


M. Biglietti (INFN Roma3), P. Govoni (Univ. Milano Bicocca)

1

## Higgs production and decay in W<sup>+</sup>W<sup>-</sup>



# ATLAS & CMS $H \rightarrow WW$ Analyses

#### 3

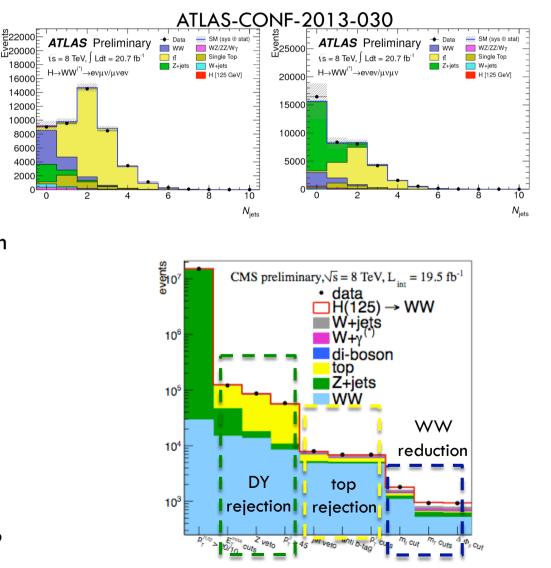
| <ul> <li>□ Total available data (per</li> <li>□ 2011 (√s = 7 TeV, ~5/fb</li> <li>□ 2012 (√s = 8 TeV, ~20/f</li> </ul> | )                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High sensitivity analyses                                                                                             | <ul> <li>H→WW→2l2v</li> <li>ATLAS: full dataset, 0,1 jet, VBF, spin measurement, mass range 115-200 GeV</li> <li>CMS : full dataset, 0,1 jet, spin measurement, mass range 110-600GeV</li> </ul>                   |
| Other analyses at low<br>mass                                                                                         | <ul> <li>WH→WWW→3I3v</li> <li>ATLAS: 2011 data</li> <li>CMS : full dataset</li> </ul>                                                                                                                              |
|                                                                                                                       | • H→WW→Ivqq                                                                                                                                                                                                        |
| High mass analyses                                                                                                    | <ul> <li>ATLAS: 2011 data (√s = 7 TeV, 4.7/fb)</li> <li>CMS : 2011 (√s = 7 TeV, 4.9/fb) + 2012 (√s = 8 TeV, 12/fb)</li> <li>H→WW→2I2v (CMS)</li> <li>2HDM</li> <li>ATLAS: 2012 data (√s = 8 TeV, 13/fb)</li> </ul> |

# $H \rightarrow W W \rightarrow |_V |_V$

→ Data 2011 ( $\sqrt{s} = 7$  TeV,  $\sim 5/fb$ ) + 2012 ( $\sqrt{s} = 8$  TeV,  $\sim 20/fb$ )

- → 2011 analysis re-optimization
- ⇔Rates

4

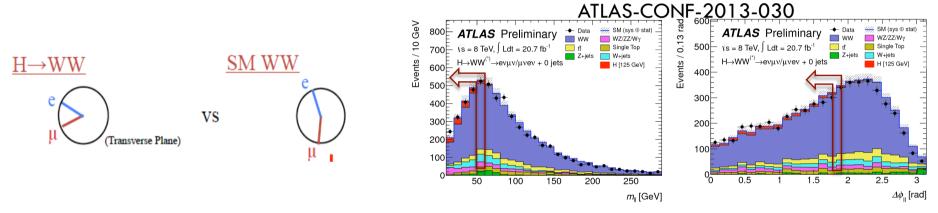

- → VBF/couplings
- ⇒ Spin

# Selection & Backgrounds

### 5

### Categories with different bkg composition

- Ojet, 1 jet, >1 jets (VBF)
- different, same flavors (em/me, ee/mm)
- Drell-Yan (lepton pair + fake MET)
  - $\hfill\square$  Important in the ee/ $\mu\mu$  channel
  - Require large missing energy, Z veto
  - Event recoil, topological selection, MVA
- Top (WW produced with bjets) in >1 jet bin
  - b-jet veto (IP, soft muon)
- W+jets (lepton with MET + fake lepton)
  - Isolation / lepton identification
- - dominant in Ojet channel
  - ~reducible by topological cuts
- Other di-Bosons (WZ,ZZ,Wγ)
  - no extra leptons, conversion rejection, Z veto




# **Background Estimation**

#### 6

### non resonant WW and HightarrowWW have very similar signature

exploit Spin-0 nature of the Higgs/V-A coupling of W



- Use data-driven estimates for main backgrounds
  - SM WW from estimated using signal free CRs
  - □ Zjets from system recoil studies (ATLAS)/extrapolation from Z mass peak (CMS)
  - □ top : from top enriched CR (ATLAS), from top-tagged events corrected for the top-tagging efficiency (CMS)
  - W+jets: control sample in which one of the two leptons satisfies relaxed identification and isolation criteria, fake factors from multi-jet samples

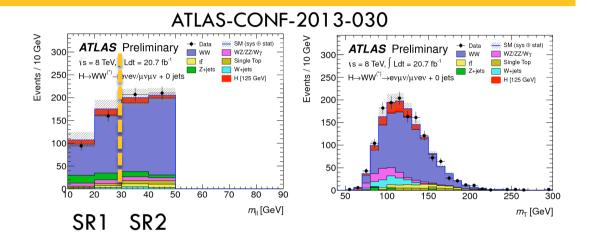
# $H \rightarrow WW \rightarrow IvIv$ , Yields @ 8TeV

