

Paolo Meridiani Ruggero Turra

INFN Roma Univ. degli Studi di Milano & INFN

May 8, 2013

Table of contents

1 Introduction

2 Photon physics

3 Higgs analysis

4 Analysis evolution

Section 1

Introduction

 $H \rightarrow \gamma \gamma$

The channel

- small branching ratio ($\sim 10^{-3}$)
- simple signature: two isolated photons with large transverse momentum
- very good mass resolution (1 ÷ 2% @ 125 GeV)
- huge background
 - $\gamma\gamma$ from QCD (irreducible)
 - γj with one mis-identified jet as photon
 - jj with two mis-identified jets
 - Drell-Yan with electrons mis-identified as photons
- Sensitivity dependent on experimental di-photon mass resolution

very high sensitivity in the low mass range

ATLAS

CMS

Section 2

Photon physics

Different calorimeter design

- LAr/Pb sampling calorimeter, 22X₀
- accordion shape: full azimuthal coverage, fast signal extraction
- longitudinally segmented (strip, middle, back) + presampler
- middle segmentation: 0.025×0.025
- fine η segmentation of strip layer, $\Delta \eta = 0.003, \ \gamma/\pi^0$ separation

• nominal
$$\sigma/E = \frac{10 \div 17\%}{\sqrt{E/\text{GeV}}} \oplus 0.7\%$$

- homogeneous calorimeter
- high resolution *PbWO*₄ scintillating crystals, avalanche photodiodes + endcap silicon preshower
- 0.017 \times 0.017 (barrel), 0.018 \times 0.003 to 0.088 \times 0.015 (endcap)
- lateral segmentation, no longitudinal segmentation

• nominal
$$\sigma/E = \frac{3\%}{\sqrt{E/GeV}} \oplus 0.5\%$$

Detectors

material

8 2 Tracker Material Budget Non projective barrel endcap transition Š Outside TEC TOB 6 1.8 TIB+TID Pixel 1.6 Beam Pipe BARREL ENDCAP 1.4 4 1.2 active accordion active accordion 0.8 Warm cryo cone+flange 2 0.6 0.4 Warmw 0.2 ID-Warm wal lDtor=63 cm 0, -3 .2 3 -1 2 Pseudorapidity

Limiting the resolution due to energy loss. Need to estimated a correction.

• ATLAS solenoid is located just in front of the barrel ECAL

Photon identification

Both ATLAS and CMS exploit the granularity of the detector to reject background based on the shapes of the electromagnetic shower

- Identification using
 - hadronic leakage
 - width in the middle layer
 - width in the strip layer
 - presence of second maxima in the strip layer ($\Delta\eta=0.003\div0.006$)
- NN only for 2011
- Systematics: 1.5% 2.5% (2012)

- BDT inputs:
 - isolation
 - cluster shapes (R₉, ...)
 - preshower energy (endcap)

- validated with Z
 ightarrow ee and $Z
 ightarrow \mu \mu \gamma$
- Systematics: 1% 2.5%

Efficiency

10 of 43

Isolation

- Calorimetric isolation: scalar sum of transverse energy of topoclusters in $\Delta R < 0.4$ except small central region
- Corrected for residual leakage and ambient energy

• Track isolation: scalar sum of transverse momenta of all the tracks in a cone around the photon $\Delta R < 0.2$

- $\Delta R <$ 0.3 cone, using particle flow
- charged candidates from PF, associated to the selected vertex
- charged candidates from PF, associated to the vertex with highest isolation
- electromagnetic neutral candidates
- hadronic neutral candidates
- corrected by MVA for event energy density

Energy scale and corrections

comparison data/MC after corrections:

spread in crystal and photo-detector response, and time-dependent corrections to response loss corrections

regression correction effect (right)

ECAL performance

EMC stability < 0.1% vs time and pileup

important correction for CMS

13 of 43

Section 3

Higgs analysis

Moriond analysis

Documentation:

- • ATLAS-CONF-2013-012 (update only 2012, 2011 from ICHEP)
 - $\circ~$ CMS-PAS-HIG-13-001 (first update after the discovery for CMS)
- two analyses for CMS: MVA ($\sim 15\%$ more sensitivity) / cut-based
- spin analysis, fiducial cross section $(\sigma_{\rm fid} \times Br = 56.2 \pm 10.5({\rm stat}) \pm 6.5({\rm syst}) \pm 2.0({\rm lumi}){\rm fb})$ and VBF evidence $(2.9\sigma,$ expected $1.3\sigma)$ only from ATLAS

