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W/Z physics
o W charge asymmetry
o Z A; asymmetry

m weak mixing angle

o VBF Z production

e Di-bosons
O Cross section measurements
o limits on aTGC

Conclusions




W/Z bosons, introduction

Amongst the processes accessible at the LHC, the

production and decay of W and Z bosons are of

paramount importance

O experimentally, their leptonic decays present very clean

signatures

O theoretically, we have very advanced tools at our disposal

m NLO generators (integrated to PS in a consistent way)

m NNLO predictions for cross sections (inclusive and
differential)

In addition to the physics measurements they allow to

perform, they are also a fundamental tool to understand

e performance of the detectors

Tag&Probe (not covered in this talk)
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W|Z as probes

In addition to being interesting per se, the study
of the properties of the W and Z bosons gives
Insight on several parameters of the SM

® Both experiments are performing extensive
studies

® Highlights given here include

o W charge asymmetry
© Z AFB
m weak mixing angle
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fiducial volume
on of ATLAS, CMS

—\'s=7 TeV 4 ATLAS+CMS+LHCb-
: - Preliminary J

p'T > 20 GeV

ATLAS (extrapolated data, W — Iv) 35 pb™!

CMS (W— uv) 36 pb™

LHCb (W—s pv) 36 pb

MSTWO8 prediction (MC@NLO, 90% C.L.)
HEEE CTEQS6 prediction (MC@NLO, 90% C.L.)

2225 HERAT.0 prediction (MC@NLO, 90% C.L.)
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They arise from the parity violation of EW interactions

O As opposed to, for example, parity-conserving photon exchange

® T[he Z production+decay cross section gains a term
proportional to the cosine of the scattering angle

® (Coefficient depends on the left and right couplings, and
vanishes if they are identical
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do dra’ |3 ,
= QA( | +cos™é)+ Bcosé

dcos¢  3s
This allows to define three non-vanishing observables:

O Longitudinal polarization asymmetry, ALR

O Unpolarized FB asymmetry ‘

2 Polarized FB asymmetry
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cos BES =

po(L* ) 2(pyp; = PiP3)

P e+ =) \Jm(E+ )2 + pr(€+E-)?

1
pi= ﬁ(Ei + Pzi)




Zd,,

In pp colliders, one extra complication arises from the
fact that one does not know which beam the quark
belonged to

O Resultis that AFB IS diluted

Dilution less important if one limits the measurement to
lepton pairs with high rapidity

O In this case, one of the partons had high x, i.e. it was most
likely a quark

B assume that the direction of flight of the Z coincides with
the direction of the quark

Note that this has a rather big effect on the
easurement (see next slide)
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———}—— POWHEG (CT10) + PYTHIA (Z2) with PDF uncertainties:
Data with statistical © systematic error bars
Data with statistical error bars
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Measuring the weak mixing angle

Z A gives direct insight on the V and A
couplings
O It is sensitive to the effective weak mixing angle

Strategies for wma extraction are different

between the two experiments

O CMS: start from theory prediction of differential cross
section, "fold in" all known effects, unbinned
likelihood fit to observed cos(0*) distribution
B muon final state only

O ATLAS: template fits on raw A_; spectra using MC

samples generated with different values of wma

B muon, electron and forward electron final states separatel
statistical combination of the results
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Weak mixing angle:

sin 26, = 0.2287 *+ 0.0020 (stat.) = 0.0025 (syst.). Sh'\y’i_SF;engQ ?:‘2%2;8!)1(‘% R
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.2 off , . : + -e +
sin” O] = 0.2297 + 0.0004(stat.) = 0.0009(syst.)  ‘a xaroz € * forward-e + muon @ 4.7/ib

W combined

Even with only (part of) 2011 data,
the result is dominated by

systematics
ATLAS, e CC
O  Mainly PDF, followed by detector-related “TL:TSL':S“’:
effects (electron scale/resolution, ATLAS combined
allignment) o
ATLAS statistical precision is better Pyt

