrow t \ \widetilde{\chi}_{1}^{\pm} \end{array} \xrightarrow{f} fluino-stop (b \widetilde{\chi}_{1}^{\pm}) \text{ degenerate } (m_{\widetilde{\chi}_{1}^{\pm}}, m_{\widetilde{\chi}_{1}^{0}}) \\ \widetilde{g} \rightarrow t \ \widetilde{t}_{1} \\ \rightarrow b \ \widetilde{\chi}_{1}^{\pm} \end{array} \xrightarrow{f} fluino-stop (b \widetilde{\chi}_{1}^{\pm}) \text{ on-shell} \\ fluino-stop (b \widetilde{\chi}_{1}^{\pm}) \text{ on-shell } (m_{\widetilde{g}} < m_{\widetilde{t}} + m_{t}) \\ fluino-stop (t \widetilde{\chi}_{1}^{0}) \text{ on-shell } (m_{\widetilde{g}} > m_{\widetilde{t}} + m_{t}) \\ fluino-stop (t \widetilde{\chi}_{1}^{0}) \text{ on-shell } (m_{\widetilde{g}} > m_{\widetilde{t}} + m_{t}) \end{array}$$

- multijet (> 6, some of which b-tagged) + E_T^{miss}
 - all hadronic or Hepton signature
- Final states with multiple W bosons decaying leptonically (+bjets)
 - ◆ 2 leptons SS signatures (gluino is a strongly interacting Majorana particle) ⇒ small SM background
 - events with \geq 3 lep + multiple jets \rightarrow suppression of charge flip and fakes

Gluino mediated (gtt) search

ATLAS

★ full had. (≥ 4-6jet, ≥3 b, E_T^{miss}): m_{eff} + E_T^{miss} (ATLAS-CONF-2012-145)

◆ 2lep SS + jet, bjet, E_T^{miss}: m_T + m_{eff} (ATLAS-CONF-2013-007)

ATLAS-CONF-2012-145

 \tilde{g} - \tilde{g} production, $\tilde{g} \rightarrow b \,\overline{b} \,\tilde{\chi}_1^0$ LSP mass [GeV] 006 [GeV] CMS Preliminary 900 √s = 8 TeV Observed Moriond 2013 Expected 700 600 500 400 300 SUS-12-024 0-lep (₽+H, 19.4 fb⁻¹ 200 SUS-12-028 0-lep (α₊) 11.7 fb⁻¹ 100 **5**00 600 700 800 900 1000 1100 1200 1300 1400 1500 gluino mass [GeV]

◆ full had. (≥ 3jet, ≥ I b, E_T^{miss}): H_T + E_T^{miss} (CMS-SUS-12-024)

★ full had. (≥ 4-6jet, ≥3 b, E_T^{miss}): $m_{eff} + E_T^{miss}$ (ATLAS-CONF-2012-145)

Direct stop production searches

- * The cross section for stop pair production falls rapidly with increasing stop mass
 - * region at high mass: small cross section, irreducible top pair background but one can cut on hard kinematics if m(stop)-m(LSP) large
 - * for mass stop around mass top: need for powerful discriminating variables
 - * it's about 10 times smaller then ttbar production since stop is a scalar

Mass difference among sparticles is an important parameter for the kinematic of the events \rightarrow analysis sensitivity highly affected

Direct Stop results

https://twiki.cern.ch/twiki/pub/ AtlasPublic/CombinedSummaryPlots/ ATLAS_directstop_all_March13.pdf

