

VI workshop italiano sulla fisica p-p a LHC

Atlas: Marcella Bona (Queen Mary, University of London, United Kingdom) **CMS: Mauro Dinardo** (Università degli Studi di Milano Bicocca - INFN, Italy) *LHCb*: Nicola Serra (University of Zurich, Switzerland)

10/05/2013

Outline

- *Motivation for $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ analysis
- *Comparison of detector performance
- Event selections
- Peaking backgrounds
- *****Fit strategies
- Corrections for instrumental effects
- *Statistical and systematic uncertainties
- *Measurement comparison
- * Discussion

Motivation for $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ analysis

B⁰ → K^{*0} µ⁺ µ⁻ described within the SM as flavor changing neutral current process →
 (a)small SM rates (b)small theoretical uncertainties (c)new physics predictions that differ from SM (d)experimental accessibility →
 good candidate for indirect searches for new phenomena

- The decay is fully described with three angles (θ_{I} , θ_{K} , Φ) and $q^{2} = m^{2}(\mu\mu)$
- Example of angular observables theoretically predicted with relatively small uncertainties at low q²: µµ forward-backward asymmetry (A_{FB})
- Useful resonant control channels:
 - $B^0 \rightarrow J/\psi \ (\mu^+ \ \mu^-) \ K^{*0}$
 - $B^0 \rightarrow \psi(2S) \ (\mu^+ \ \mu^-) \ K^{*0}$

Marcella Bona, <u>Mauro Dinardo</u>, Nicola Serra

Interesting / accessible observables

Assuming equal numbers of B⁰ and B⁰bar

Interesting / accessible observables

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{dq^2 d\cos\theta_\ell d\cos\theta_K d\phi} = \frac{9}{32\pi} \begin{bmatrix} S_1^s \sin^2\theta_K + S_1^c \cos^2\theta_K + S_2^c \cos^2\theta_K \cos^2\theta_\ell + S_2^c \cos^2\theta_K \cos^2\theta_\ell + S_2^c \sin^2\theta_\ell \cos^2\theta_\ell + S_2^c \sin^2\theta_\ell \cos^2\theta_\ell + S_3^c \sin^2\theta_\ell \cos^2\theta_\ell + S_3^c \sin^2\theta_\ell \cos^2\theta_\ell + S_3^c \sin^2\theta_\ell \cos^2\theta_\ell + S_5^c \sin^2\theta_\ell \sin^2\theta_\ell \sin^2\theta_\ell + S_5^c \sin^2\theta_\ell \sin^$$

0

Interesting / accessible observables

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{dq^2 d\cos \theta_\ell d\cos \theta_K d\phi} = \frac{9}{32\pi} \begin{bmatrix} S_1^* \sin^2 \theta_K + S_1^* \cos^2 \theta_K + S_2^* \cos^2 \theta_K \cos 2\theta_\ell + S_2^* \cos^2 \theta_K \cos 2\theta_\ell + S_2^* \sin^2 \theta_L \sin^2 \theta_L \cos 2\theta_\ell + S_2^* \sin^2 \theta_L \sin^2 \theta_L \cos 2\theta_\ell + S_2^* \sin^2 \theta_L + S_2^* \sin^2 \theta_L \sin^2 \theta_L$$

Motivation for $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ analysis

SM vs plausible SM extensions:

JHEP 01 (2009) 019

- General MSSM
- Flavor Blind MSSM

Dramatic change of trends versus q²

Marcella Bona, <u>Mauro Dinardo</u>, Nicola Serra

7

Analysis performed with 2011 data:

- LHCb collected ~1 fb⁻¹
- Atlas collected ~4.9 fb⁻¹
- CMS collected ~5.2 fb⁻¹

	LHCb	Atlas	CMS
P s e u d o r a p i d i t y coverage	2 < η < 5	η < 2.5	η < 2.5
(transverse) momentum resolution	0.4 – 0.6% from 5 to I00 GeV/c	4 – 8% from 4 to 10 GeV/c and 4% for > 10 GeV/c	1.5% up to 100 GeV/c
Impact parameter resolution	20 µm	I2 μm	I5 μm
 Mass resolution J/ψ → μμ 	13 MeV/c ²	46 MeV/c ²	28 MeV/c ²
• K – π ID (B ⁰ \rightarrow K ^{*0} (K ⁺ π^{-}) $\mu^{+} \mu^{-}$)	RICH: separation in range 2 – 100 GeV/c	No detector for particle ID	No detector for particle ID