Key points:

- energy resolution: sensitivity dependent on the resolution
- energy scale: main systematic error on the mass measurement
- vertex identification and pointing: to improve the mass resolution
- photon identification: main systematic on the coupling measurement (except luminosity)
- background parametrisation: important the well describe the background shape
- Data categorization in exclusive categories to increase sensitivity and access VBF / VH modes and in inclusive categories with different resolution and S/B

Data and trigger

$$L = 4.8 \text{ fb}^{-1} \qquad \sqrt{s} = 7 \text{ TeV} (2011) \\ +20.7 \text{ fb}^{-1} \qquad \sqrt{s} = 8 \text{ TeV} (2012)$$

Systematics: 1.8% / 3.6%

 diphoton trigger, using cluster energies and loose cuts: 20 GeV (2011), 35,25 GeV (2012). Syst: 0.5%

$$L = 5.1 \text{ fb}^{-1} \qquad \sqrt{s} = 7 \text{ TeV} (2011)$$

+19.6 fb⁻¹ \quad \sqrt{s} = 8 \text{TeV} (2012)

Systematics: 4.4%

 diphoton trigger, using cluster energies and loose cuts: 26 GeV,18 GeV and 36 GeV,22 GeV. Syst: 1%

Offline selection

- $|\eta| < 2.37$ except $1.37 < |\eta| < 1.56$
- *p*^T > 30, 40 GeV
- cut-based (NN) identification using shower shapes and hadronic leakage in 2012 (2011)
 - efficiency between 85% and 95% (100 GeV)
 - efficiency data-driven measurement on data (2.5%-1.5% uncertainty)
- calorimetric isolation < 6 GeV
- track isolation < 2.6 GeV
- 23 788 (118 893) events in $100 < m_H < 160 \text{ GeV} \sqrt{s} = 7 \text{ TeV}$ (8 TeV)

- $|\eta| < 2.5$ except $1.4442 < |\eta| < 1.566$
- $p_T > m_{\gamma\gamma}/3$, $p_T > m_{\gamma\gamma}/4$,
- preselection: hadronic leakage, isolation, loose shower shapes cuts
- BDT identification using:
 - many shower topology variables
 - four isolation definition
 - energy density in the event
- in the cut-based analysis:
 - hadronic leakage
 - shower shape variable
 - isolation
- isolation based on particle flow

Purity

• diphoton purity 75^{+3}_{-4} %

• diphoton purity: 70% from MC in $110 < m_{\gamma\gamma} < 150 \, {
m GeV}$

Pointing

ATLAS

- ability to measure direction with the calorimeter only thanks to the longitudinal segmentation
- unconverted photons using the barycentre of the cluster measured in the first and the second layer
- converted photons from the conversion point and the position in the first layer of the accordion
- for each of the two photons the intersection between the flight line and the beam line gives the estimate of the z-coordinate of the photon origin
- · a weighted average of the two gives the estimate, with its uncertainty
- $\sigma_z = 15 \,\mathrm{mm}$ (6 mm using conversion)

Primary vertex selection

NN (2012), likelihood ratio (2011):

- $\sum_{\text{tracks}} p_T^2$, $\sum_{\text{tracks}} p_T$, $\Delta \phi(\gamma \gamma, \text{vertex})$, pointing+conversion
- validated with $Z \rightarrow ee$
- $arepsilon\gtrsim$ 75% (< 0.3 mm)

- BDT: conversion, p_T -balance, asymmetry
- ε ~ 80% (< 10 mm)
- validated with $Z
 ightarrow \mu \mu$, γ -jet
- Another BDT to evaluate prob. of correct choice

Invariant mass resolution

Fit: Crystall Ball + wide gaussian
 o gaussian component ≤ 12%

FWHM / 2.35:

	ATLAS ¹	CMS
overall	1.77 GeV	1.64 GeV
best cat	1.40 GeV	1.27 GeV
other cats	1.50–2.52 GeV	1.39–2.14 GeV

• Fit: sum of two or three gaussians

 1 ATLAS only quotes σ_{CB} in the last public document. FHWM is obtained scaling σ_{CB} for the FHWM/ σ_{CB} in HCP note.