$$\begin{split} \widetilde{t}\widetilde{t} (\mathsf{light}), \widetilde{t} \to \mathsf{b}\widetilde{\chi}_{1}^{\pm} : 1/2 \, \mathsf{lep} \, (\mathsf{+} \, \mathsf{b} \mathsf{-jet}) \, \mathsf{+} \, \mathsf{E}_{T,\mathsf{miss}}^{T,\mathsf{miss}} \\ \widetilde{t}\widetilde{t} \, (\mathsf{medium}), \widetilde{t} \to \mathsf{b}\widetilde{\chi}_{1}^{\pm} : 1 \, \mathsf{lep} \, \mathsf{+} \, \mathsf{b} \mathsf{-jet} \, \mathsf{+} \, \mathsf{E}_{T,\mathsf{miss}}^{T,\mathsf{miss}} \\ \widetilde{t}\widetilde{t} \, (\mathsf{medium}), \widetilde{t} \to \mathsf{b}\widetilde{\chi}_{1}^{\pm} : 2 \, \mathsf{lep} \, \mathsf{+} \, \mathsf{E}_{T,\mathsf{miss}}^{T,\mathsf{miss}} \\ \widetilde{t}\widetilde{t} \, (\mathsf{heavy}), \widetilde{t} \to \mathsf{t}\widetilde{\chi}_{1}^{0} : 1 \, \mathsf{lep} \, \mathsf{+} \, \mathsf{b} \mathsf{-jet} \, \mathsf{+} \, \mathsf{E}_{T,\mathsf{miss}}^{T,\mathsf{miss}} \\ \widetilde{t}\widetilde{t} \, (\mathsf{heavy}), \widetilde{t} \to \mathsf{t}\widetilde{\chi}_{1}^{0} : 0 \, \mathsf{lep} \, \mathsf{+} \, \mathsf{6}(2\mathsf{b} \mathsf{-})\mathsf{jets} \, \mathsf{+} \, \mathsf{E}_{T,\mathsf{miss}}^{T,\mathsf{miss}} \\ \widetilde{t}\widetilde{t} \, (\mathsf{natural} \, \mathsf{GMSB}) : \mathsf{Z}(\to \mathsf{II}) \, \mathsf{+} \, \mathsf{b} \mathsf{-jet} \, \mathsf{+} \, \mathsf{E}_{T,\mathsf{miss}}^{T,\mathsf{miss}} \\ \widetilde{t}_{2}\widetilde{t}_{2}, \widetilde{t}_{2} \to \widetilde{t}_{1} \, \mathsf{+} \, \mathsf{Z} : \mathsf{Z}(\to \mathsf{II}) \, \mathsf{+} \, 1 \, \mathsf{lep} \, \mathsf{+} \, \mathsf{b} \mathsf{-jet} \, \mathsf{+} \, \mathsf{E}_{T,\mathsf{miss}}^{T,\mathsf{miss}} \\ \widetilde{t}_{2}\widetilde{t}_{2}, \widetilde{t}_{2} \to \widetilde{t}_{1} \, \mathsf{+} \, \mathsf{Z} : \mathsf{Z}(\to \mathsf{II}) \, \mathsf{+} \, 1 \, \mathsf{lep} \, \mathsf{+} \, \mathsf{b} \mathsf{-jet} \, \mathsf{+} \, \mathsf{E}_{T,\mathsf{miss}}^{T,\mathsf{miss}} \\ \widetilde{t}_{2}\widetilde{t}_{2}, \widetilde{t}_{2} \to \widetilde{t}_{1} \, \mathsf{+} \, \mathsf{Z} : \mathsf{Z}(\to \mathsf{II}) \, \mathsf{+} \, 1 \, \mathsf{lep} \, \mathsf{+} \, \mathsf{b} \mathsf{-jet} \, \mathsf{+} \, \mathsf{E}_{T,\mathsf{miss}}^{T,\mathsf{miss}} \\ \widetilde{t}_{2}\widetilde{t}_{2}, \widetilde{t}_{2} \to \widetilde{t}_{1} \, \mathsf{+} \, \mathsf{Z} : \mathsf{Z}(\to \mathsf{II}) \, \mathsf{+} \, 1 \, \mathsf{lep} \, \mathsf{+} \, \mathsf{b} \mathsf{-jet} \, \mathsf{+} \, \mathsf{E}_{T,\mathsf{miss}}^{T,\mathsf{miss}} \\ \mathsf{T}_{2}\widetilde{t}_{2}, \widetilde{t}_{2} \to \widetilde{t}_{1} \, \mathsf{+} \, \mathsf{Z} : \mathsf{Z}(\to \mathsf{II}) \, \mathsf{+} \, 1 \, \mathsf{lep} \, \mathsf{+} \, \mathsf{b} \mathsf{-jet} \, \mathsf{+} \, \mathsf{E}_{T,\mathsf{miss}}^{T,\mathsf{miss}} \\ \widetilde{t}_{2}\widetilde{t}_{2}, \widetilde{t}_{2} \to \widetilde{t}_{1} \, \mathsf{+} \, \mathsf{Z} : \mathsf{Z}(\to \mathsf{II}) \, \mathsf{+} \, 1 \, \mathsf{lep} \, \mathsf{+} \, \mathsf{b} \mathsf{-jet} \, \mathsf{+} \, \mathsf{E}_{T,\mathsf{miss}}^{T,\mathsf{miss}} \\ \widetilde{t}_{2}\widetilde{t}_{2}, \widetilde{t}_{2} \to \widetilde{t}_{1} \, \mathsf{+} \, \mathsf{Z} : \mathsf{Z}(\to \mathsf{II}) \, \mathsf{+} \, \mathsf{I} \, \mathsf{L} \, \mathsf{L} \, \mathsf{Z} \, \mathsf{L} \,$$

L=4.7 fb⁻¹, 7 TeV [1208.4305, 1209.2102] L=20.7 fb⁻¹, 8 TeV [ATLAS-CONF-2013-037] L=13.0 fb⁻¹, 8 TeV [ATLAS-CONF-2012-167] L=20.7 fb⁻¹, 8 TeV [ATLAS-CONF-2013-037] L=20.5 fb⁻¹, 8 TeV [ATLAS-CONF-2013-024] L=20.7 fb⁻¹, 8 TeV [ATLAS-CONF-2013-025]

13

Direct Stop results

Exclusive analysis published so far More exclusive analysis (Atlas-like) coming soon with full statistics

Direct Sbottom search

- Mass eigenvalues generated through the mixing of gauge eigenvalues
- Depending on the mixing matrix neutralinos and charginos may be wino-, bino- or higgsino- like
 - this affects the preferred decay mode through bosons (W,Z,H)
 - naturalness requires that the higgsino is light
- Depending of the mass hierarchy, chargino and neutralino decay can proceed either via sleptons or via SM boson
- Preferred signature for direct ewkino pair production is multilepton final state + ET^{miss}

