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PART 1
What data say on the new boson
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“It has to do with the EWSB”

Already first data gave evidence of:

True in the SM:
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“It has to do with the EWSB”

Already first data gave evidence of:

True in the SM:

Scaling                         follows naturally if 
the new boson is part of the sector that 
breaks the EW symmetry 

It does not necessarily imply that the new 
boson is part of an SU(2)L doublet

coupling ∝ mass

Ex: composite NG boson in TC

For a non-doublet 
one naively expects:
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“It looks like a doublet”
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The new boson does not look an impostor 
at all, it closely resembles the SM Higgs

New data show an agreement with 
the SM prediction within ~20%-30%:



µ = 1.30± 0.20

µ = 0.80± 0.14
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The new boson does not look an impostor 
at all, it closely resembles the SM Higgs

New data show an agreement with 
the SM prediction within ~20%-30%:

Experimental evidence based on 
many detailed analyses:
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The new boson does not look an impostor 
at all, it closely resembles the SM Higgs

New data show an agreement with 
the SM prediction within ~20%-30%:

Experimental evidence based on 
many detailed analyses:

 Overall compatibility with SM 

 Decay rates
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The new boson does not look an impostor 
at all, it closely resembles the SM Higgs

New data show an agreement with 
the SM prediction within ~20%-30%:

Experimental evidence based on 
many detailed analyses:

 Overall compatibility with SM 

 Decay rates

 Production rates
SM B/B× 

ggF+ttH
µ

-2 -1 0 1 2 3 4 5 6 7 8

SM
 B

/B
× 

VB
F+

VH
µ

-4

-2

0

2

4

6

8

10

Standard Model
Best fit
68% CL
95% CL

 H 
 4l (*) ZZH 

l l (*) WWH 
 H 

PreliminaryATLAS 
-1Ldt = 4.6-4.8 fb = 7 TeV:  s
-1Ldt = 13-20.7 fb = 8 TeV:  s

 = 125.5 GeVHm

ggH,ttH
µ

-1 0 1 2 3

VB
F,

VH
µ

0

2

4

6
 H 
 WWH 
 ZZH 
 bbH 
 H 

CMS Preliminary -1 19.6 fb = 8 TeV, L s  -1 5.1 fb = 7 TeV, L s

SM B/B× 
ggF+ttH
µ

-2 -1 0 1 2 3 4 5 6 7 8

SM
 B

/B
× 

VB
F+

VH
µ

-4

-2

0

2

4

6

8

10

Standard Model
Best fit
68% CL
95% CL

 H 
 4l (*) ZZH 

l l (*) WWH 
 H 

PreliminaryATLAS 
-1Ldt = 4.6-4.8 fb = 7 TeV:  s
-1Ldt = 13-20.7 fb = 8 TeV:  s

 = 125.5 GeVHm

SM B/B× 
ggF+ttH
µ

-2 -1 0 1 2 3 4 5 6 7 8

SM
 B

/B
× 

VB
F+

VH
µ

-4

-2

0

2

4

6

8

10

Standard Model
Best fit
68% CL
95% CL

 H 
 4l (*) ZZH 

l l (*) WWH 
 H 

PreliminaryATLAS 
-1Ldt = 4.6-4.8 fb = 7 TeV:  s
-1Ldt = 13-20.7 fb = 8 TeV:  s

 = 125.5 GeVHm



ggF+ttH
µ / 

VBF
µ

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

-2
 ln

 

0

2

4

6

8

10

12

14

combined
SM expected

PreliminaryATLAS 
-1Ldt = 4.6-4.8 fb = 7 TeV:  s
-1Ldt = 13-20.7 fb = 8 TeV:  s

 = 125.5 GeVHm

VH
µprofiled 

“It looks like a doublet”

8

The new boson does not look an impostor 
at all, it closely resembles the SM Higgs

New data show an agreement with 
the SM prediction within ~20%-30%:

Experimental evidence based on 
many detailed analyses:

 Overall compatibility with SM 

 Decay rates

 Production rates

Dependence on production isolated by taking 
ratios of production modes channel by channel

3σ 
evidence 
of VBF
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The new boson does not look an impostor 
at all, it closely resembles the SM Higgs

New data show an agreement with 
the SM prediction within ~20%-30%:

Experimental evidence based on 
many detailed analyses:

 Overall compatibility with SM 

 Decay rates

 Production rates

 Global fit on couplings
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The focus now is on a region of the 
parameter space around the SM point
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The focus now is on a region of the 
parameter space around the SM point

This is a natural region to live if:

1. The new boson is part of an SU(2)L doublet

2. There is a gap between the NP scale and mH

= Higgs coupling
strength

“It looks like a doublet”
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The focus now is on a region of the 
parameter space around the SM point

This is a natural region to live if:

1. The new boson is part of an SU(2)L doublet

2. There is a gap between the NP scale and mH

= Higgs coupling
strength

the SM point is the only one in 
which the low-energy theory is 
renormalizable and weakly 
coupled up to high energies

Notice:

“It looks like a doublet”



gHδc

cSM

∼ g2
H
v2

M2

δc

cSM
� 0.2 M � gH × 550GeV

10

  V
0 0.5 1 1.5

f

-2

-1

0

1

2

95% C.L.

b bH 

  H 

 ZZH 

 W
W

H 

  
H 

CMS Preliminary -1 19.6 fb = 8 TeV, L s  -1 5.1 fb = 7 TeV, L s

SM Higgs Fermiophobic Bkg. only
The focus now is on a region of the 
parameter space around the SM point

This is a natural region to live if:

1. The new boson is part of an SU(2)L doublet

2. There is a gap between the NP scale and mH

= Higgs coupling
strength

×

the SM point is the only one in 
which the low-energy theory is 
renormalizable and weakly 
coupled up to high energies

Notice:

living in any other point requires
either light NP or strong dynamics
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The focus now is on a region of the 
parameter space around the SM point

This is a natural region to live if:

1. The new boson is part of an SU(2)L doublet

2. There is a gap between the NP scale and mH

×

living in any other point requires
either light NP or strong dynamics

“It looks like a doublet”

M ≈ 4πv

Theories w/o a Higgs boson or with 
strong dynamics at low scale are now 
excluded

Conclusion:

Ex:   TC and CH with 
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“Didn’t we know already from LEP ?”

Not quite so: 1. evidence was indirect (through loops)

2. only hZZ coupling and mH constrained
Z
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“Didn’t we know already from LEP ?”

Not quite so: 1. evidence was indirect (through loops)

2. only hZZ coupling and mH constrained
Z

In fact:

Most recent EW fit much more 
stringent than before due to:

- mH now precisely known

- new mW from Tevatron

Precision on cV at the level of ~5% !

M. Ciuchini, E. Franco, L. Silvestrini, S. Mishima, to appear 

courtesy of S. Mishima

[ Assuming no extra contribution to
  EWPO from new particles ] 
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If one assumes that

1. The new boson is part of an SU(2)L doublet

2. There is a gap between the NP scale and mH

then it must follow:
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    has spin 0

    is (mostly) CP=+
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    has spin 0

    is (mostly) CP=+

 There exists a correlation among 
processes with 0,1,2 Higgs bosons

h
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cW
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All these independent tests 
important to confirm the picture 
but their success comes less of a 
surprise given the fits on couplings

there’s no reason why a JP=0- boson 
should have SM coupling strength

Ex:  

vs



PART 2
Implications on BSM models
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Only two regions in the           plane 
accessible in a generic Type-II 2HDM 

Down-Suppressed region almost not 
accessible in the MSSM for tanβ > 1
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We discuss the role that Higgs coupling measurements can play in differentiating supersymmetric

extensions of the Standard Model. Fitting current LHC data to the Higgs couplings, we find that the

likelihood fit is consistent with Standard Model values, but has a shallow gradient in the direction

of suppressed (enhanced) bottom (top) quark couplings. In the minimal supersymmetric Standard

Model, we demonstrate that for tanβ > 1, there is tension in achieving such fermion couplings

due to the structure of the Higgs quartic couplings. In anticipation of interpreting supersymmetric

models with future data, we determine a single straightforward condition required to access this

region of coupling space, which current data allow and may favor with increased statistics.

I. INTRODUCTION

The LHC is poised to discover the mechanism of elec-

troweak symmetry breaking, with hints of a new Higgs-

like state near 125 GeV [1, 2]. Should this new state

prove to be an elementary scalar, supersymmetry (SUSY)

remains the principal candidate for stabilizing the elec-

troweak hierarchy. However, the minimal supersymmet-

ric Standard Model (MSSM) is somewhat strained to ex-

plain a Higgs at 125 GeV, requiring significant enhance-

ment of the tree-level Higgs mass that is in tension with

naturalness. Here, we emphasize that the structure of the

MSSM also tightly constrains the possible tree-level cou-

plings of the Higgs. If the production and decay modes

of the Higgs deviate from Standard Model predictions, it

would not only be an indication of new physics, but may

also decisively favor or disfavor the MSSM well before

other states are discovered. To this end, the measure-

ment of Higgs couplings provide a sensitive and immedi-

ate probe of physics above the weak scale.

