VI Workshop Italiano sulla Fisica pp a LHC Genova, 8-10 May 2013

SM Higgs $\rightarrow \tau \tau$

Zinonas Zinonos Università di Pisa Simone Gennai INFN Milano-Bicocca

Contents

- Higgs at LHC & tau lepton in detectors
- Physics objects definition, trigger & event categorization
- Results
- Conclusions and perspectives

Main Documentation ATLAS-CONF-2012-160 CMS PAS HIG-13-004

Analyses Summary

	ATLAS	CMS	
Analysis type	Cut-based	Cut-based	
7 TeV	4.6 fb ⁻¹	4.9 fb ⁻¹	
8 TeV	13 fb ⁻¹ 17.6 fb ⁻¹	19.4 fb ⁻¹ 24.3 fb ⁻¹	
Last update	13 November 2012	15 March 2013	

Final state	ee	еμ	μμ	eτ _{had}	μau_{had}	τ _{had} τ _{had}
CMS		•	•	•	•	•
ATLAS	•	•	•	•	•	•

Genova LHCPP Workshop - SM Higgs $\rightarrow \tau \tau$

gluon-gluon fusion 19.5 pb (m_H = 125 GeV)

vector boson fusion 1.6 pb (m_H = 125 GeV)

Importance

- $H \rightarrow \tau \tau$ is probably the only accessible fermionic channel
 - ightarrow establishment of the SM Higgs
- Provides the best chance to measure the Higgs couplings to fermions (lepton family)

BR (Higgs(125GeV) $\rightarrow \tau \tau$) = 6.2%

Tau Lepton

Tau Properties

QCD jets tend to have

more associated tracks
no displaced secondary vertex
more broadly spaced tracks
wider calorimeter showers

Hadronic tau detection

ATLAS

Reconstruction

•τ_{had} algorithm ; seeded from anti-kt R=0.4 jets (noise-suppressed calo-clusters)

track association; within a *core cone* δR< 0.2
track-vertex association; robust against Pile-Up

Identification

- Boosted Decision Trees /Log-likelihood methods
- Identification variables:
 - calorimetric (HAD and EM shower shapes)
 - tracking (isolation, momentum, ...)
- Lepton (µ, e) veto

Reconstruction

- •τ_{had}algorithm; seeded from PFJets
 - •Only used to collect PFCandidates
- track-vertex association; robust against
 Pile-Up

Identification

- rho/a1 mass reconstruction
- Separation between 1 (w/ and w/o pi0s) and 3 prongs
- isolation with MVA based variable

May 8-10, 2013

jet of hadrons

Tau ID Performance

Measured in Ζττ. Ζ'ττ, Wτν MC events and QCD-enriched data May 8-10, 2013 Genova LHCP

Missing E_T

Calorimeter cells associated with reconstructed and identified high-pT objects

MVA MET regression from Pflow inputs

CMS

May 8-10, 2013

160

Di-tau Mass Reconstruction

ATLAS

Missing Mass Calculator

 Provide reconstruction of the ττ event kinematics: ε >99%, 13-20% m_τresolution

•Extension of the Collinear Approximation technique

 Ongoing efforts: correct neutrino kinematics considering the secondary vertex

CMS

Secondary Vertex Fit

- Similar technique as MMC with the same resolution
- in the future a secondary vertex fit may be introduced •Gives about 20% improvement wrt visible mass

Trigger

Channel	√s=8 TeV	ATLAS	CMS
	Trigger	Offline pT	threshold
	Single electron	25 GeV 10 GeV (μ)	-
lep-lep	Di-electron	15 <i>,</i> 15 GeV	-
	Di-muon	20, 10 GeV	20, 10 GeV
	Combined e+µ	15, 10 GeV	20, 10 GeV
	Single electron	20 GeV, 26 GeV (μ)	-
	Single muon	26 GeV (μ), 20 GeV	-
lep-had	Combined e+T _{had}	20-26 GeV (electron) 25 GeV	24GeV (electron), 20 GeV
	Combined μ + τ_{had}	17-26 GeV (muon) 25 GeV	20 GeV, 20 GeV
had-had	Combined τ_{had} + τ_{had}	40, 25 GeV	45, 45, 50 GeV (extra jet req. at HLT)