NAMES	SPIN	GAUGE EIGENSTATES	MASS EIGENSTATES
Neutralinos	1/2	$\widetilde{B}^0, \widetilde{W}^0, \widetilde{H}^0_u, \widetilde{H}^0_d$	$\widetilde{\chi}^0_1, \widetilde{\chi}^0_2, \widetilde{\chi}^0_3, \widetilde{\chi}^0_4$
Charginos	1/2	$\widetilde{W}^{\star}, \widetilde{H}^{+}_{u}, \widetilde{H}^{-}_{d}$	$\widetilde{\chi}_1^{\pm},\widetilde{\chi}_2^{\pm}$

EWKino search

ATLAS-CONF-2013-035

Limits drawn in simplified models scenario with decay either via slepton and gauge boson

Italian SUSY group: Lecce, Milano, Pavia, Udine

- working together since few years as a group (regular weekly meeting, mailing list and • twiki page for info sharing)
- different experience and competence complements each other •
- well integrated in the DirectStop subgroup (T. Lari convener of the subgroup) •
- 2-lepton signature investigated ٠

Paper & conf note

Search for a heavy top-quark partner in final states with two leptons with the ATLAS detector at the LHC - JHEP11(2012)094 - Sept. 2012 top+neutralino, 7TeV, 4.7 fb⁻¹

Search for a supersymmetric top-quark partner in final states with two leptons in sqrt(s) = 8 TeVpp collisions using 13 fb⁻¹ of ATLAS data - ATLAS-CONF-2012-167 - Dec.2012 b+chargino

Update of the analysis for 20 fb⁻¹ to be shown at LHCp, results still embargoed

Italian contrib. to ATLAS natural SUSY search

* Sensitive to direct stop pair production, with stop decaying in $\tilde{t_1} \rightarrow b \tilde{\chi}_1^{\pm} \rightarrow b l \nu \tilde{\chi}_1^0$ on both legs (2-lep OS signature)

* Main backgrounds:

- * tt, dibosons
- * fake or non isolated lepton, tt+W/Z, Wt, Z+jet

Selection mainly based on mT2

 $m_{T2}(\mathbf{p}_{T}^{\ell_{1}}, \mathbf{p}_{T}^{\ell_{2}}, \mathbf{p}_{T}^{miss}) = \min_{\mathbf{q}_{T}+\mathbf{r}_{T}=\mathbf{p}_{T}^{miss}} \left\{ \max[m_{T}(\mathbf{p}_{T}^{\ell_{1}}, \mathbf{q}_{T}), m_{T}(\mathbf{p}_{T}^{\ell_{2}}, \mathbf{r}_{T})] \right\}$ 4 different signal regions (m_{T2}> 90, 100, 110)

2 channels (same and different flavor of the lepton)

updated to 21 fb-1 - results not yet public

G. Gaudio M. Pierini- VI Workshop Italiano sulla Fisica p-p a LHC - May 8-10th, 2013

- Huge effort in addressing search for natural SUSY search
 - ✤ 3rd generation squark in either direct or gluino mediated production
 - EWKinos
- Most of the analysis have been already updated with the full 2012 data statistic
 - Some new results at various stage of the approval procedure both analysis update and new analysis
- No evidence found so far, limits mostly drawn in simplified model scenario
- Large fraction of the analysis optimized using simplified models:
 - check that all possible model grids are covered
 - try to cover the "holes" as much as possible
- + Looking for signals in the tails: higher statistic and higher \sqrt{s} will help
 - Start thinking about 13 TeV analysis
- Large phase-space of the SUSY models still uncovered
 - Still a lot of work to do

Backup slides

Analysis Details ATLAS

* Sensitive to direct stop pair production $\tilde{t_1}\tilde{t_1} \rightarrow (t\tilde{\chi}_1^0)(t\tilde{\chi}_1^0)$

with top decaying fully hadronic

ATLAS-CONF-2013-24

* Main backgrounds:

21 fb⁻¹@ 8 TeV

- * semilep tt (lepton mis-id), $Z(\rightarrow \nu\nu)$ +HF, tt+ $Z(\rightarrow \nu\nu)$
- * QCD multijets,W/Z+jets, W+HF, tt+W(W), dibosons

ET^{miss} trigger: ET^{miss} >130 GeV

Request of

- ★ at least 6 jets (pT > 80, 80, 35, 35, 35, 35 GeV)
- 2 b-tagged jets

Three Signal region based on E_T^{miss} (200, 300, 350 GeV)

* Sensitive to direct stop pair production with both stop decaying either

$$\tilde{t_1} \to t \tilde{\chi}_1^0 \text{ or } \tilde{t_1} \to b \tilde{\chi}_1^{\pm} \quad (\tilde{\chi}_1^{\pm} \to W^{(*)} \tilde{\chi}_1^0)$$

(two different simplified model, BR 100%)

- * Main background:
 - * dilep tt (llepton mis-id, ouside acceptance, hadronically decaying τ lep)

6 SR:

- 3 for top-neutralino scenarion +
- 3 for b+chargino scenario)

signature: | lepton + jets + E_T^{miss} quite complex event selection:

- using combination of b-tagging, E_T^{miss},
- $E_T^{miss}/\sqrt{H_T, m_{T2}, m_{eff}, H_T}$
- shape-fit in (m_T-E_T^{miss})

G. Gaudio M. Pierini– VI Workshop Italiano sulla Fisica p-p a LHC – May 8–10th, 2013

ATLAS-CONF-2013-037

700

600

500

400

300

200

L dt = 20.7 fb⁻¹, √s=8 TeV

m, [GeV]

700

Observed limit (±1 σsus

Expected limit (±1 o...