LHCb event selection

(a) Cut-based selection:

Trigger

- at least one μ with $p_T(\mu) > 1.5$ GeV/c
- at least one hadron with $p_T(h) > 1.5$ GeV/c
- tracks impact parameter "big" w.r.t. PV
- kinematic properties B⁰ candidates

- separation between B⁰ vtx. and Primary Vtx. (PV)
- B⁰ impact parameter "small" w.r.t. PV
- B⁰ α "small" (angle between B⁰ momentum and line of flight PV-B⁰ vtx.)

$K\pi$ selections

- CP-state assignment: RICH detector
- $| m(K\pi) m(K^{*0}_{PDG}) | < 100 \text{ MeV/c}^2$

LHCb event selection

(b) BDT-based selection:

Resonant channels rejection

- 2946 < m(μμ) < 3176 MeV/c² and 3586 < m(μμ) < 3766 MeV/c² or
- 2796 < m($\mu\mu$) < 3176 MeV/c² and 3436 < m($\mu\mu$) < 3766 MeV/c² for m(K $\pi\mu\mu$) in left-hand tail or
- 2946 < m($\mu\mu$) < 3201 MeV/c² and 3586 < m($\mu\mu$) < 3791 MeV/c² for m(K $\pi\mu\mu$) in right-hand tail

Atlas vs CMS event selection		
Atlas CMS		
Muon-based trigger	Dedicated muon-based trigger	
• two μ with $p_T(\mu) > 4$ GeV/c or $p_T(\mu_1) > 6$	• $\mu\mu$ vtx. L / σ > 3 (transverse)	
GeV/c and p _T (μ ₂) > 4 GeV/c	I < m(μμ) < 4.8 GeV/c ²	
prescale	• $p_T(\mu)$ > 3, 4, 4.5, 5 GeV/c (depending on	
	trigger)	
	μμ vtx. CL > 5%, I 5% (depending on trigger)	
Track selections	Track selections	
• offline μ no need match trigger μ	• offline μ -match trigger μ , hadron fail μ -ID	
μμ vtx. X ² /dof < 10	● рт(h) > 0.75 GeV/с	
■ tracks p _T > 0.5 GeV/c	• impact parameter(h) / σ > 1.3 (transverse)	

$K\pi$ selections

• CP-state assignment:

closest distance K^{*0}_{PDG} mass

- |● | m(Kπ) − m(K^{*0}_{PDG}) | < 46 MeV/c²
- pT(Kπ) > 3 GeV/c

$K\pi$ selections

- CP-state assignment:
 - reject event if both K^{*0} and K^{*0}
 masses within ~1Γ from PDG mass
 - closest distance K^{*0}_{PDG} mass
- | m(Kπ) m(K^{*0}_{PDG}) | < 80 MeV/c²

Atlas vs CMS event selection

Atlas

CMS

B ⁰ selections	B ⁰ selections
• $B^0 \tau / \sigma_{\tau} > 12.75$	• B^0 vtx. L / σ > 12 (transverse)
• B^0 vtx. $X^2/dof < 2$	• B^0 vtx. CL > 9%
• $B^0 \cos(\alpha) > 0.999$ (angle between B^0 momentum	• $B^0 \cos(\alpha) > 0.9994$ (angle between B^0 momentum
and line of flight PV–B ⁰ vtx.)	and line of flight)

Atlas

Resonant channels rejection • $| m(\mu\mu) - m(J/\psi_{PDG}) | > 3\sigma \text{ and } | m(\mu\mu) - m(\psi(2S)_{PDG}) | > 3\sigma$ • $| m(B^{0}_{RECO}) - m(B^{0}_{PDG}) - (m(\mu\mu_{RECO}) - m(J/\psi_{PDG} | \psi(2S)_{PDG})) | < 130 \text{ MeV/c}^{2}$

CMS

Resonant channels rejection

• $m(\mu\mu) < m(J/\psi_{PDG}) - 5\sigma$ or $m(\mu\mu) > m(J/\psi_{PDG}) + 3\sigma$ and $|m(\mu\mu) - m(\psi(2S)_{PDG})| > 3\sigma$