SLD,A [
han what one would expect from Lepasie
rt(N) PDG Fit L

The forward electrons provide a more ~ ATHASEONT201304

recise measurement, even with smaller



Electroweak production of Z boson, involving three
diagrams

O VBF, bremsstrahlung, multiperipheral

® |mportant benchmark to understand selection of forward

jets and performance of additional veto on central jets
O crucial for Higgs VBF analyses

Signal is a Z boson plus two forward, well separated jets

O analysis requires two good-quality, high-p_, isolated, SFOS lept
within 20GeV from nominal Z mass

O two highest p_. jets within [n[<4.7 are used as tagging jets

Main background is DY Z+2jets
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EW Z production

Cross section extracted through template fit on
two distributions

O Invariant mass of the tagging jets

O neural network output (BDT)

Neural network yields better precision on the
signal fraction

Main systematic is JES+JER

O second largest is background modeling
Observed cross section is in good agreement
with NLO expectation (166fb)

EWK = 154 + 24(stat) + 46(exp.syst.) & 27(th.syst) + 3(lumi) fb

Umeas, pu-tee
2AS-FSQ-12-019
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CMS preliminary Z+jets Vs=7TeV L=501b"
CMS preliminary Z+jets Vs=7TeV L=5.01"
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O Z - ee simulation

©  Z - ee simulation

CMS preliminary eejj
Ns=7TeV,L=5.0fb"

CMS preliminary pujj
Ns=7TeV,L=5.11b"

Data/MC

0.2

30 4050 100 200 300 1000 2000

-0.4 0
CMS-PAS-FSQ-12-019 m,GevV | CMS-PAS-FSQ-12-019




Dibosons

Diboson production provides stringent tests of the

electroweak sector of the SM

O deviations from the prediction may indicate New Physics

In addition, these processes are background to many

other channels

O e.g. Higgs decays to ZZ

Main backgrounds are W/Z+jets, ttbar

Uncertainties vary considerably depending on the

specific analysis

O ZZ analyses are limited by statistical uncertainty, main
systematic is lepton ID and reco

O systematics are larger in channels including a W or a photon,
with main contributions coming from ID and reco, and
background estimate
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limited

Measured Ooral [pb] MCFM NLO [pb]
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Look at events with one W
decaying leptonically and a
second boson (W or Z)
hadronically

The main systematics are JES and
W+jets background

Both ATLAS and CMS constraint
normalization and shape of
background in the fit.

CMS also constraints the JES to W
mass

Measurements performed at 7
TeVonly

Results are in agreement with
SM expectations
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ouplings in SM:
> gauge couplings (WWZ, W
auge couplings (ZZZ, ZZy
al production rate as
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esults for
arged aTGC

CMS 95% CL Limit on A and Ax,
— Observed

J-L dt=5.01b", (=7 TeV

-0.1  -0.05 0
EPJ C73 (2013) 2283

Feb 2013

Feb 2013

ATLAS Limits
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CDF Limit
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-0.003 - 0.003 5.0 fb™
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-0.001-0.001 5.0fb™
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0.5 1 15 x10°
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ATLAS Limits
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-0.095 - 0.095 4.9 fb™"
-0.057 - 0.093 4.6 fb"
-0.034 -0.084 8.6 b
-0.054 - 0.021 0.7 fb™
T

1.5
aTGC Limits @95% C.L.
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Conclusions
LHC data provides a wealth of information
concening the SM

O In particular its EW sector

Physics of the W and Z bosons plays a crucial role
In the exploitation of this huge potential

O Dboth single- and di-boson production

e With the present statistics and with the
experimental systematics under control, it becomes
possible to use these analyses to probe other areas
of the SM

O PDFs
O weak mixing angle
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wma systematics

Differences in the experimental method are reflected In

the systematics
o precision on weak mixing angle in ATLAS is largely driven by
the forward-electrons channel
m wrt central electrons, it only has about 1/3 of the total
events, but the statistical error is 2/3
m drawback is that detector-related systematics are larger (e.
g. electron energy scale)
o CMS systematics due to FSR much larger than for ATLAS
m could this be due to using only muons?