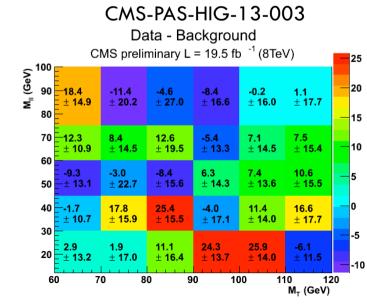
| 7                        |             |                                                         |                                          |                                                      |                       |                              |                  |                             |   |
|--------------------------|-------------|---------------------------------------------------------|------------------------------------------|------------------------------------------------------|-----------------------|------------------------------|------------------|-----------------------------|---|
| ATLAS                    |             | N <sub>jet</sub> N <sub>obs</sub>                       | $N_{ m bkg}$                             | N <sub>sig</sub> N <sub>WW</sub>                     | $N_{VV}$              | $N_{t\bar{t}}$ N             | $N_{Z/\gamma^*}$ | $N_{W+jets}$                |   |
|                          |             | = 0 831<br>= 1 309                                      |                                          | $97 \pm 20$ $551 \pm 41$<br>$40 \pm 13$ $108 \pm 40$ | $58 \pm 8$ $27 \pm 6$ | $23 \pm 3$ 16 ± 68 ± 18 27 ± |                  | $61 \pm 21$<br>20 ± 5       |   |
| CMS (cut-based           |             | $\begin{array}{c} = 1 & 309 \\ \geq 2 & 55 \end{array}$ |                                          | $.6 \pm 1.4$ $4.1 \pm 1.5$                           |                       | $4.6 \pm 1.7$ $0.8 \pm$      |                  | $20 \pm 3$<br>$0.7 \pm 0.2$ |   |
| @m <sub>H</sub> =125GeV) | $m_{\rm H}$ | $\begin{array}{c} H \\ \rightarrow W^+W^- \end{array}$  | ${ { }                                 $ | $WZ + ZZ + Z/\gamma^* \rightarrow \ell^+ \ell^-$     | Тор                   | W + jets                     | $W\gamma^{(*)}$  | all bkg.                    | d |
| 0jet eµ                  | 125         | $90\pm19$                                               | $310\pm29$                               | $11.4\pm1.1$                                         | $20.0\pm4.3$          | $48\pm13$                    | $40\pm13$        | $429\pm 34$                 | 5 |
| 0jet ee+µµ               | 125         | $56 \pm 12$                                             | $207\pm19$                               | $106 \pm 31$                                         | $9.3\pm2.2$           | $28.7\pm7.7$                 | $9.3\pm3.8$      | $360 \pm 38$                | 4 |
| ljet eµ                  | 125         | $42\pm12$                                               | $80\pm11$                                | $12.9\pm1.2$                                         | $78.9\pm4.5$          | $25.8\pm6.9$                 | $11.2\pm4.6$     | $209\pm14$                  | 2 |
| ljet ee+μμ               | 125         | $18.0\pm5.2$                                            | $39.8\pm5.4$                             | $21.2\pm5.4$                                         | $40.4\pm3.1$          | $6.6\pm2.0$                  | $3.3\pm1.7$      | $111.3\pm8.6$               | 1 |

 $rac{}$  CMS yields higher (looser selection on lepton  $p_T$ ): 23/10GeV (CMS), 25/15GeV (ATLAS)

 $rac{1}{2}$  Total signal uncertainty ~15% from QCD scales, PS/UE, PDF models

Main backgrounds :


| 0jet bin  | Total uncertainties:         • δ(WW) ~7%         • δ(W+jets) ~30%(ATLAS)/20%(CMS)                                                                                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 jet bin | $\delta(WW) \sim 35\%$ (ATLAS) dominated by top cross-talk, ~10% (CMS)<br>$\delta(top) \sim 22\%$ (ATLAS) dominated by exp. uncertainty (JES/JER, btagging), ~5% (CMS) :<br>dominated by the statistical uncert. on CR and by systematic on the top-tagged efficiency |


# **Signal Extraction**

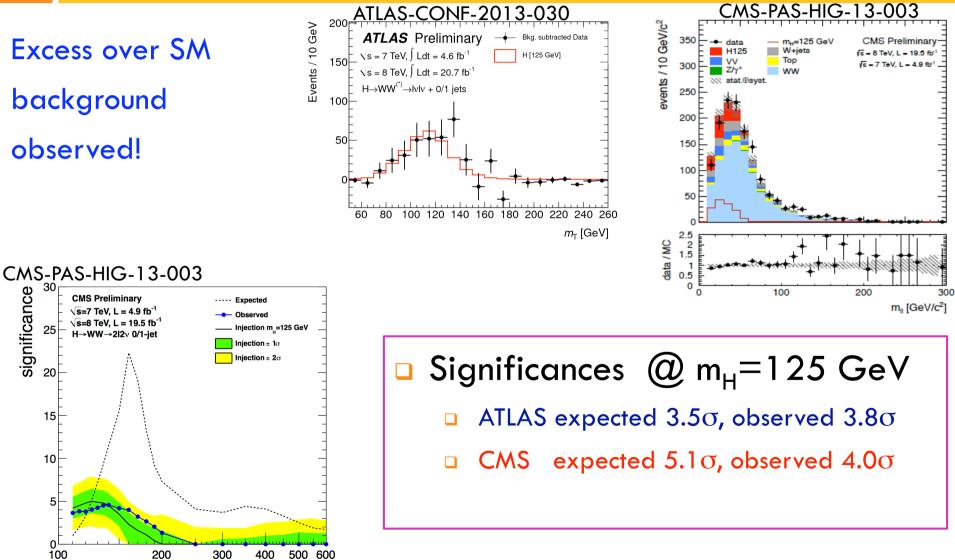
## ATLAS :

8

 split the SR in 2 m<sub>II</sub> bins → improved sensitivity (different S/B ratios, background composition)
 final fit on m<sub>T</sub>






### CMS:

- eµ analysis uses cut&count approach as well as a 2D shape analysis in m<sub>II</sub>-m<sub>T</sub> plane (baseline)
- ee/μμ uses cut&count
- Cut based optimized for each m<sub>H</sub> hypothesis

# $H \rightarrow WW \rightarrow I_V I_V - Results$

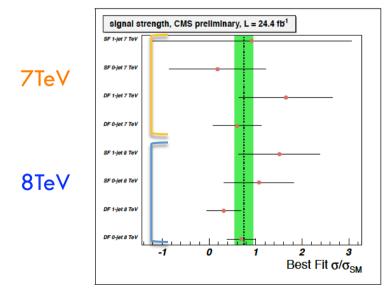
Excess over SM background observed!

