

Prospettive	innovazioni tecniche	nuove topologie	interpret azione
top tagging (boosted)	X	X	
relazione tra top e higgs (m _t /m _н , y _t)		X	X
combinazione delle misure (BLUE)	X		
top luminometro gluon PDF			X
separazione meccanismi di produzione (gg/qq)	X		X

top tagging

migliora reiezione fondo QCD

Boosted Tops

HEPTopTagger, CMS top tagger Decomposizione e iterazione

Template Tagging Associazione partone-cluster

- •jet mass
- no. of subjets
- •min m_{jj}

• p_T

- •∆R
- •top template da generatore MC

Ricerche di s-top

 $m(\tilde{t}) \ 1 \ TeV \rightarrow \ \mathrm{top} \ \mathrm{boosted}$

"naturalezza" SUSY: relazione tra mH, mt, mt~?

Misure sul Quark Top - pp@LHC - Genova 8-10 Maggio 2013

Combinazioni

Combinazioni

Importante sforzo nella definizione e nel trattamento comune delle sistematiche (TOPLHCWG)

• *m*_t: combinato 9% più preciso della misura più precisa

ne vale davvero la pena!

Definizione di cosa sia ciascuna sistematica Correlazione 0% oppure 100% estremi, "tuning 4 precision"

ATLAS + CMS Preliminary	y,∖s = 7 TeV	ATLAS + CMS Prelimina	ary,∖s = 7 TeV
ATLAS 2010, I+jets L _{ot} = 35 pb ⁻¹ , (@ CR, UE syst.)	-6.8	ATLAS 2010, I+jets L _{yc} = 35 pb ⁻¹ , (⊕ CR, UE syst.)	5.3
ATLAS 2011, I+jets	29.9	ATLAS 2011, I+jets	23.3
ATLAS 2011, all jets L _{int} = 2 fb ⁻¹ , (⊕ CR, UE syst.)	-0.4	ATLAS 2011, all jets L _{int} = 2 fb ⁻¹ , (⊕ CR, UE syst.)	0.3
CMS 2010, di-lepton L _{int} = 36 pb ⁻¹ , (⊕ CR syst.)	-1.9	CMS 2010, di-lepton L _{int} = 36 pb ⁻¹ , (@ CR syst.)	1.5
CMS 2010, I+jets L _{int} = 36 pb ⁻¹ , (⊕ CR syst.)	-0.2	CMS 2010, I+jets L _{ee} = 36 pb ⁻¹ , (@ CR syst.)	0.2
CMS 2011, di-lepton L _{int} = 2.3 fb ⁻¹ , (⊕ CR, UE syst.)	-4.8	CMS 2011, di-lepton $L_{ret} = 2.3 \text{ fb}^{-1}$, ($\oplus \text{ CR}$, UE syst.)	3.7
CMS 2011, µ+jets L _{int} = 4.9 fb ⁻¹ , (⊕ CR, UE syst.)	84.3	CMS 2011, μ+jets L _{pt} = 4.9 fb ⁻¹ , (θ CR, UE syst.)	65.7
LHC June	c m _{top} combination e 2012	LF	IC m _{top} combination ne 2012
June	9 2012	Ju	ne 2012

- Best Linear Unbiased Estimator (BLUE)
 - calcola pesi della somma lineare
 - tiene conto delle syst (gauss) e delle correlazioni [0-1]
 - anche per N parametri (distribuzioni differenziali!)

top e Higgs

Top & Higgs

- $h \rightarrow \gamma \gamma$ in eccesso (ATLAS)?
 - top loop + fermioni BSM?
- top yukawa coupling: misure difficili a LHC [fb]:
 - ttbar: $pp \rightarrow tth, h \rightarrow bb$ (sinergia: boosted!)
 - single top: pp→h t q

	tjh	$\overline{t}jh$	tW^-h	$\bar{t}W^+h$	tbh	t bh	tīh	
$m_h = 120~{ m GeV}$	45	23	9.0	9.0	1.6	0.8	440	fk
$m_h = 150~{\rm GeV}$	33	19	5.0	5.0	1.0	0.5	240	
$m_h = 180~{ m GeV}$	31	16	3.0	3.0	0.6	0.3	140	
$m_h=200{ m GeV}$	29	15	2.4	2.4	0.5	0.2	100	

00000

00000

- Incertezza ~0.9 GeV su m_t si traduce in
 - sezione d'urto: <1%
 - charge asymmetry: 25% total syst
 - spin correlation: 4% total syst
 - W helicity: 20-30% total syst
 - Higgs mass (ora nota con $\delta \sim 0.5$ GeV)

R. Di Sipio, O. Iorio

• $\mathbf{m}_{\mathsf{H}} \rightarrow \mathbf{m}_{\mathsf{t}}$? $\Delta m_H \sim 0.5 \; GeV \Rightarrow \Delta m_t \gtrsim 1 GeV$

Overconstrainig the SM

R. Di Sipio, O. Iorio

top come Iuminometro per gluoni

Parton Density Functions

standard model: higgs nuova fisica: produzione gluini g(x) poco vincolata s^{hat} > I TeV

- PDF4LHC: confronto tra MSTW08, NNPDF2.3, CT10
- Si traduce in una incertezza di...
 - sezione d'urto tt incl: I-3%
 - sezione d'urto tt+j: < 1%
 - massa: 0.1 GeV
 - charge asymm: < $I\% \Delta(syst)$
 - spin correlation: 28% Δ (syst)
 - W helicity 15-20% $\Delta(syst)$

Sezione d'urto incl.

Sezione d'urto diff.

sensibile a soft gluon

sensibile a g(x) ad alto x

meccanismi di produzione

Separazione gg/qq?

- Possibile? Non ben definita al NLO
- A_{FB} @ Tevatron / A_C @ LHC
- √s ∕ S/B ∕

MVA: N_{jet}, y_{jet}, η_{lep}, event shape, ...

Even more material

R. Di Sipio, O. Iorio

ATL-CONF-2012-097

b-Tagging

fattori di correzione tra dati e MC

- $\kappa_{\varepsilon_b}^{\mathrm{data/sim}}(p_{\mathrm{T}}) = rac{arepsilon_b^{\mathrm{data}}(p_{\mathrm{T}})}{arepsilon_b^{\mathrm{sim}}(p_{\mathrm{T}})},$
- ATLAS: 3 taggers + combinatione con NN

tag countin	fit molteplicità b-jet		llbb
kin selection	b-tag rate dal jet più duro		llbb
kin fit fit completo topologia tt			llbb

Backgrounds

Channel	Topology	Backgrounds
Di-leptonic	$2 b$ -jets + $2l^{\pm}$ + E_T^{miss}	WW+jets, Z+jets
Semi-leptonic	2 jets + 2 <i>b</i> -jets + I^{\pm} + E_T^{miss}	W + jets
Full-hadronic	4 jets + 2 <i>b</i> -jets	QCD Multi-jet