Quantities referred to PV with higher p_T

 Quantities referred to beam spot -> pileup insensitive

Peaking backgrounds

	LHCb	Atlas	CMS
B _s → Φ μμ	Cut on KK mass w.r.t. Φ(1020)	Considered negligible	Cut on KK mass w.r.t. Φ(1020)
Λ _b → Λ*(1520) μμ	Cut on pK mass w.r.t. Λ*(1520)	Considered negligible	Considered negligible
B _s → K ^{*0} μμ	I% considered as syst. uncertainty	Considered negligible	Considered negligible
 B⁰ → J/ψ K^{*0} (μ mis-ID as K or π) 	3036 < (m(Kμ) or m(πμ)) < 3156 MeV/c²	Considered negligible	Considered negligible
 B⁰ → ψ(2S) K^{*0} (μ mis-ID as K or π) 	Similar to $B^0 \rightarrow J/\psi K^{*0}$	Considered negligible	Considered negligible
• $B^+ \rightarrow K^+ \mu\mu$ (π from other B decays)	5230 < m(Κμμ) < 5330 MeV/c²	Syst. uncertainty: remove evt. if m(Κμμ) compatible with B ⁰	Considered negligible

Signal comparison

Signal comparison

Fit strategies

 $\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \,\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\hat{\phi}} = \frac{9}{16\pi} \left[F_{\rm L}\cos^2\theta_K + \frac{3}{4} (1 - F_{\rm L}) \left(1 - \cos^2\theta_K\right) - \frac{1}{4} (1 - F_{\rm L}) \left(1 - \cos^2\theta_K\right) \right] - \frac{1}{4} \left[F_{\rm L}\cos^2\theta_K + \frac{3}{4} (1 - F_{\rm L}) \left(1 - \cos^2\theta_K\right) \right] + \frac{1}{4} \left[F_{\rm L}\cos^2\theta_K + \frac{3}{4} (1 - F_{\rm L}) \left(1 - \cos^2\theta_K\right) \right] + \frac{1}{4} \left[F_{\rm L}\cos^2\theta_K + \frac{3}{4} (1 - F_{\rm L}) \left(1 - \cos^2\theta_K\right) \right] + \frac{1}{4} \left[F_{\rm L}\cos^2\theta_K + \frac{3}{4} \left(1 - F_{\rm L}\right) \left(1 - \cos^2\theta_K\right) \right] \right] + \frac{1}{4} \left[F_{\rm L}\cos^2\theta_K + \frac{3}{4} \left(1 - F_{\rm L}\right) \left(1 - \cos^2\theta_K\right) \right] + \frac{1}{4} \left[F_{\rm L}\cos^2\theta_K + \frac{3}{4} \left(1 - F_{\rm L}\right) \left(1 - \cos^2\theta_K\right) \right] \right]$

LHCb: simultaneous fit to all observables

- Fit $K\pi\mu\mu$ -mass + $(\theta_K, \theta_I, \Phi)$: measure **F**L, **A**FB, **S**3, **A**
- Fit $K\pi\mu\mu$ -mass: measure yield $\rightarrow dBF/dq^2$

Atlas: sequential fit to partial decay rates

Fit $K\pi\mu\mu$ -mass + (θ_K , θ_l) in control channel

Fit $K\pi\mu\mu$ -mass + $(\theta_{\kappa}, \theta_{l})$: measure **F**_L, **A**_{FB}

Fit $K\pi\mu\mu$ -mass: measure yield $\rightarrow dBF/dq^2$

 $B^0 \rightarrow J/\psi K^{*0}$: measure FL, AFB, Fs, As

- Fit $K\pi\mu\mu$ -mass: determine shape and yields
- Fit $\theta_{\mathcal{K}}$: measure **F**
- Fit θ_{l} : measure A_{FB}