All limits at 95% CL

600

21 fb⁻¹@ 8 TeV

with stop mass

Events / 30 GeV

10

1

10

Data/SM

ATLAS

Preliminary

L dt = 20.7 fb⁻¹ 3-lepton SR3L1

ATLAS-CONF-2013-25

- interpreted both in

Sensitive to direct stop pair production

 $m(\tilde{t_1}) \ge m(t) + m(\tilde{\chi}_1^0)$

Data 2012 (
 √s = 8 TeV)

 $\tilde{t}_2 \tilde{t}_2$ (m, =500 GeV, m_=20 GeV)

SM Background

tf+V

Diboson

Fake-lepton

- Looking for signature with 2-3 lep + b + ET^{miss}
 - + m(ll) = m(Z)

ATLAS Direct Stop search (Z+bjet)

- Main background:
 - dilep tt, Z+jets (2-lep)
 - tt+Z, di- and tri-boson, fake lepton (3-lep)

[GeV] °

350

300

250

200

150

100

50F

300

 $\tilde{t}_2 - \tilde{t}_2$ production, $\tilde{t}_2 \rightarrow Z \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2$

L dt = 20.7 fb⁻¹, √s=8 TeV

 $m_{\tilde{t}} = m_{\tilde{v}^0} + 180 \text{ GeV}$

400

ATLAS-CONF-2013-025

500

AS Preliminary

◆ 5 SR: E^{T^{miss}} and p^T(II) selection

Observed limit (±1 osusy)

ATLAS 2.0 fb⁻¹, √s=7 Te\

Expected limit (±1 σexp

25

600

 $m_{\widetilde{\chi}^0_{\rho},\,\widetilde{\chi}^\pm_{\tau}}^{70}$ [GeV]

700

500

400

3 Z-enriched (Z on-shell decay)

- Selection based on
 - Image + m(II), b-veto, m_T, E_T^{miss},

ATLAS-CONF-2013-035

250

200

300

350

 $m_{\tilde{\chi}^0_s, \tilde{\chi}^\pm}$ [GeV]

400

Expected limit ($\pm 1 \sigma_{_{PVP}}$)

ATLAS Preliminary

 $v_{s} = 8 \text{ TeV}$ L dt = 20.7 fb⁻¹

SRZc

SM

200

150

100

50

100

150

.1 Jata/

ATLAS Preliminary

 $\widetilde{\chi}^{\pm}_{\cdot} \widetilde{\chi}^{0}_{\cdot} \rightarrow W^{(*)} \widetilde{\chi}^{0}_{\cdot} Z^{(*)} \widetilde{\chi}^{0}_{\cdot}$

L dt = 20.7 fb⁻¹, vs=8 TeV

ATLAS-CONF-2013-035

✓ Total SM

Reducible

E^{miss} [GeV]

[GeV]

_ = 500 −

300

200

100

100

200

Dibosons Tribosons tī V • χ[±] χ⁰ via WZ 250, 0 SRnoZc SM

ATLAS Preliminary

 $\widetilde{\chi}^{\pm}_{-}\widetilde{\chi}^{0}_{-} \rightarrow \widetilde{I}_{+} \vee \widetilde{I}_{+} | (\widetilde{\nu} \vee), | \widetilde{\nu} \widetilde{I}_{+} | (\widetilde{\nu} \vee)$

→ lv χ̃° l l (v v) χ̃

ATLAS-CONF-2013-035

ATLAS-CONF-2013-035

ATLAS 13.0 fb⁻¹ vs = 8 TeV

L dt = 20.7 fb⁻¹, \sqrt{s} =8 TeV ---- Expected limit (±1 σ_{exp})

ATLAS-CONF-2013-35 ATLAS Direct EWKino search (3lep)

 $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow (l^+ \nu \tilde{\chi}_1^0) (l^+ l^- \tilde{\chi}_1^0)$

- decay can proceed either via slepton or bosons (only W,Z considered in the simplified model)
- ✦ looking for 3-lep + E^{Tmiss} final state
- Main background:

21 fb⁻¹@ 8 TeV

- \bullet reducible (fakes) : tt, Wt, WW, Z/W+jet/Y
- ✦ irreducible: di- and tri- boson, tt+W/Z

6 SR (targetting different neutralino decays):

3 Z-depleted (Z off-shell or slepton decay)

* Sensitive to direct sbottom pair production

 $\tilde{b_1}\tilde{b_1} \to (b\tilde{\chi}^0_1)(b\tilde{\chi}^0_1)$ with different kinematics driven by:

$$\Delta m = m_{\tilde{b_1}} - m_{\tilde{\chi_1^0}}$$

- * Main backgrounds:
 - * tt, W+HF, $Z(\rightarrow vv)$ +HF, QCD multijet

* tt+W/Z, tt+bb

Selection based on lepton veto, $E_{T}{}^{miss}$, b-tagging, $E_{T}{}^{miss}/m_{eff}\,m_{CT},\,H_{T}$

$$m_{CT}^2(v1, v2) = (E_T(v1) + E_T(v2))^2 - (\mathbf{p}_T(v1) - \mathbf{p}_T(v2))^2$$

 m_{CT} in bounded from above by

$$M_{CT}^{MAX} = \frac{m^2(\tilde{b}) - m^2(\tilde{\chi}_1^0)}{m(\tilde{b})}$$

no excess observed →limits Simplified model scenario:

$m(\tilde{\chi}_1^0) < 150 ~GeV$	$m(\tilde{b}_1) > 620 \ GeV$
$m(\tilde{b}_1) \sim 550 \ GeV$	$m(\tilde{\chi}_1^0) > 320~GeV$
$m(\tilde{b}_1) < 300 \ GeV$	$\Delta m(\tilde{b}_1, \tilde{\chi}_1^0) < 40 \ GeV$

update to 21 fb-1 ongoing

Analysis Details CMS

19 fb-1 $\mathcal{M}ULTI(B)JET+\mathcal{M}ET SUS-12-024$

Kinematic plane binned in 4x4 regions in slices of btag multiplicity

Bin	H _T (GeV)	E _T ^{miss} (GeV)
1	400 – 500 (HT1)	125 – 150 (MET1)
2	500 – 800 (HT2)	150 – 250 (MET2)
3	800 – 1000 (HT3)	250 – 350 (MET3)
4	> 1000 (HT4)	> 350 (MET4)

19 fb-1 $\mathcal{M}ULTI(B)JET+\mathcal{M}ET SUS-12-024$

ZL = Zero Lepton;	<i>SL</i> = Single Lepton;	LDP = low $\Delta \widehat{\phi}_{min}$;	Zee = $Z \rightarrow e^+e^-$;	Zmm = $Z \rightarrow \mu^+\mu^-$;
Signal sumple	sample	sample	sample	sample

Bkg predicted from data control samples x scal factors, bin by bin in 3D space (HT vs MET vs btag)

Signal contamination in SL reduced with mT cut and taken into account when not negligible Other control samples defined signal free $N_{b-jet} \ge$

 E_{τ}^{miss} axis

 E_{τ}^{miss} axis

 E_{τ}^{miss} axis

19 fb-1 $\mathcal{M}ULTI(B)JET+\mathcal{M}ET SUS-12-024$

- After α_T cut the signal looks similar to bkg in α_T
- another variable needs to be used to characterize the signal
- Back to the "classic" paradigm": signal as a tail on H_T used by CMS

- α_{T} = 0.5 for perfectly balanced dijet events
- $\alpha_T < 0.5$ for dijet + mismeasurements
- EW main bkg after α_T cut
- QCD events could leak to α_T>0.5 because of detector effects (rare)
- large fraction of signal events removed (efficiency vs purity)

α_T: BKG Estimate

• EW bkg is estimated using the $R_{\alpha T}$ (*) ratio

$$R_{\alpha_{\rm T}} = N^{\alpha_{\rm T} > \theta} / N^{\alpha_{\rm T} < \theta}$$

- This is computed scaling the pT of the jets with the HT threshold, to event topology
- The ratio is found to be compatible with the flat hypothesis within the available data and SM MC statistics

• This is used to predict the bkg expected in each bin of HT. Then a fit to the HT shape is used

(*) Number of EW events with $\alpha T > \theta$ / number of QCD events with $\alpha T < \theta$

- The prototype process is
 squark-squark -> jj + 2 LSP
- If we could put the squarks in their rest
 frames, we would see two
 jest with same |p|

$$M_{\Delta}\equiv rac{M_{ ilde{q}}^2-M_{ ilde{\chi}}^2}{M_{ ilde{q}}}=2M_{ ilde{\chi}}\gamma_{\Delta}eta_{\Delta}$$

- We observe the jets in the Lab frame, boosted by relative squark momentum and partons boost
- We would like to undo the two boosts

The Razor

- In reality, the best we can do is to compensate the missing degrees of freedom with assumptions on the boost direction
- The parton boost is forced to be longitudinal
- The squark boost in the CM frame is assumed to be transverse
- We require that the two jets have the same momentum after the transformation, and we solve for the boost
- The transformed momentum defines the MR variable

$$M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$$

The Razor

- MR is boost invariant, even if defined from 3D momenta
- No information on the MET is used
- \bullet The peak of the M_R distribution provides an estimate of M_A
- M_{Δ} could be also estimated as "edge" of M_{T}^{R}

$$M_T^R \equiv \sqrt{rac{E_T^{miss}(p_T^{j1} + p_T^{j2}) - ec{E}_T^{miss} \cdot (ec{p}_T^{j1} + ec{p}_T^{j2})}{2}}$$

- MTR is defined using transverse quantities and it is MET-related
- The Razor (aka R) is defined as the ratio of the two variables

Cut & Count Approach

 $t \to Wb$

The contransverse mass (MCT) and stransverse mass (MT2) show end points at approximately:

$$M_{CT}^{MAX}(l_1, l_2) = \frac{m^2(W) - m^2(\nu)}{m(W)} = 80.4 GeV$$
$$M_{CT}^{MAX}(b_1, b_2) = \frac{m^2(t) - m^2(W)}{m(t)} = 135.0 GeV$$

In stop decay one has two invisible particles among the — upstream particles and two among the downstream particles. Both classes of particles are summed up in MET

Exclusion limits : a new standard ATLAS/CMS procedure (>June 2012)

• Ease the life of theorist by separating the signal theoritical and experimental systematics

 $\begin{array}{c} \widetilde{g} \cdot \widetilde{g} \text{ production}, \widetilde{g} \rightarrow t^{T} \widetilde{\chi}_{1}^{0} \\ \end{array}$

\rightarrow Number quoted in paper correspond to observed -1 σ observed (conservative)

G.