9



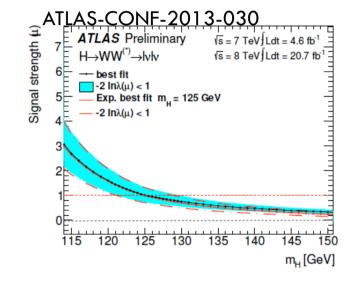
significance **CMS Preliminary**  $\sqrt{s}=7$  TeV, L = 4.9 fb<sup>-1</sup>  $\sqrt{s}$ =8 TeV, L = 19.5 fb<sup>-1</sup> 25 H→WW→2l2v 0/1-jet 20 15 10 100 200 300 400 m<sub>µ</sub> [GeV]

# Signal Strength

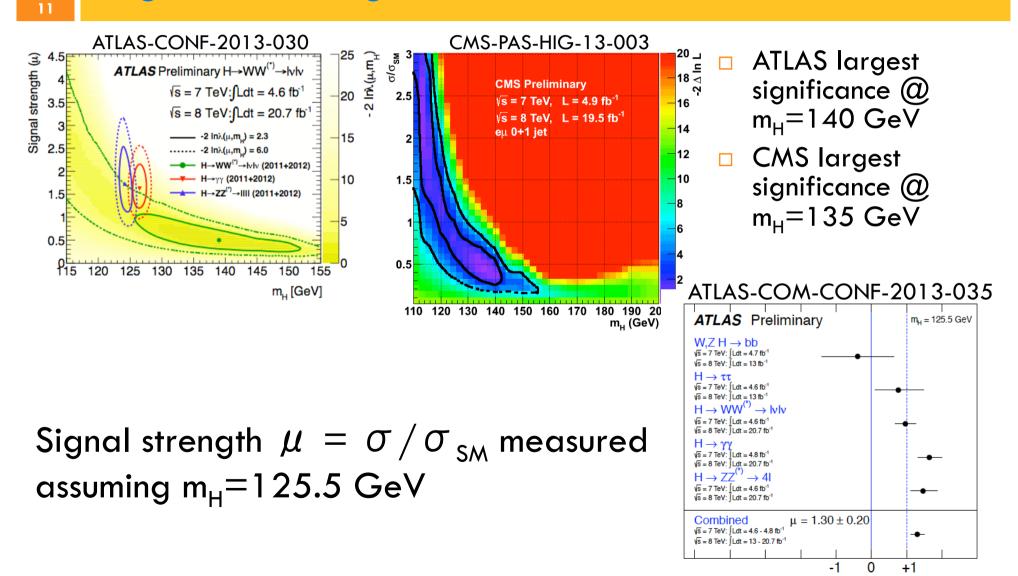

### **ATLAS:**

 $\mu_{obs} = 1.01 \pm 0.22$  (stat.)  $\pm 0.19$  (theo. syst.)

 $\pm$  0.10 (expt. syst.)  $\pm$  0.04 (lumi) = 1.01 $\pm$  0.31


### CMS :

$$\mu_{obs} = 0.76 \pm 0.13$$
 (stat.)  $\pm 0.16$  (syst.)  $= 0.76 \pm 0.21$ 




### CMS-PAS-HIG-13-003

- Best fit value of the signal strength for each channel.
- Consistent results among the different exclusive final states



# H→WW→ IvIv - Best Mass Fit vs Signal Strenght



Signal strength (µ)

# VBF Results (2) ATLAS

### 12

- WW + 2 forward jets with large rapidity gap
- Background dominated by top and Z+jets
  - Similar background estimation to ggF analysis
- ggF included as background
- Observed significance 2.5 $\sigma$  (m<sub>H</sub>=125GeV)
  - $\square$  expected 1.6 $\sigma$

50 100 200 300 400 500 600 700 800

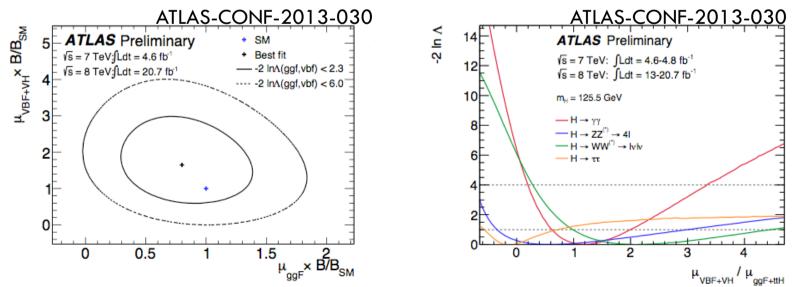
Events / 83 GeV

150

100

900 1000 m<sub>ii</sub> [GeV]

Single Top


vbf+vh (×50)

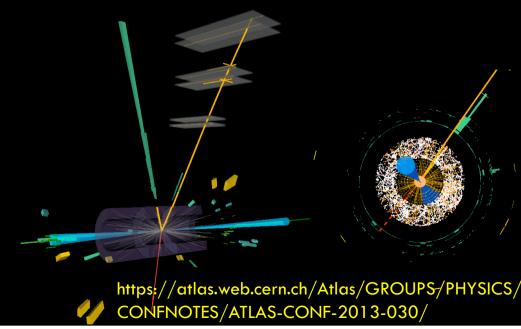
ATLAS-CONF-2013-030

tī t

250 ATLAS Preliminary √s = 8 TeV, ∫ Ldt = 20.7 fb<sup>-1</sup>

- $\mu_{obs}(VBF) = 1.66 \pm 0.67(stat.) \pm 0.42(syst.) = 1.66 \pm 0.79$
- $\mu_{obs}(ggF) = 0.82 \pm 0.24$  (stat.)  $\pm 0.28$  (syst.)  $= 0.82 \pm 0.36$