Analysis Categories - ATLAS

Constrain background normalization, ID efficiencies & energy scales

Mutually exclusive categories based on **Jet multiplicity** & tau pT

Genova LHCPP Workshop - SM Higgs $\rightarrow \tau \tau$

Thth

1-jet

1 jet, high $p_{T}(H)$

requirement

ggF, VH receivers

55 2-jet (VBF)

2 jets, high p_⊤(H)

requirement, m(jj) >

250 GeV, |Δη(jj)| > 2.5

VBF selection

Background Estimation - ATLAS

<u>Ztautau</u>: embedding hybrid data-driven estimation •Select $Z \rightarrow \mu\mu$ events in data \rightarrow replace μ 's by truth τ 's

•Simulate τ decays in MC, merge data + simulated info •Full *re*-reconstruction of the embedded $Z \rightarrow \tau \tau$

<u>QCD</u>: data-driven estimation

lep-had: SS model using corrections from QCD-enriched OS control regions

•had-had: OS model with reverted τ-ID criteria

- \bullet perform an extended track counting in the $\tau\text{-cone}$
- normalization: fit 2-D track templates

<u>Z</u>*II*: from Monte Carlo with scaled yields obtained by comparing data/simulation in Zll-enriched samples

<u>Wτv+jets:</u> estimated from Monte Carlo

Fake lepton background: normalization and shape from data with templates of inverted lepton isolation criteria

Top & Dibosons: estimated from Monte Carlo

Merge and perform full event reconstruction

Background Estimation - CMS

Template fit to m_{ττ} shape

Systematic Uncertainties - ATLAS

Uncertainty	lep-lep	lep-had	had-had	
Embedding	1-4% <mark>S</mark>	2-4% <mark>S</mark>	1-4% <mark>S</mark>	
Tau Energy Scale	-	4-15% <mark>S</mark>	3-8% <mark>S</mark>	Jet
Tau Identification	-	4-5%	1-2%	Energy
Trigger Efficiency	2-4%	2-5%	2-4%	Scale
Normalization	5%	4%(non-VBF), 16% (VBF)	9-10%	2-13/0

<u>Ztt (dominant) background</u> \uparrow and <u>signal</u> \checkmark systematic uncertainties (8TeV)

S: uncertainties applied bin-by-bin affecting the final shape

Uncertainty	lep-lep	lep-had	had-had
Jet Energy Scale	1-5% <mark>S</mark>	3-9% <mark>S</mark>	2-4% <mark>S</mark>
Tau Energy Scale	-	2-9% <mark>S</mark>	4-6% <mark>S</mark>
Tau Identification	-	4-5%	10%
Theory	2-28%	18-23%	3-20%
Trigger Efficiency	small	small	5%

Systematic Uncertainties - CMS

Uncertainty	mu-mu,e-mu, l-tau	tau-tau
Tau ID and Trigger	8%	19%
LeptonID	2(4%)	-
Tau ES	3%	6%
Jet ES	1-20% (depending on cat.)	1-20% (depending on cat.)
Z->tautau normalization	3-33% (depending on cat.)	10-30% Plus bin-by-bin

 Tau, lepton, MET ES uncertainties could modify the mass shape as well.

 Shifted templates are produced with morphing techniques to take into account shape uncertainties.

 For some backgrounds (depending on the categories and channels) bin-by-bin uncertainties are also being used.

Results ATLAS

ATLAS-CONF-2012-160

lep-lep

ATLAS-CONF-2012-160

lep-had

ATLAS-CONF-2012-160

Results ATLAS

ATLAS-CONF-2012-1

60

Results CMS

CMS PAS HIG-13-004

Results CMS

CMS PAS HIG-13-004

Genova LHCPP Workshop - SM Higgs $\rightarrow \tau \tau$

Results

→ Observed/Expected 95% CLs upper limits on the signal strength $\mu = \sigma_{Higgs} / \sigma_{SM}$ Vs m_{Higgs} in the mass range 100-150 GeV

- Channels: Lep-Lep, Lep-Had, Had-Had
- Combined 2011 & 2012 data

>> Expected limits are given for the scenario with no signal

CMS PAS HIG-13-004

p-value

Observed and expected *p*-values and corresponding significance in std deviations as a function of $m_{\rm H}$