In this work we perform a model-independent fit of

Higgs couplings using current LHC data, focusing on im-

plications for theories with two Higgs doublets. We find

that the MSSM is facing tension with certain elements of

the data. At issue is the structure of its quartic Higgs po-

tential, leading to a generic preference for enhanced cou-

pling to down-type fermions. Indeed, the tree-level po-

tential mandates such enhancement whenever tanβ > 1

and we find even at loop-level that achieving significant

suppression is atypical. By analyzing the quartic terms

in full generality, we show that this conclusion can be

avoided and pinpoint parameter space for the MSSM and

simple alternatives to accommodate suppressed couplings

to down-type fermions.

II. STATUS OF HIGGS MEASUREMENTS

We begin by establishing the relevant conventions for a

type-II two Higgs doublet model (2HDM) like the MSSM.

The mass eigenstates of the neutral CP-even states are

�
h
0

H
0

�
=

√
2

�
− sinα cosα

cosα sinα

��
ReH

0
d

ReH
0
u

�
, (1)

with mixing angle α ∈ [−π/2,π/2]. The couplings of the

light eigenstate h
0
to SM fields are then given by

a ≡ ghV V

g
SM
hV V

= sin(β − α), (2)

ct ≡
ghtt̄

g
SM
htt̄

=
cosα

sinβ
, cb ≡

ghbb̄

g
SM
hbb̄

= − sinα

cosβ
, (3)

which we will refer to as the gauge coupling, and the up

and down-type Yukawa couplings, respectively. A full

discussion can be found for instance in [3]. Thus the

2HDM has access to two distinct regions in the positive

quadrant of Yukawa couplings, as illustrated in Fig. 1.

''Up�Suppressed''
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Yukawa Couplings: General Type�II 2HDM

FIG. 1: The two regions accessible in a generic type-II 2HDM.

Down-type couplings are enhanced when up-type are sup-

pressed and vice versa. For the MSSM and simple extensions,

the lower region is largely inaccessible when tanβ > 1.

We now discuss the current experimental status of

these Higgs couplings, which we will show can have an
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- γγ, and gg rates

- production of Heavy Higgses

 Key observables/processes for Composite Higgs theories: 

- tree-level couplings

- Zγ  rate

- double Higgs production via gluon fusion (gg→hh)
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Huge energy domain in which the 
theory is viable and perturbative

from: G. Degrassi et al.  JHEP 1208 (2012) 098
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We seem to live near 
a critical condition

G. Degrassi et al.  JHEP 1208 (2012) 098
G. Giudice and A. Strumia
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We seem to live near 
a critical condition

G. Degrassi et al.  JHEP 1208 (2012) 098
G. Giudice and A. Strumia

! 

mH
2

0 

Broken EW Unbroken EW 

SM 

Why is nature so close to the critical line? 

! 

V H( ) = "mH
2 H 2

+ # H 4

Symmetry?     
•  Supersymmetry:  mH

2 = 0, ! = g2!
•  Goldstone boson: mH

2 = ! = 0"
Do we live near a critical condition because of 

dynamics or because of statistics in the multiverse?  

2. Criticality as an attractor  
(multiverse but not anthropic arguments) 

The Planck-EW hierarchy itself 
is a problem of criticality

G. Giudice, R. Rattazzi, NPB 757 (2006) 19



What if there is only the SM ?

32

Why is the universe near-critical ?Why is the universe near-critical? 

stolen from G. Giudice



What if there is only the SM ?

32

Why is the universe near-critical ?Why is the universe near-critical? 

Symmetry explanation ?

stolen from G. Giudice



What if there is only the SM ?

32

Why is the universe near-critical ?Why is the universe near-critical? 

Quantum Gravity 
dynamics ?

Symmetry explanation ?

stolen from G. Giudice



What if there is only the SM ?

32

Why is the universe near-critical ?Why is the universe near-critical? 

Quantum Gravity 
dynamics ?

Symmetry explanation ?

stolen from G. Giudice

Anthropics ?



What if there is only the SM ?

32

Why is the universe near-critical ?Why is the universe near-critical? 

Quantum Gravity 
dynamics ?

Symmetry explanation ?

Self-organized criticality 
due to statistical pressure ?

stolen from G. Giudice

Anthropics ?
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Fit in the plane (kV,kF) by ATLAS and CMS
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Theorist’s fit in the plane (cb,ct) for ATLAS and CMS

Made by Jamison Galloway
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