# di-lepton H→WW Candidates

CMS Experiment at LHC, CERN Data recorded: Thu Apr 19 09:14:14 2012 CEST

Run/Event: 191721 / 76089774 Lumi section: 111 Orbit/Crossing: 28960009 / 815

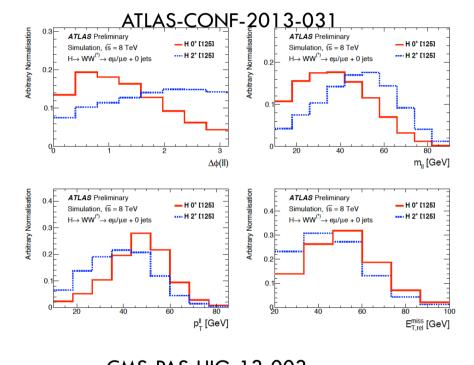


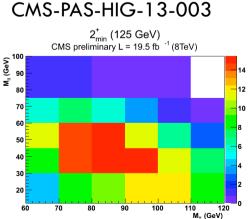
CMS



Run 214680, Event 271333760 17 Nov 2012 07:42:05 CET

# $H \rightarrow WW \rightarrow IvIv$ - Spin


### 14


H→WW provides large signal yield →
 allow for the shape analysis of sensitive distributions
 alternative general assumption is 2<sup>+</sup> graviton-like
 tensor (JHU minimal model)

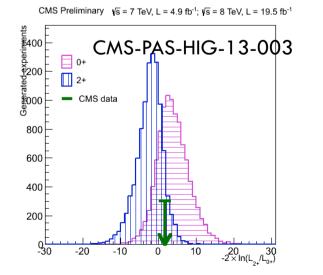
 $\square$  2012 data, eµ channel (most sensitive)

### □ ATLAS

- **5** production modes (qq fraction=0, .25, .5, .75, 1)
- relax cuts on MET,  $p_{TII}$ ,  $m_{II}$  and  $\Delta \Phi_{II}$
- 2 dedicated BDT trainings for 0<sup>+</sup> and 2<sup>+</sup>
  - results use a 2D fit to BDT<sub>0</sub> and BDT<sub>2</sub>
- - ggF mode
  - □ implement 2<sup>+</sup> signal expectations in the shape-based analysis
  - 2D fit in  $m_{\parallel} m_{T}$



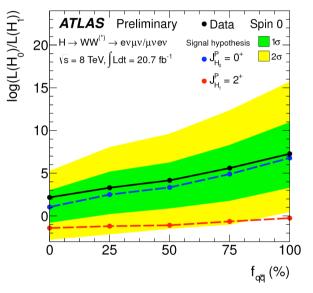



# $H \rightarrow WW \rightarrow IvIv$ - Spin Results

## □ ATLAS

data compatible with 0<sup>+</sup>

hypothesis


- 2<sup>+</sup> graviton-like scenario excluded at
  - 99% CL if qq production
  - 95% CL if gg production



#### 

- $\blacksquare$  Expected separation is at the  $2\,\sigma$  level
- data slightly favor the SM Higgs hypothesis of 0<sup>+</sup> over 2<sup>+</sup>

### ATLAS-CONF-2013-031



# <sup>16</sup> Other channels

⇒Associated production
⇒Ivqq
⇒2HDM

## Associated Production $WH \rightarrow IvIvIv$

entries

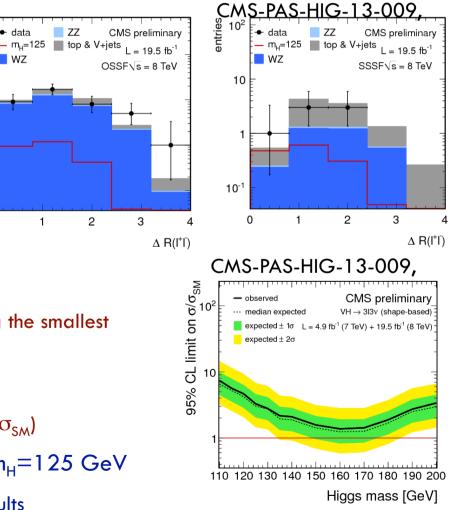
 $10^{2}$ 

10

1

10<sup>-1</sup>

0


Three high  $p_T$  isolated leptons ( $\Sigma q = \pm 1$ ) with MET, OSSF (WZ bkg) + SSSF (top bkg)

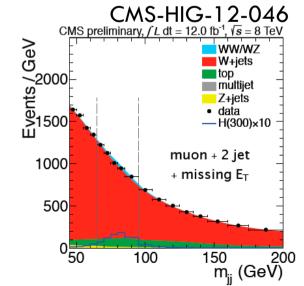
- CMS : full dataset 2011+2012
  - leptons: p<sub>T</sub>>20, 10, 10 GeV
  - Z veto and anti b-tagging to reject WZ and top events

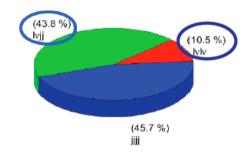
WZ normalized with 3lepton events with OS pair in Z mass window, uncertainty ~10%
 data driven fake leptons probability to

- estimate Z+jet and top, uncertainty  $\sim 40\%$
- Two approaches: cut-based and shape-based (using the smallest distance between OS leptons,  $\Delta R_{\mu}$ )
  - 20% better performance with shape-based approach
- $\blacksquare$  ~3.3  $\sigma_{\rm SM}$  sensitivity at m\_H=125 GeV (expected ~3 \sigma\_{\rm SM})