Summary ATLAS searches

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 26, 2013)

	MSUGRA/CMSSM: 0 lep + J'S + $E_{T,miss}$	L=5.8 fb ⁻ , 8 TeV [ATLAS-CONF-2012-109]	4.50 TeV $q = g$ mass	
	$Phone model : 0 lon + i's + E_{T,miss}$	L=5.8 fb ⁻ , 8 TeV [ATLAS-CONF-2012-104]	$1.24 \text{ TeV} \mathbf{q} = \mathbf{g} \text{ Inlass} \qquad \mathbf{\Delta T} \mathbf{I} \mathbf{\Delta S}$	
es	Pheno model : 0 lop + $JS + E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV g Tildss $(m(q) < 2 \text{ TeV}, \text{light}_{\chi_1})$	
rch	Chains mod $\tilde{\tau}^{\pm}$ $(\tilde{\sigma} = \sigma \tilde{\tau}^{\pm})$ if log τ is τ	L=5.8 fD , 8 lev [AILAS-CONF-2012-109]		
еа	Giuno med. χ (g \rightarrow qq χ): Tiep + J's + E _{T,miss}	L=4.7 fb ⁻ , 7 lev [1208.4688]	900 GeV g IIIdSS $(m(\chi_1) < 200 \text{ GeV}, m(\chi^2) = \frac{1}{2}(m(\chi_1) + m(g))$	
0 U	GMSB (INLSP): 2 Iep (US) + JS + E GMSB $(\tilde{\tau} \text{ NI SP})$: 1-2 τ + is + $E^{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	1.24 IeV 9 IIIdSS ($tah\beta < 15$)	
sive	GGM (bino NI SP) : 1-2 t + JS + E	L=20.7 fb , 8 TeV [1210.1314]	1.40 lev \mathbf{y} (lidss $(\tan\beta > 18)$	
snk	GGM (wino NI SP) : $y + lep + E^{T,miss}$	L=4.8 fb , 7 lev [1209.0753]	$Ldt = (4.4 - 20.7) \text{ fb}^{-1}$	
lnc	GGM (higgsino-bino NI SP) : $y + b + E^{T,miss}$	L=4.8 ID , 7 IEV [AILAS-CONF-2012-144]	$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$	
	$CCM (higgsino billo NEO) : 7 + ioto + E^{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [1211.1167]	$\widetilde{g}_{000} \text{ GeV} g \text{ IIIdss} (m(\chi_1) > 220 \text{ GeV})$ $\widetilde{g}_{1000} = 7, 8 \text{ TeV}$	
	GOW (HIGGSHO NLOF) . $Z + Jets + E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-152]	$F_{1/2} = F_{1/2} = F_{1$	
~		L=10.5 fb ⁻¹ , 8 TeV TATLAS-CONF-2012-14/1	$\frac{1}{2} \frac{1}{2} \frac{1}$	-
en. So tec	$g \rightarrow DD\chi$: 0 lep + 3 D-J'S + $E_{T,miss}$	L=12.8 fb , 8 lev [AILAS-CONF-2012-145]	1.24 TeV g findss $(m(\chi_1) < 200 \text{ GeV})$ 8 TeV all 2012 data	
l ge luir dia	$g \rightarrow i \chi$. 2 33-iep + (0-3D-)] S + $E_{T,miss}$	L=20.7 fB , 8 lev [AILAS-CONF-2013-007]	900 GeV g mass (any $m(\chi_1)$) C to 1, an 2012 data	
3ra gi nei	$g \rightarrow tt_{\chi}^{0}$: 0 lop + 110tt-15 + $E_{T,miss}$	L=3.8 ID , 8 IEV [AILAS-CONF-2012-103]	$(m(\chi_1) < 300 \text{ GeV})$ 8 TeV, partial 2012 dat	ta
	$g \rightarrow it \chi$. 0 lep + 3 b $JS + L_{T,miss}$	L=12.8 ID , 8 IEV [ATLAS-CONF-2012-145]	$(m(\chi_1) < 200 \text{ GeV})$	
(0 0	$DD, D_1 \rightarrow D\chi$. 0 lep + 2-D-Jets + $E_{T,miss}$	L=12.8 fb , 8 lev [AILAS-CONF-2012-165]	7 Iev, all 2011 Udid	
tior	$UD, D_1 \rightarrow t \chi$ $Z = 2 - 16 \mu + (0 - 5 D -)J + E_{T,miss}$	L=20.7 ID , 8 IEV [A1LAS-CONF-2013-007]	$m(\chi_1) = 2 m(\chi_1)$	
luci	$\begin{array}{c} \text{ff} (\text{light}), \ l \rightarrow b_{\chi} \\ \text{ff} (\text{medium}) \\ \ l \rightarrow b_{\chi}^{\pm} \\ \text{ff} \\ \text{ind} \\$	L=4.7 m , 7 rev [1200.4305, 1209.2102] 107	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	
sc	\widetilde{tt} (medium), $\widetilde{t} \to b\widetilde{x}^{\pm}$: 2 len $\pm F$	L=20.7 ID , 8 TEV [AT LAS-CONF-2013-037]	$\frac{160-410 \text{ GeV}}{100-210} \text{ tmass} (m(\chi_1) = 0 \text{ GeV}, m(\chi_1) = 150 \text{ GeV})$	
pr.	\widetilde{tt} (heavy) \widetilde{t} $\times \widetilde{ts}^0$: 1 lop + b int + E	L=13.0 ID , 8 IEV [ATLAS-CONF-2012-16/]	$m(\chi_1) = 0$ GeV, $m(\chi_1) = 0$ GeV, $m(\chi_1) = 10$ GeV)	
ect act	\widetilde{t} (heavy), $\widetilde{t} \rightarrow t\widetilde{x}^0$: 0 lop + 6(2b-)jets + E	L=20.7 ID, 8 TeV [AT LAS-CONF-2013-037]	$\frac{1}{200-610} \frac{1}{400} \frac{1}{1000} \frac{1}{10000} = 0$	
3rc dir	ff (natural GMSB) : $7(\rightarrow II) + b - iet + F$	L=20.5 fb ⁻¹ 8 TeV [ATLAS-CONF-2013-024]	500 GeV T MASS $(m(\chi_1) = 0)$	
	$\tilde{t} \tilde{t} \rightarrow \tilde{t} + 7 \cdot 7 (\rightarrow II) + 1 \text{ lep } + \text{ b-iet } + F^{T,\text{miss}}$	(_20.7 fb ⁻¹ 8 ToV [ATLAS_CONE_2012_025]	520 GeV $t \mod t $	
	11 hop 12 log + F	$L = 20.1 \text{ m}^{-1}$ 7 TeV [412A3-CONT-2013-023]	$\sim m(c_1) = m(\chi_1) + 100 \text{ dev}$	