Exclusive categories

Data are splitted in exclusive categories to study the coupling of $ggH + t\bar{t}H$ / VBF / VH associate production. Very high purity ($s/b \simeq 10\% \div 50\%$)

- one lepton, to tag VH production with lepton decays of V
- *E*_T-miss, to tag V decays with neutrinos
- low-mass two-jets category, to tag VH production with hadronic decay of V
- high-mass two-jets category (tight/loose) requiring 2 energetic and well separated hadronic jets, to tag VBF
 - CMS splits electron / muon
 - ATLAS has low-mass two-jets category

- muon, to tag VH production with muon decays of V
- electron, to tag VH production with electron decays of V
- *E_T*-miss, to tag V decays with neutrinos
- dijet (low/high BDT) to tag VBF

Inclusive categories

cut-based

- 9 categories using:
 - conversion status
 - $|\eta|$ position
 - $p_{Tt} \ge 60 \text{ GeV}$ (strongly correlated with the diphoton transverse momentum, but it has a better detector resolution)

- 4 categories using:
 - barrel / endcap
 - shower shape R₉ ≥ 0.94 (correlated with conversion status)

Inclusive categories

CMS (MVA)

Four untagged categories based on BDT discriminant

- inputs: kinematic properties, per-event mass resolution, photon identification
- validation of MVA inputs (kinematics, photon ID, mass resolution) with $Z \rightarrow ee, Z \rightarrow \mu\mu\gamma$
- No obvious data/MC discrepancy or pileup dependence

Category purity

Signal composition

\sqrt{s}		8 TeV					
Category	N_D	N_S	$gg \rightarrow H[\%]$	VBF [%]	WH [%]	ZH [%]	ttH [%]
Loose high-mass two-jet	276	5.3	45.0	54.1	0.5	0.3	0.1
Tight high-mass two-jet	136	8.1	23.8	76.0	0.1	0.1	0.0
Low-mass two-jet	210	3.3	48.1	3.0	29.7	17.2	1.9
ET significance	49	1.3	4.1	0.5	35.7	47.6	12.1
One-lepton	123	2.9	2.2	0.6	63.2	15.4	18.6

Exp	Expected signal and estimated background						
Ex	SM Higgs boson expected signal (m _H =125 Ge						
Ľ,	ent classes	Total ggH VBF VH ttH					
T	Dijet tight	9.2	20.7%	78.9%	0.3%	0.1%	
6fb	Dijet loose	11.5	47.0%	50.9%	1.7%	0.5%	
7 19.	Muon tag	1.4	0.0%	0.2%	79.0%	20.8%	
TeV	Electron tag	0.9	1.1%	0.4%	78.7%	19.8%	
8	E _T ^{miss} tag	1.7	22.0%	2.6%	63.7%	11.7%	

Signal and background

Expected signal and background considering a window containing 90% of the signal at 126.5 ${\rm GeV^1}$:

category	S	Ь	s/b	s/\sqrt{l}
Unc. Central LowPt	46.6	881	0.053	1.57
Unc. Central HighPt	7.1	44	0.161	1.07
Unc. rest LowPt	97.1	4347	0.022	1.47
Unc. rest HighPt	14.4	247	0.058	0.92
Conv Central LowPt	29.8	687	0.043	1.1^{4}
Conv Central HighPt	4.6	31	0.148	0.83
Conv Rest LowPt	88	4567	0.019	1.30
Conv Rest HighPt	12.9	266	0.048	0.79
Conv Transition	36.1	2499	0.014	0.72
Tight HighMass DiJet	7.3	13	0.562	2.02
Loose HighMass DiJet	4.8	28	0.171	0.91
LowMass DiJet	3	21	0.143	0.65
MET	1.1	4	0.275	0.55
Lepton	2.6	12	0.217	0.75
All	355.5	13647	0.026	3.04

category	5	Ь	s/b	s/\sqrt{b}
Untagged0	15.3	99	0.155	1.54
Untagged1	34.02	464	0.073	1.58
Untagged2	135.18	3312	0.040	2.35
Untagged3	143.91	9082	0.016	1.51
DiJetTight	8.28	20	0.414	1.85
DiJetLoose	10.35	76	0.136	1.19
MET	1.53	11	0.145	0.47
Muon	1.26	4	0.297	0.61
Electron	0.81	4	0.188	0.39
All	350.64	13072	0.027	3.07

 $^{^1\}text{Quite}$ difficult to compare: ATLAS quotes the number of expected background events in a mass window containing 90% of the signal at 126.5 GeV, CMS the number of expected background events at 125 GeV for 1 GeV. Here scaling CMS numbers to ATLAS using flat background and gaussian signal approximation.