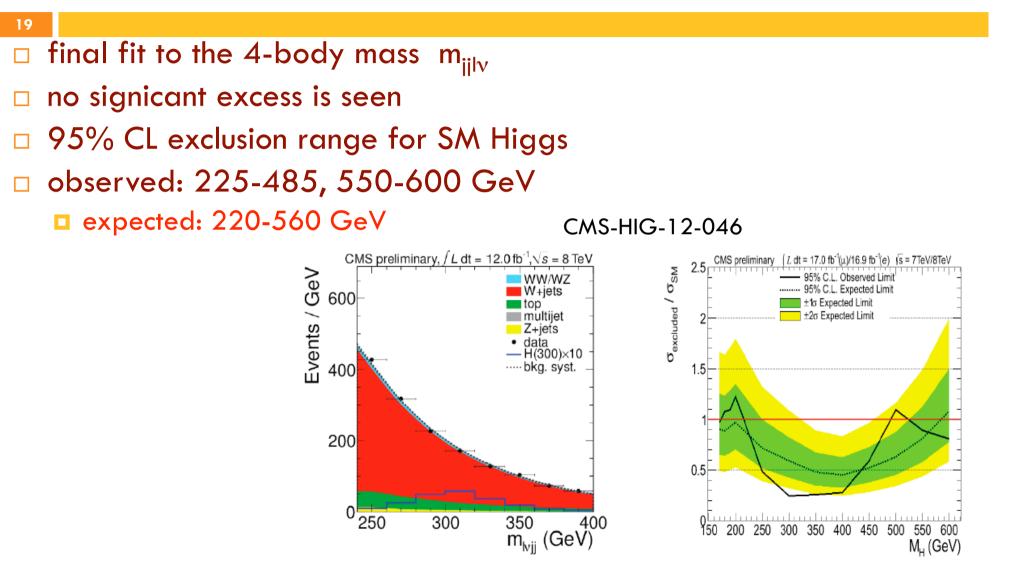
□ ATLAS: 2011 data (4.7/fb), sensitivity  $\sim 7\sigma_{SM}$  @m<sub>H</sub>=125 GeV (ATLAS-CONF-2012-078) Work in progress for updated results




# High Mass H→WW→Ivjj


### 18

- $\square$  Larger BR and reconstructable Higgs mass imposing  $M_{iv} = M_{W}$
- Challenge : control the large W+jets background
  - **c** falls off rapidly with increasing  $M_{1\nu_{ii}} \rightarrow$  sensitivity increases
- □ CMS: 5/fb (2011) + 12/fb (2012)
  - □ lepton  $p_T > 25/35$  GeV for  $\mu/e + 2/3$  jets, MET>25/30GeV ( $\mu/e$ )
  - optimization with m<sub>H</sub>-dependent likelihood discriminant based on the expected limit for Higgs extraction
    - 5 Higgs decay angles, WW prand rapidity, lepton charge
  - Side-band fit to m<sub>ii</sub> to obtain W+jets modelling for each mass hypothesis
  - $\square Main avetamatic uncertainty from M+iota$
  - Main systematic uncertainty from W+jets 4-body mass shape


ATLAS : results on 2011 data (4.7/fb), no exclusion, best sensitivity  $\sim 1.6\sigma_{SM}$  @m<sub>H</sub>=400GeV (arXiv:1109.3615)

Work in progress for updated results





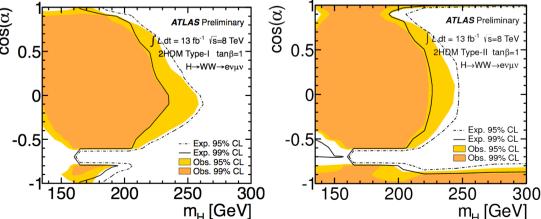
# High Mass H→WW→Ivjj - Results



Analyses preparing for a search in higher  $m_{_{\!H}}$ 

# Two-Higgs-Doublet (2HDM)

### 20


- A simple extension of the SM Higgs sector is given by the addition of a 2nd complex Higgs doublet giving rise to five Higgs bosons:  $h, H, A, H^{\pm}$
- Is the boson at 125 GeV the lightest of 5 Higgs Bosons?

#### ATLAS П

- 13/fb from collected 2012 data at  $\sqrt{s}=8$ TeV
- search for 2HDM for  $m_h @125GeV$  and  $m_H$  between 135-300 GeV
- both h/H decay to  $WW \rightarrow e\mu$
- both h/H aecuy is No evidence for an additional Higgs found in the mass range of [135-300] GeV
- Exclusions contours @95% and 99%

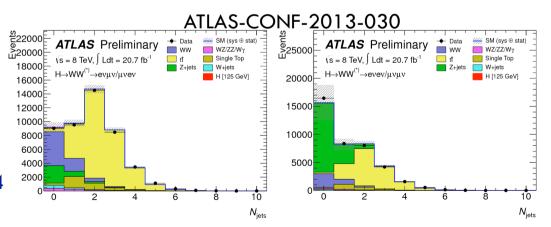
CL are determined in the  $\cos\alpha$ -m<sub>H</sub> plane for different values of  $tan\beta$ 

### ATLAS-CONF-2013-027



# Summary

#### 21


- Analyses in H→WW mode in ATLAS/CMS contribute to the Higgs discovery and properties measurement
- di-leptons analyses fully updated
  - observation compatible with SM around  $m_H = 125 GeV$
  - VBF analysis
  - sensitivity to spin 0 wrt spin 2
- Associated production into 3 leptons updated using full data (CMS)
- High mass analyses
  - semi-hadronic
  - di-lepton optimization for high mass
- 2HDM interpretation
- Expect full updates of all channels and additional improvements