Best-fit signal strength values (σ/σ_{SM})

CMS

Conclusions & Perspectives

- ATLAS and CMS have reported searches for the SM Higgs boson decaying into tau-lepton pairs
- Both experiments exploit all di-tau final states
- **ATLAS** @ $4.6 + 13 \text{ fb}^{-1}$: expected limit = $1.18 \times \text{SM}$ & $p0 = 1.7\sigma$
 - □ Projections for 24.6 fb⁻¹ : expected limit = $1.01 \times SM \& p0 \approx 2σ$
- **CMS @** 24.3 fb⁻¹ : expected limit = $0.77 \times SM \& p0 = 2.62\sigma$
 - CMS result includes VH category and contribution from WW*
 - indication that the boson discovered on July 4, 2012 <u>couples to tau leptons</u> with a strength compatible to the SM prediction
- ATLAS is now pursuing a <u>multivariate analysis</u> aiming for higher sensitivities using the whole LHC dataset. Also, now using new tau ID, new lower-threshold triggers and reduced systematic uncertainties
- CMS is <u>finalizing the analysis</u> for a paper in summer. The MSSM analysis is carried out in parallel

Auxiliary Material

Genova LHCPP Workshop - SM Higgs $\rightarrow \tau \tau$

Systematic Uncertainties CMS

Table 2: Main systematic uncertainties entering the analysis. The \mp symbol indicates that the uncertainty is anti-correlated with respect to other categories. The (*) symbol indicates correlation between separate channels. The (†) symbol indicates correlation between separate categories. In the instance where "ex. vbf" is indicated, an additional uncorrelated nuisance is added to account for statistical uncertainties.

Experimental Uncertainties		Propagation into Event Categories		
Uncertainty	Uncert.	0-Jet	1-Jet	VBF
Electron ID & Trigger (+*)	±2%	±2%	±2%	±2%
Muon ID & Trigger (†*)	±2%	±2%	±2%	±2%
Tau ID & Trigger (†)	±8%	±8%	±8%	_±8%
Tau Energy Scale (†)	±3%	±3%	±3%	_ <u>+</u> 3%
Electron Energy Scale (†)	±1%	±1%	±1%	\±1%
JES (Norm.) (†*)	$\pm 2.5 - 5\%$, ∓3 – 15%	±1-6%	$\pm 5 - 20\%$
MET (Norm.) (†*)	±5%	±5-7%	\±2−7%	$\pm 5 - 8\%$
b-Tag Efficiency (†*)	±10%	72%	±2 – 3%	, 7%
Mis-Tagging (†*)	±30%	72%	> ∓2%	∓ 2 − 3%
Norm. Z production (†*)	±3%	±3%	±3%	±3%
$Z \rightarrow \tau \tau$ Category	±3%	±0 – 5%	$\pm 3 - 5\%$	$\pm 10 - 13\%$
Norm. tř. (†* ex.vbf)	±10%	±10%	±10%	$\pm 12 - 33\%$
Norm. Diboson (†* ex. vbf)	$\pm 15 - 30\%$	$\pm 15 - 30\%$	$\pm 15 - 30\%$	$\pm 15 - 100\%$
Norm. QCD Multijet	±6-32%	$\pm 6 - 32\%$	±9 – 30%	±19 – 35%
Lumi 7 TeV (8 TeV)	±2.2(4.2)%	±2.2(4.2)%	±2.2(4.2)%	±2.2(4.2)%
Norm. W+jets	$\pm 10 - 30\%$	$\pm 20 - 27\%$	$\pm 10 - 33\%$	$\pm 12.4\% - 30\%$
Norm. $Z \rightarrow \ell \ell$: e fakes τ_h (†)	±20%	±20%	±36%	±22%
Norm. $Z \rightarrow \ell \ell$: μ fakes τ_k (†)	±30%	±30%	$\pm 30\%$	±30%
Norm. $Z \rightarrow \ell \ell$: jet fakes τ_k	$\pm 20\%$	±20%	±20%	$\pm 40\%$