LHCb: simultaneous fit to all observables
• Fit KTTµµ-mass + (
$$\theta_K$$
, θ_i , Φ): measure FL, AFB, S3, A9
• Fit KTTµµ-mass: measure yield $\rightarrow dBF/dq^2$
Atlas: sequential fit to partial
decay rates
• Fit KTTµµ-mass: determine shape and yields
• Fit KTTµµ-mass: determine shape and yields
• Fit Θ_R : measure FL
• Fit Θ_R : measure AFB
• Fit Θ_R : measure AFB
• Fit KTTµµ-mass + (θ_K , θ_i) in control channel
B⁰ $\rightarrow J/\Psi$ K⁰: measure FL, AFB, FS, AS
• Fit KTTµµ-mass + (θ_K , θ_i) in control channel
B⁰ $\rightarrow J/\Psi$ K⁰: measure FL, AFB, FS, AS
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB, FS, AS
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB, FS, AS
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB, FS, AS
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB
• Fit KTTµµ-mass + (θ_K , θ_i): measure FL, AFB

Marcella Bona, <u>Mauro Dinardo</u>, Nicola Serra

18

Corrections for instrumental effects

LHCb:

- from MC after data/MC reweighing, factorize contributions: $\varepsilon(\cos\theta_i) \cdot \varepsilon(\cos\theta_k) \cdot \varepsilon(\Phi)$
- fine q² binning:
 - q^2 width 0.1 for $q^2 < 1$ GeV²/c⁴
 - q^2 width 0.2 for $I < q^2 < 6 \text{ GeV}^2/c^4$
 - q^2 width 0.5 for 6 < q^2 GeV²/c⁴
- binned only vs. q², applied as event-by-event weight
 Atlas:
- entirely from MC, factorize
 contributions: ε(cosθ_l)•ε(cosθ_K)
- binned in all variables, described with continuous 1D function vs. angles, applied in likelihood

CMS:

- entirely from MC, account for $\frac{1}{2}$ correlations: $\varepsilon(\cos\theta_{l},\cos\theta_{K})$
- binned in all variables, described with continuous 2D function vs. angles, applied in likelihood

Marcella Bona, <u>Mauro Dinardo</u>, Nicola Serra

19

Evaluation of the statistical uncertainty

- LHCb (potential bias from even-weights and p.d.f. boundaries): pseudo-experiments
- Atlas (potential bias from p.d.f. boundaries): symmetric errors out of the fit
- CMS (potential bias from p.d.f. boundaries): **a-symmetric errors out of the fit**

Relative importance of systematic uncertainties	LHCb	Atlas	CMS
Efficiency shape	Major	Relevant	Relevant dBF/dq ²
Feed-through from resonant channels	N.A.	Major	Small
Peaking background	Small	Relevant	Considered negligible
Background angular shape	Small	Small	Major
S-wave contribution	Relevant	Negligible	Small
Fit procedure	Negligible	Major q^2 bin #1 A_{FB}	Relevant dBF/dq ²
 Wrong K-π assignment 	Small (0.85% CP- mistag)	Small (12.5% CP- mistag)	Small (10% CP- mistag)

In all experiments total uncertainty dominated by statistical error

Measurement comparison

LHCb: A_{FB} zero crossing point ($I < q^2 < 7.8 \text{ GeV}^2/c^4$): $q^2_0 = 4.9 \pm 0.9 \text{ GeV}^2/c^4$

SM predictions: $q^{2}_{0} = 4.36 + 0.33/-0.31 \text{ GeV}^{2}/c^{4}$

- Reference to decay rates:
 - JHEP 01 (2009) 019
 - Phys. Rev. D 71, 094009 (2005)
 - Phys. Rev. D 87, 034016 (2013)
 - JHEP 03 (2013) 027

Best theoretical predictions: I < q ² < 6 GeV ² /c ⁴	LHCb	Atlas	CMS
FL	0.65+0.08/-0.07±0.03	0.18±0.15±0.03	0.68±0.10±0.02
A _{FB}	-0.17±0.06±0.04	0.07±0.20±0.07	-0.07±0.12±0.01
dBF/dq ²	3.4±0.3+0.4/-0.5	Not measured	4.4±0.6±0.7

Marcella Bona, <u>Mauro Dinardo</u>, Nicola Serra

Discussion

LHCb prospects for 2012 data analysis

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \,\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{32\pi} \left[S_1^s \sin^2\theta_K + S_1^c \cos^2\theta_K + S_2^c \cos^2\theta_K \cos 2\theta_\ell + S_2^s \sin^2\theta_K \cos 2\theta_\ell + S_2^s \sin^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right],$$