ţ	$\widetilde{\mathbf{x}}^{\dagger}\widetilde{\mathbf{x}}^{\dagger} \rightarrow \widetilde{\mathbf{h}}_{\mathcal{L}}(\widetilde{\mathbf{x}}) : 2 \text{ lep } + \mathbf{E}$	/=4.7 fb ⁻¹ .7 TeV [1208.2884]	110-340 GeV $\widetilde{\chi}^{\pm}$ mass $(m\widetilde{\chi}^{0}) < 10 \text{ GeV} m\widetilde{\chi}^{0} = \frac{1}{2} (m\widetilde{\chi}^{0}) + m\widetilde{\chi}^{0})))$	
N De	$\vec{\chi} \cdot \vec{\chi} \cdot \vec{\chi}^+ \rightarrow \vec{\tau} \gamma (\tau \vec{\gamma}) : 2\tau + E$	L=20.7 fb ⁻¹ . 8 TeV [ATLAS-CONF-2013-028]	180-330 GeV $\widetilde{\chi}^{\pm}$ MASS $(m(\widetilde{\chi}^0) < 10 \text{ GeV}, m(\widetilde{\chi}^0) = \frac{1}{2}(m(\widetilde{\chi}^\pm) + m(\widetilde{\chi}^0)))$	
ш i	$\widetilde{\chi}^{\pm}\widetilde{\chi}^{0} \rightarrow \widetilde{[} \vee \widetilde{[} (\widetilde{\nabla} \vee), \widetilde{\nabla} \widetilde{[} (\widetilde{\nabla} \vee) : 3 \text{ lep } + E^{T, \text{miss}}$	L=20.7 fb ⁻¹ . 8 TeV [ATLAS-CONF-2013-035]	600 GeV $\widetilde{\chi}^{\pm}$ Mass $(m(\widetilde{\chi}^{\pm}) = m(\widetilde{\chi}^{0}), m(\widetilde{\chi}^{0}) = 0, m(\widetilde{\chi})$ as above)	
	$\widetilde{\gamma}_{1}^{\pm}\widetilde{\gamma}_{2}^{\pm}\widetilde{\gamma}_{1}^{\pm} \rightarrow W^{(*)}\widetilde{\gamma}_{2}^{-}Z^{(*)}\widetilde{\gamma}_{1}^{0} \cdot 3 \operatorname{lep} + F_{-}^{T,\operatorname{miss}}$	L=20.7 fb ⁻¹ . 8 TeV [ATLAS-CONF-2013-035]	315 GeV $\tilde{\chi}^{\pm}$ MASS $(m\tilde{\chi}^{\pm}) = m\tilde{\chi}^{0}$, $m\tilde{\chi}^{0}_{2} = 0$, sleptons decoupled)	
a	Direct χ^{-} pair prod. (AMSB) : long-lived χ^{-}	L=4.7 fb ⁻¹ , 7 TeV [1210.2852]	220 GeV χ_{-}^{-} Mass $(1 < \tau(\chi_{-}^{-}) < 10 \text{ ns})$	-
Ve es	Stable \tilde{g} . R-hadrons : low β . $\beta\gamma$	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	985 GeV g mass	
g-li tici	GMSB, stable $\tilde{\tau}$: low β	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	300 GeV $\tilde{\tau}$ MASS (5 < tan β < 20)	
on	GMSB, $\tilde{\chi}^0 \rightarrow \gamma \tilde{G}$: non-pointing photons	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2013-016]	230 GeV $\tilde{\chi}_{4}^{0}$ MASS (0.4 < $\tau(\tilde{\chi}_{4}^{0})$ < 2 ns)	
	$\tilde{\chi}^0 \rightarrow qq\mu (RPV)^1: \mu + heavy displaced vertex$	L=4.4 fb ⁻¹ , 7 TeV [1210.7451]	700 GeV \tilde{q} mass (1 mm < c τ < 1 m, \tilde{g} decoupled)	
	LFV : pp $\rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$ resonance	L=4.6 fb ⁻¹ , 7 TeV [1212.1272]	1.61 TeV $\tilde{\nu}_{\tau}$ Mass $(\lambda'_{311}=0.10, \lambda_{132}=0.05)$	
	LFV : pp $\rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ resonance	L=4.6 fb ⁻¹ , 7 TeV [1212.1272]	1.10 TeV \widetilde{V}_{τ} MASS $(\lambda'_{311}=0.10, \lambda_{1/2 33}=0.05)$	
>	Bilinear RPV CMSSM : 1 lep + 7 j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-140]	1.2 TeV $\widetilde{q} = \widetilde{g}$ mass ($c\tau_{LSP} < 1 \text{ mm}$)	
5	$\widetilde{\chi}_{4}^{+}\widetilde{\chi}_{4}^{-}, \widetilde{\chi}_{4}^{+} \rightarrow W \widetilde{\chi}_{4}^{0}, \widetilde{\chi}_{4}^{0} \rightarrow eev_{\mu}, e\muv_{\mu} : 4 lep + E_{T.miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-036]	760 GeV $\widetilde{\chi}_{1}^{+}$ MASS $(m(\widetilde{\chi}_{1}^{0}) > 300 \text{ GeV}, \lambda_{121} > 0)$	
4	$\widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-},, \widetilde{\chi}_{1}^{+} \rightarrow \tau \tau v_{e}, e \tau v_{\tau} : 3 \text{ lep} + 1\tau + E_{T \text{ miss}}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-036]	350 GeV $\widetilde{\chi}_1^+$ MASS $(m(\widetilde{\chi}_1^0) > 80 \text{ GeV}, \lambda_{133} > 0)$	
	$\tilde{g} \rightarrow qqq$: 3-jet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4813]	666 GeV g mass	
	$\tilde{g} \rightarrow tt, t \rightarrow bs : 2 SS-lep + (0-3b-)j's + E_{T miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	880 GeV \widetilde{g} mass (any $m(\widetilde{t})$)	
14/18	Scalar gluon : 2-jet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4826]	100-287 GeV SGIUON MASS (incl. limit from 1110.2693)	
VVIN	True raction (D5, Dirac χ): "monojet" + E	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	704 GeV M* SCale $(m_{\chi} < 80 \text{ GeV}, \text{ limit of } < 687 \text{ GeV for D8})$	
		10 ⁻¹	1 10	