ATLAS (8 TeV)					
	Trigger	Trigger pT Threshold	OfflinepT threshold	Trigger pT Threshold	OfflinepT threshold
lep-lep	Single electron	24 GeV	25 GeV 10 GeV (μ)	24 GeV	25 GeV 10 GeV (μ)
	Di-electron	12, 12 GeV	15, 15 GeV	12, 12 GeV	15, 15 GeV
	Di-muon	18, 8 GeV	20, 10 GeV	18, 8 GeV	20, 10 GeV
	Combinede+ μ	12, 8 GeV	15 <i>,</i> 10 GeV	12, 8 GeV	15 <i>,</i> 10 GeV
lep-had	Single electron	24GeV	26 GeV 20 GeV (μ)		
	Single muon	24GeV	26, 20 GeV		
	Combined e+τ _{had}	18, 20 GeV	20-26 GeV, 25 GeV	20, 20 GeV	24GeV, 20 GeV
	Combined μ+τ _{had}	15, 20 GeV	40 GeV, 25 GeV	17, 20 GeV	20 GeV, 20 GeV
had-had	Combined τ_{had} + τ_{had}	29, 20 GeV	40 <i>,</i> 25 GeV	30,30,30 GeV (extra jet req.)	45, 45, 50 GeV

May 8-10, 2013

Genova LHCPP Workshop - SM Higgs $\rightarrow \tau \tau$

Physics Objects Definition

	ATLAS	CMS
electron	EM deposits associated to ID tracks; $E_T > 15$ GeV, $ \eta < 2.47$; shower shape quality and isolation requirements	Se hai voglia di riempire, altrimenti cancelliamo la colonna
muon	ID tracks linked to μ-spectrometer tracks; Δz(track, PV)<1cm; quality &isolation criteria	
jet	anti-kt R=0.4; 3dcalo noise- suppressed clusters; pT>25 GeV; η <4.5; Jet-Vertex-Fraction to reduce PU activity	
b-jet	Impact parameter & displaced secondary vertex tagging algorithm; pT>15 GeV; η <2.5;	
tau	BDT-medium (ε=50%) τ-jet identif.;pT>20 GeV; η <2.5; 1/3- prong;	
MET	object-based definition; muon and calorimetric contributions	

Analysis Categories - lep-lep

ATLAS (8 TeV)

Preselection Exactly two opposite sign charged leptons Jet pT> 40 GeV E_{T}^{miss} , H_{T}^{miss} cuts m_{μ} , $\Delta \phi_{\mu}$, x1, x2 cuts 2-jet VBF Jet pT> 25GeV (JVF) Δη_{ii}> 3.0, m_{ii}> 400 GeV b-tagged jet veto X Lepton centrality, CJV Boosted Di-τ pT> 100 GeV b-tagged jet veto X 2-jet VH Jet pT> 25GeV (JVF) Δη_{ii}> 2, 160 >m_{ii}> 30 GeV b-tagged jet veto X 1-jet Mττ> 225 GeV b-tagged jet veto

Exclusively defined Search regions

Analysis Categories - lep-had

Analysis regions are exclusively receiving events

i = if failed ,discard the event

Analysis Categories - had-had

ATLAS (8 TeV)

Preselection

No muons/electrons in the event 2 BDT-medium hadronicts, 1 BDT-tight Both ts point to the same vertex TauspT> 40, 25 GeV, $|\eta| < 2.5$, 1/3-prong 0.8 $<\Delta R_{\tau\tau} < 2.8$, $\Delta \eta_{\tau\tau} < 1.5$ Min { $\Delta \phi$ (MET, $\tau 1$), $\Delta \phi$ (MET, $\tau 1$) } $< 0.2 \pi$

VBF

Two tagging jets pT> 50 GeV Δη_{jj}> 2.6, m_{jj}> 350 GeV, ηj1 x ηj2 < 0 Tau η-centrality MET > 20 GeV

Boosted

One tagging jet pT> 70 GeV $\Delta R_{\tau\tau} < 1.9$ MET > 20 GeV Min { $\Delta \phi$ (MET, $\tau 1$), $\Delta \phi$ (MET, $\tau 1$) } < 0.1 π

May 8-10, 2013

Genova LHCPP Workshop - SM Higgs $\rightarrow \tau \tau$