Background model

Signal extraction from S+B fits to $m_{\gamma\gamma}$ data, background from analytical functions. Different approach for the background modelling:

- fitting diphoton mass data distribution between $100 < m_{\gamma\gamma} < 160 \, {\rm GeV}$
- based on high statistics MC combined according to fraction determined from data
- spurious signal defined as the largest absolute signal component fitted anywhere in $110 < m_{\gamma\gamma} < 150 \text{ GeV}$ quoted as systematic

- determine truth model from data using function with high degree of freedom (100 $< m_{\gamma\gamma} < 180 \,\text{GeV}$)
- the functions are tested on pseudo-data generated from truth model
- find the best function which minimize spurious signal (< 20% background fluctuation in 1 FWHM)
- no specific systematics is associated to the spurious signal.

ATLAS-CONF-2013-012

Signal yield

Signal yield

CMS (MVA/cut-based)

P. Meridiani, R. Turra [UNI La Sapienza, UNIMI & INFN]

local p-value

- Comparable expected significance between ATLAS and CMS MVA analysis
- ATLAS is 2.3 standard deviations from the SM expectation
- ATLAS has worse precision on the observed $\hat{\mu}$
 - o there can be an effect related to the background model and treatment of systematics
 - $\circ\,$ the best would be to compare the expected precision on $\hat{\mu}$

Signal strength per category

mass

• The best-fit for the mass value is $m_H = 126.8 \pm 0.2(stat) \pm 0.7(syst) \text{GeV}$

Comparable systematics errors

• The best-fit for the mass value is $m_H = 125.4 \pm 0.5(stat) \pm 0.6(syst)$ GeV

signal strengths

- $\mu_{ggH+t\bar{t}H} = 1.6^{+0.3}_{-0.3}(\text{stat})^{+0.3}_{-0.2}(\text{syst})$ • $\mu_{VBF} = 1.7^{+0.8}_{-0.8}(\text{stat})^{+0.5}_{-0.4}(\text{syst})$
- $\mu_{VH} = 1.8^{+1.5}_{-1.3}(\text{stat})^{+0.3}_{-0.3}(\text{syst})$

- $\mu_{ggH+t\bar{t}H} = 0.52$
- $\mu_{q\bar{q}H+VH} = 1.48$
- smaller error on μ_{ggH+tt̄H} ?

Spin (ATLAS)

- no categories, $p_T/m_{\gamma\gamma}$ cut instead of p_T to avoid correlation with $\cos(\theta^*)$
- Two methods to discriminate 0 $^+$ / 2 $^+$
 - \circ bidimensional model $|\cos heta^*| \otimes \dot{m}_{\gamma\gamma}$
 - independent fit of $m_{\gamma\gamma}$ in $|\cos \theta^*|$ bins

- data compatible with 0⁺
- considering 100% gluon fusion: 2⁺ excluded 99.3% (89.4%) CL.

 $H \to Z\gamma$

- sensitive to New Physics as $H \rightarrow \gamma \gamma$ through the loop, $Br(H \rightarrow Z\gamma)/Br(H \rightarrow \gamma \gamma)$
- branching ratio similar to $H \rightarrow ZZ \rightarrow 4I$: $\sigma(pp \rightarrow H) \times Br(H \rightarrow Z\gamma) \times Br(Z \rightarrow II) \simeq 2.3 \text{ fb @ 8 TeV}$
- large background: $Z + \gamma$, Z + jet
- 4.6 + 20.7 fb⁻¹
- observable: $\Delta m = m_{II\gamma} m_{II}$
- two categories: $\mu\mu/~ee$