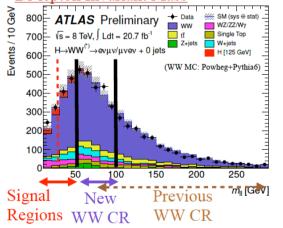
## 2-lepton Final State: Analysis Strategy

#### 23

- Data 2011 ( $\sqrt{s} = 7$  TeV,  $\sim 5/fb$ ) + 2012 ( $\sqrt{s} = 8$  TeV,  $\sim 20/fb$ )
  - → 2011 analysis re-optimization
- Selection criteria defined before looking at the signal region
- $\Box$  No mass peak  $\rightarrow$  controlling background is the key
- Event basic selection: two isolated leptons (e,µ) + MET
  - ATLAS lepton  $p_T > 25/15$  GeV
  - **CMS** lepton  $p_T > 20/10$  GeV (optimized for  $m_H$ )
  - exploit different MET definitions
- Categories with different bkg composition
  - □ Ojet, 1 jet, >1 jets (VBF)
    - ATLAS : jet p<sub>T</sub>>25(30) GeV for η <2.4</li>
       (2.4-4.5)
    - CMS: jet  $p_T$ >30 GeV for  $\eta$  < 4.7
  - **different, same flavors (e** $\mu/\mu$ **e, e** $e/\mu\mu$ **)**



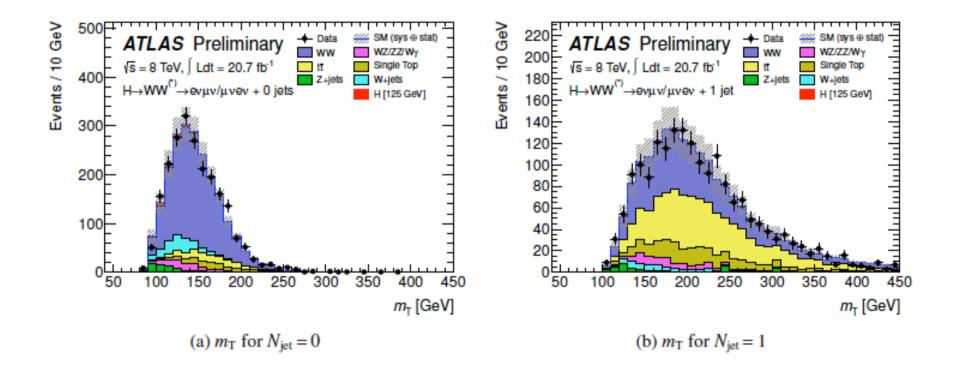
## WW Control Region


#### 24

- Mostly estimated by extrapolating the observed yields in CR to signal region
  - □ ATLAS in 0,1 jet CR :  $e\mu$ ,  $d\phi_{\parallel}$  cut removed, 50 <  $m_{\parallel}$  < 100 GeV (0 jet),  $m_{\parallel}$  > 80 GeV (1 jet)
    - reduction of theoretical uncertainty in Ojet bin reducing the extrapolation
    - □ total uncertainties : 7% (0jet), 37% (>0jet)
  - $\square$  CMS: for low mass  $m_H < 200 \text{ GeV}$ , CR:  $m_H > 100 \text{GeV}$ 
    - $\Box$  total uncertainty ~ 10%

WW Extrapolation Systematics

| source        | old          | new                   |
|---------------|--------------|-----------------------|
| scale         | 2.5%         | 0.9%                  |
| pdf           | 3.7%         | 1.1%                  |
| Parton Shower | 4.5%         | 0.8%                  |
| MC model      | 3.5%         | 1.4%                  |
| Total         | ~ 7.2%       | ~ 2.1%                |
| (*MC model co | mpares Powhe | eg+Pythia to<br>MCFM) |


#### **Di-lepton Invariant Mass**

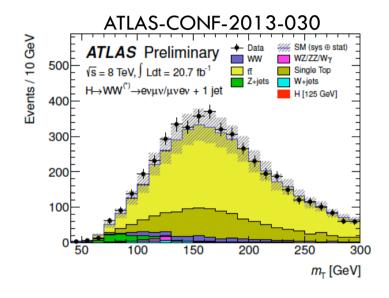


Smaller extrapolation, smaller associated systematic. Use events  $w/M_{ll} > 100$  GeV to validate extrapolation

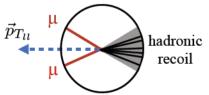
ATLAS-CONF-2013-030

## WW Constrol Region -2




# Top – Drell Yan

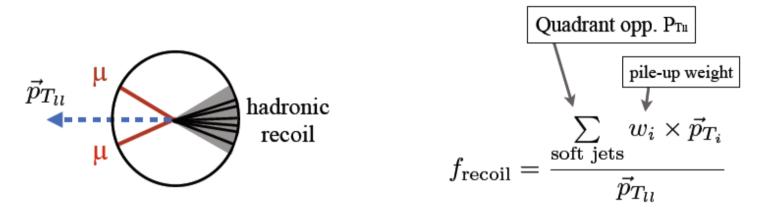
### 26


### 🗆 Тор

### ATLAS

- Ojet : jet veto survival probability in top enriched data, total uncertainy ~10%
- njet>0 : normalization using a control sample with 1
- b-jet, total uncert 30% (njet=1) and 40% (njet>1)
- CMS: from top-tagged data events corrected for the top-tagged efficiency, total uncertainties ~20% (0jet), ~6% (1jet)




- DY : MET resolution degraded by the pileup, difficult to model with MC the tails in detector response
  - ATLAS: MET from pilup in uncorrelated with dilepton system, hadronic recoil energy (also for estimation)
  - CMS : MVA using missing E<sub>T</sub> + kinematic and topological variables



# Zjets – Hadronic Recoil

27

Met from pile-up is uncorrelated with di-lepton system Hadronic activity providing  $P_{T_n}$  "Hadronic recoil"

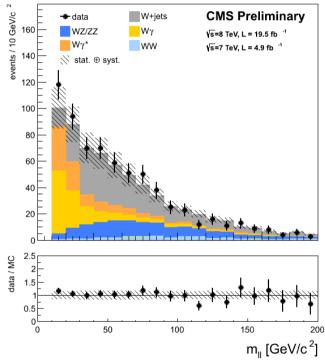


Further suppress  $Z/\gamma^*$  after MeT requirements Used for data-driven estimate of  $Z/\gamma^*$  background ("*Pacman method*")

Fit Observed  $f_{\text{recoil}}$  for  $Z/\gamma^*$  and non- $Z/\gamma^*$  component

- $Z/\gamma^*$  from same flavor Z-peak
- non-Z/ $\gamma$ \* from opposite flavor events

~60 % total uncertainty on  $Z/\gamma^*$  in the SF 0-jet chs.