σ(pp → b-bar): from 238 μb @ 7 TeV to 270 μb @ 8 TeV

- During 2012 LHCb collected ~2 fb⁻¹
- Overall LHCb should have ~4000 signal events in 2011+2012
- Statistical error still dominant uncertainty

LHCb plans to measure:

- full set of observables (variables have never been measured as of now)
- full set of CP-asymmetry variables ($\Phi \rightarrow \Phi$ for $B^0; \Phi \rightarrow -\Phi$ for $B^0_{bar} \rightarrow S_x$ becomes A_x): A₃, A₄, A₅, A₆, A₇, and A₈ (in addition to A₉)

Atlas prospects for 2012 data analysis

- During 2012 Atlas collected ~22 fb⁻¹
- Statistical error still dominant uncertainty

Modification to the analysis:

- use EvtGen to describe the decay
- move to MVA and improve choice of PV (based on B⁰ impact parameter)
- dedicated trigger(s) for most of 2012
- simultaneous fit Kπµµ-mass and angles

Atlas plans to re-measure:

• A_{FB}, F_L

Atlas foresees also to measure:

dBF/dq², S₃, and A₉

CMS prospects for 2012 data analysis

During 2012 CMS collected ~22 fb⁻¹

 $\sigma(pp \rightarrow b-bar)$: from 238 µb @ 7 TeV to 270 µb @ 8 TeV

- Overall CMS should have ~2700 signal events in 2011+2012
- Statistical error still dominant uncertainty

CMS plans to re-measure:

• A_{FB} , F_L , dBF/dq^2

CMS foresees also to measure:

- zero crossing point of AFB
- remaining angular parameters: S₃, S₉ from a full fit
- some CP-asymmetry parameters (e.g. A9 and in dBF/dq²)

Backup

LHCb detector

- Pseudorapidity coverage: 2 < η < 5</p>
- Momentum resolution: 0.4 0.6% from 5 to 100 GeV/c tracks
- Impact parameter resolution: 20 μm
- Muon misidentification: ~0.5%
- Mass resolution J/ $\psi \rightarrow \mu\mu$: I3 MeV/c²
- RICH detectors: kao-pion separation in momentum range 2 100 GeV/c

Atlas detector

- Pseudorapidity coverage: |η| < 2.5</p>
- Transverse momentum resolution: 4 8% from 4 to 10 GeV/c and 4% for > 10 GeV/c tracks
- Impact parameter resolution: I2 μm
- Muon misidentification: ~0.4%
- Mass resolution $J/\psi \rightarrow \mu\mu$: 46 MeV/c²
- No detector for particle ID

CMS detector

- Pseudorapidity coverage: |η| < 2.5
- Transverse momentum resolution: I.5% up to I00 GeV/c tracks
- Impact parameter resolution: I5 μm
- Muon misidentification: ~0.2%
- Mass resolution J/ $\psi \rightarrow \mu\mu$: 28 MeV/c²
- No detector for particle ID

Other FCNC $b \rightarrow s$ decays

The FCNC (b \rightarrow s) decays are a goldmine for new physics searches

B⁺ → K^{*+}(π⁺ K⁰s (π⁺π⁻)) μμ

- $\Gamma \sim I/7$ of $B^0 \rightarrow K^{*0} \mu \mu$ (assumed 30% eff. due to K^{0}_{s} reco.)
- Can help to improve statistics for $B^0 \rightarrow K^{*0} \mu \mu$ studies

• $B^+ \rightarrow K^+ \mu\mu$ (and $B^0 \rightarrow K^0 \mu^+ \mu^-$)

- Γ similar to ($\Gamma \sim I/3$ of) $B^0 \rightarrow K^{*0} \mu \mu$
- Certain degree of complementarity with $B^0 \rightarrow K^{*0} \mu \mu \rightarrow important$ probe of right-handed currents

Preliminary analysis by LHCb (arXiv: 1209.4284)

Λ_b → Λ⁰ (pπ) μμ

- $\Gamma \sim I/5$ of $B^0 \rightarrow K^{*0} \mu \mu$ (assumed $I/3 K^{0}_{s}$ eff. due to soft π)
- Λ_b and Λ^0 are spin-1/2 particles \rightarrow unlike the B⁰ decay, this decay is sensitive to righthanded couplings which are suppressed in SM \rightarrow also this decay is somewhat complementary to B⁰ \rightarrow K^{*0} $\mu\mu$