- 5 + 19.6 fb⁻¹
- observable: *m*_{IIγ}
- 4 categories (barrel/endcap, R_9) $\otimes ee/\mu\mu$

 $H \rightarrow Z\gamma$

P. Meridiani, R. Turra [UNI La Sapienza, UNIMI & INFN]

36 of 43

Section 4

Analysis evolution

Time evolution

significance

Time evolution

signal strength

39 of 43

Time evolution

mass

Conclusions

- 2011+2012 data have been analysed \sim 25 fb $^{-1}$
- very similar expected significance
- observed excess 7.4 σ (ATLAS), 3.2 σ (CMS)
- observed σ/σ_{SM} 1.65 (ATLAS), 0.78 (CMS)
- ATLAS is 2.3 σ above SM, CMS is 0.8 σ below
- compatibility ATLAS/CMS? 2σ?
- mass measurement with error $\lesssim 1\,{
 m GeV}$
- measurement of exclusive couplings
- spin 2 disfavoured by ATLAS

Invariant mass resolution

Category	$\sigma_{CB}(\text{GeV})$
Unconv. central, low p_{Tt}	1.50
Unconv. central, high p_{Tt}	1.40
Unconv. rest, low p_{Tt}	1.74
Unconv. rest, high p_{Tt}	1.69
Conv. central, low p_{Tt}	1.68
Conv. central, high p_{Tt}	1.54
Conv. rest, low p_{Tt}	2.01
Conv. rest, high p_{Tt}	1.87
Conv. transition	2.52
Loose High-mass two-jet	1.71
Tight High-mass two-jet	1.64
Low-mass two-jet	1.62
$E_{\rm T}^{\rm miss}$ significance	1.74
One-lepton	1.75
Inclusive	1.77

Event classes				
ц.	ent clusses	eff	FWHM/2.35	
	Distant	(GeV)	(GeV)	
	Dijet tag			
Ţ	Untagged 0	1.36	1.27	
-ff	Untagged 1	1.50	1.39	
9.6	Untagged 2	1.77	1.54	
< 1	Untagged 3	2.61	2.14	
Te,	Dijet tight	1.79	1.50	
s	Dijet loose	1.87	1.60	
	Muon tag	1.85	1.52	
	Electron tag	1.88	1.54	
	E ^{miss} tag	1.79	1.64	FW

 $1.27 \div 2.14 \text{ GeV}$

 $1.40\div 2.52\,\text{GeV}$

42 of 43

1/5		8	TeV		
Category	σcn(GeV)	Observed	Ne	Nn	N_{c}/N_{p}
Unconv central low nr.	1 50	911	46.6	881	0.05
Unconv central high p _T	1.50	49	71	44	0.16
Unconv rest low pT	1.10	4611	97.1	4347	0.02
Unconv rest high pre-	1.69	292	14.4	247	0.06
Conv central low pre-	1.68	722	29.8	687	0.04
Conv. central, high p_{Tr}	1.54	39	4.6	31	0.15
Conv. rest. low pTr	2.01	4865	88.0	4657	0.02
Conv. rest, high pTr	1.87	276	12.9	266	0.05
Conv. transition	2.52	2554	36.1	2499	0.01
Loose High-mass two-jet	1.71	40	4.8	28	0.17
Tight High-mass two-jet	1.64	24	7.3	13	0.57
Low-mass two-jet	1.62	21	3.0	21	0.14
E_{T}^{miss} significance	1.74	8	1.1	4	0.24
One-lepton	1.75	19	2.6	12	0.20
Inclusive	1.77	14025	355.5	13280	0.03

Exp	Expected signal and estimated background						
Except alagoog		SM Higgs boson e	spected signal (met=125 GeV)	Background			
	ent classes	eff	FWHM/2.35	m = 125 GeV			
		(GeV)	(GeV)	(ev./GeV)			
-	Dijat tight	1 70	1.50	24 +02			
æ	Dijet tight	1.79	1.50	5.4 ± 0.2			
9.6	Dijet loose	1.87	1.60	12.4 ± 0.4			
2 I 1	Muon tag	1.85	1.52	0.7 ± 0.1			
8 T	Electron tag	1.88	1.54	0.7 ± 0.1			
	E ^{miss} tag	1.79	1.64	1.8 ± 0.1			