W+jets –  $W\gamma^*$ 

#### 28

### W+jets

- Small but not suppressed with event selection
  - arises from lepton mis-ID
  - important at low pt
- Difficult to model lepton fake rate in MC  $\rightarrow$  use data driven method
  - extrapolate from CR in which one of the two leptons satisfies relaxed identification and isolation criteria
  - fake factor from multi-jet samples
- total uncertainty (mainly from systematics on the fake factor)  $\sim 30\%$
- validation with same-charge samples

### CMS-PAS-HIG-13-003



### Ο Wγ\*

- □ ATLAS: from MC and validated in region enriched in W  $\gamma$  ( $\gamma \rightarrow ee$ ) that removes the anticonversion selection for one electron
- CMS: CR with 3 reconstructed leptons

# $H \rightarrow WW \rightarrow IvIv$ , Yields @ 8TeV

| 29                               |             |                                                       |                             |                                                      |                             |                                  |                                 |                       |   |
|----------------------------------|-------------|-------------------------------------------------------|-----------------------------|------------------------------------------------------|-----------------------------|----------------------------------|---------------------------------|-----------------------|---|
| ATLAS                            |             | N <sub>jet</sub> N <sub>obs</sub>                     | $N_{ m bkg}$                | N <sub>sig</sub> N <sub>WW</sub>                     | $N_{VV}$                    | $N_{t\bar{t}}$ N                 | $N_{Z/\gamma^*}$                | $N_{W+jets}$          |   |
|                                  |             | = 0 831<br>= 1 309                                    |                             | $97 \pm 20$ $551 \pm 41$<br>$40 \pm 13$ $108 \pm 40$ |                             | $23 \pm 3$ 16 ±<br>68 ± 18 27 ±  |                                 | $61 \pm 21$<br>20 ± 5 |   |
| CMS (cut-based                   |             | $\geq 2$ 55                                           |                             | $4.0 \pm 1.4$ $4.1 \pm 1.5$                          |                             | $4.6 \pm 1.7$ 0.8 ±              |                                 | $0.7 \pm 0.2$         |   |
|                                  |             | Н                                                     | 515                         | WZ + ZZ                                              |                             |                                  |                                 |                       |   |
| @m <sub>H</sub> =125GeV)         | $m_{\rm H}$ | $\rightarrow W^+W^-$                                  | $\rightarrow W^+W^-$        | $+Z/\gamma^* \rightarrow \ell^+ \ell^-$              | Тор                         | W + jets                         | $W\gamma^{(*)}$                 | all bkg.              | d |
| 0jet eµ                          | 125         | $90\pm19$                                             | $310\pm29$                  | $11.4\pm1.1$                                         | $20.0\pm4.3$                | $48\pm13$                        | $40\pm13$                       | $429\pm 34$           | 5 |
|                                  | 105         | E(   10                                               | 207 1 10                    | 10( 1.21                                             | $9.3 \pm 2.2$               | $28.7 \pm 7.7$                   | $9.3 \pm 3.8$                   | $360 \pm 38$          | 4 |
| 0jet ee+µµ                       | 125         | $56 \pm 12$                                           | $207 \pm 19$                | $106 \pm 31$                                         | $9.3 \pm 2.2$               | $20.7 \pm 7.7$                   | $9.3 \pm 3.0$                   | $300 \pm 30$          | - |
| ljet eu<br>ljet eμ<br>ljet ee+μμ | 125         | $\begin{array}{c} 56 \pm 12 \\ 42 \pm 12 \end{array}$ | $207 \pm 19$<br>$80 \pm 11$ | $106 \pm 31$<br>$12.9 \pm 1.2$                       | $9.3 \pm 2.2$<br>78.9 ± 4.5 | $28.7 \pm 7.7$<br>$25.8 \pm 6.9$ | $9.3 \pm 3.8$<br>$11.2 \pm 4.6$ | $209 \pm 14$          | 2 |

•CMS yields higher (looser selection on lepton  $p_T$ )

•Total signal uncertainty ~15% from QCD scales, PS/UE, PDF models

•Main backgrounds :

VBF

Z+jets (~65%) estimated using MET-mll distributions to extrapolate from the Z peak to the SR top (15%) from top enriched CR Total uncertainties:  $\delta$ (Z+jets) ~13%  $\delta$ (top) ~ 33%

## ATLAS – BKG Systematics

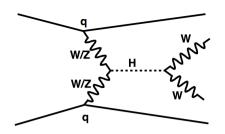
| Estimate                                | Stat. (%) | Theory (%) | Expt. (%) | Crosstalk (%) | Total (%) |
|-----------------------------------------|-----------|------------|-----------|---------------|-----------|
| WW<br>$N_{jet} = 0$<br>$N_{jet} = 1$    | 2.9<br>6  | 1.6<br>5   | 4.4<br>4  | 5.0<br>36     | 7.4<br>37 |
| Top<br>$N_{jet} = 1$<br>$N_{jet} \ge 2$ | 2<br>10   | 8<br>15    | 22<br>29  | 16<br>19      | 29<br>39  |