Mass scale [TeV]

40

Chiral supermultiplet

Names		Spin 0	Spin $\frac{1}{2}$
Squarks,quarks (× 3 families)	Q ū d	$ \begin{pmatrix} \widetilde{u}_L & \widetilde{d}_L \end{pmatrix} \\ & \widetilde{u}_R^* \\ & \widetilde{d}_R^* \end{pmatrix} $	$\begin{pmatrix} u_L & d_L \\ u_R^T \\ d_R^T \end{pmatrix}$
Sleptons, leptons (x 3 families)		$egin{pmatrix} \widetilde{m{arepsilon}}_L & \widetilde{m{arepsilon}}_L \ \widetilde{m{arepsilon}}_R^* & \widetilde{m{arepsilon}}_R^* \end{pmatrix}$	$\begin{pmatrix} v & e_L \end{pmatrix} \\ e_R^T \end{pmatrix}$
Higgs, higgsinos	$egin{array}{c} H_u \ H_d \end{array}$	$egin{pmatrix} egin{pmatrix} H^+_u & H^0_u \ egin{pmatrix} H^0_d & H^d \end{pmatrix} \end{split}$	$egin{pmatrix} \widetilde{H}_u^+ & \widetilde{H}_u^0 \ \widetilde{H}_d^0 & \widetilde{H}_d^- \end{pmatrix}$

Gauge supermultiplet

Names	Spin $\frac{1}{2}$	Spin 1
Gluino, gluons	کم	\boldsymbol{g}
Winos, W bosons	${\widetilde W}^{\pm}{\widetilde W}^{0}$	$W^{\pm} W^{0}$
Bino, B boson	\widetilde{B}^{0}	B^0

NAMES	SPIN	GAUGE EIGENSTATES	MASS EIGENSTATES
Neutralinos	1/2	$\widetilde{B}^0, \widetilde{W}^0, \widetilde{H}^0_u, \widetilde{H}^0_d$	$\widetilde{oldsymbol{\chi}}_1^0, \widetilde{oldsymbol{\chi}}_2^0, \widetilde{oldsymbol{\chi}}_3^0, \widetilde{oldsymbol{\chi}}_4^0$
Charginos	1/2	$\widetilde{W}^{\star}, \widetilde{H}^{\star}_{u}, \widetilde{H}^{-}_{d}$	$\widetilde{\chi}_1^{\pm},\widetilde{\chi}_2^{\pm}$