## ATLAS 7TeV + 8TeV Results

### ATLAS-CONF-2013-030

### Event Yields

Numbers quoted for 0.75 mH < mT < mH  $\,$  w/mH =125 GeV (mT < 1.2 mH for 2-jet ch)


| TeV            | Signal<br>Expectation          | Total Bkg                                                                     | Data                                                                                                                                                               |
|----------------|--------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 jet          | $97 \pm 20$                    | $739\pm39$                                                                    | 831                                                                                                                                                                |
| 1 jet          | 40 ± 13                        | $261\pm28$                                                                    | 309                                                                                                                                                                |
| 2 jet          | $10.6\pm1.4$                   | $36 \pm 4$                                                                    | 55                                                                                                                                                                 |
| TeV            | Signal<br>Expectation          | Total Bkg                                                                     | Data                                                                                                                                                               |
| 0.1            |                                |                                                                               |                                                                                                                                                                    |
| 0 jet          | $25 \pm 5$                     | $161 \pm 11$                                                                  | 154                                                                                                                                                                |
| 0 jet<br>1 jet | $25 \pm 5$ $7 \pm 2$           | $161 \pm 11$ $47 \pm 6$                                                       | 154<br>62                                                                                                                                                          |
|                | 0 jet<br>1 jet<br>2 jet<br>TeV | Expectation0 jet $97 \pm 20$ 1 jet $40 \pm 13$ 2 jet $10.6 \pm 1.4$ TeVSignal | Expectation         Expectation           0 jet $97 \pm 20$ $739 \pm 39$ 1 jet $40 \pm 13$ $261 \pm 28$ 2 jet $10.6 \pm 1.4$ $36 \pm 4$ Signal           Total Bkg |

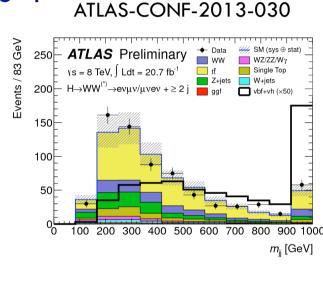
|                                                     | Signa             | al processe       | s (%)               | Background processes (%) |                   |                     |
|-----------------------------------------------------|-------------------|-------------------|---------------------|--------------------------|-------------------|---------------------|
| Source                                              | $N_{\rm jet} = 0$ | $N_{\rm jet} = 1$ | $N_{\rm jet} \ge 2$ | $N_{\rm jet} = 0$        | $N_{\rm jet} = 1$ | $N_{\rm jet} \ge 2$ |
| Theoretical uncertainties                           |                   |                   |                     |                          |                   |                     |
| QCD scale for ggF signal for $N_{\text{jet}} \ge 0$ | 13                | -                 | -                   | -                        | -                 | -                   |
| QCD scale for ggF signal for $N_{jet} \ge 1$        | 10                | 27                | -                   | -                        | -                 | -                   |
| QCD scale for ggF signal for $N_{jet} \ge 2$        | -                 | 15                | 4                   | -                        | -                 | -                   |
| QCD scale for ggF signal for $N_{jet} \ge 3$        | -                 | -                 | 4                   | -                        | -                 | -                   |
| Parton shower and UE model (signal only)            | 3                 | 10                | 5                   | -                        | -                 | -                   |
| PDF model                                           | 8                 | 7                 | 3                   | 1                        | 1                 | 1                   |
| $H \rightarrow WW$ branching ratio                  | 4                 | 4                 | 4                   | -                        | -                 | -                   |
| QCD scale (acceptance)                              | 4                 | 4                 | 3                   | -                        | -                 | -                   |
| WW normalisation                                    | -                 | -                 | -                   | 1                        | 2                 | 4                   |
| Experimental uncertainties                          |                   |                   |                     |                          |                   |                     |
| Jet energy scale and resolution                     | 5                 | 2                 | 6                   | 2                        | 3                 | 7                   |
| b-tagging efficiency                                | -                 | -                 | -                   | -                        | 7                 | 2                   |
| $f_{\text{recoil}}$ efficiency                      | 1                 | 1                 | -                   | 4                        | 2                 |                     |

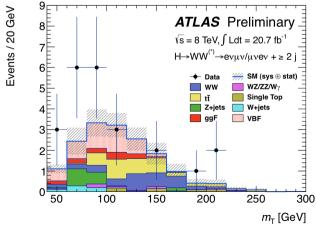
The VBF process contributes 2%, 12%, and 81% of the signal events expected in the signal region of the Njet = 0, = 1, 2 jets

Microsoft DowarDoint

# **Vector Boson Fusion**

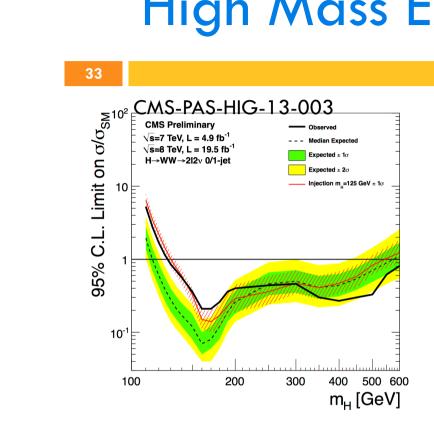



- WW + 2 forward jets with large rapidity gap
- Background dominated by top and Z+jets
- □ ATLAS


32

- Selection
  - b-tag veto
  - DY<sub>ii</sub>>2.8, M<sub>ii</sub>>500GeV
  - Central jet veto
  - Require central leptons
- Similar background estimation to ggF

### analysis


- top : constrained in control region
- WW : from theory
- DY : MC corrected with control region
- Standalone signal extracted
  - ggF "signal" as part of the background





# **High Mass Exclusion**





- □ CMS exclusion for SM Higgs in 128-600 GeV at 95% C.L.
  - Expected exclusion is 115-575 GeV