e In general, the measurement is dominated by

systematics

o more importantly, it is dominated by theory systematics
m PDF
m QCD/EW NLO




CC electrons | CF electrons | Muons | Combined
Uncertainty source (1074
PDF 9 5 9

MC statistics

Electron energy scale

Electron energy smearing

Muon energy scale

Higher-order corrections

Other sources

source correction uncertainty

PDF *0.0013
FSR *0.0011
LO model (EWK) *0.0002
LO model (QCD) +0.0012
resolution and alignment +0.0013
efficiency and acceptance *0.0003
background *0.0001

total +0.0025




wma systematics

Not clear how to improve the measurement in the future

O will the "analytical folding" procedure a la CMS be still doable
with improved statistical precision?

O template fits a la ATLAS require a generator capable of

changing the effective wma value without altering the masses
of the bosons

e Both measurements rely heavily on LO generator

(Pythia)

O but NLO QCD has a large effect, so one should probably move
to NLO generators

O with improved statistics, NLO EW will also become relevant

O how to define the quark-lepton angle in an NLO world?
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The shape of the W+jets bkg is taken from MC with ME+PS (LO)

e uncertainty is modeled changing ren/fac scale and matching parameters
scale variations in LO MC are known to be very large compared to data
problem is not the rate but shape and exclusivity of the selection
uncertainty will be smaller using NLO ME+PS generators?



aTyC and aQGC

sults on aTGC are still dominated by statistical errors
current constraints on charged aTGCs < 10%

o already improved over LEP on several parameters

e expected to reach few % at 8 TeV

Perspectives on aQGC

e can be measured from

o tri-bosons final states

o Vector Boson Scattering
e SM cross-sections are ~2 order of magnitude lower than dibosons
e Theoretical interpretation of anomalies is much more difficult
o quartic couplings expected also from aTGC

o unitarity is violated quite soon — add form factor
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https://cdsweb.cern.ch/record/1532433
https://cdsweb.cern.ch/record/1532433




SM and the wma

SM only needs three input parameters

o All other observables can be predicted from these

The most common prescription uses the Z mass, the fine structure

constant and the Fermi constant

o In this context, wma and the W mass can be calculated (given
some value of m and m )

At tree level, all is nice and simple

o The problem arises when incorporating higher orders

o Depending on where one decides to “hide” HO contributions in
the formulas, one ends up having different predictions for the
calculated quantities, with different dependence on m,

A striking consequence of this is that the PDG lists not one, but
FIVE different possible values of the weak mixing angle




SM and the wma

The most relevant normalization scheme for Z-A_,
measurements is the Effective one, since it is directly related
to the coupling of Z to fermions

Bulk of EW corrections is absorbed into effective couplings

One then defines an effective weak mixing angle in such a
way that the new couplings are proportional to the tree-level
ones

O The predictions for the asymmetries stay formally identical

to the tree-level expressions, modulo using the effective
angl¢ ——— =

Scheme Notation Value
On-shell s/ 0.2233
NOV 1, 0.2311
MS 52 0.2313
MS ND 2D 0.2315

Effective angle 5 0.2316




Muon detectors: _
drift tubes, csc, Had calo:

RPC, TGC Eell?_cj\mtlllator EM calo: /e - 100uvE(Gev)
Aplp < 10% ~ WLAL NeiEs PbILAT  ®0.7%
/ e 50%/NE(GeV)
upto1lTeV %

/ K 3 \(-B 0.03

\ N
. Solehoid \ \ N
Toroid magnets Magnet SCT Pixels TR tracker

Tracking:overall resolution Ap/p, <= 0.05% p,;(GeV) @ 1%




SILICON TRACKER
Pixels (100 x 150 wmé)
e ec or ~im*  ~86M channels

Microstrips (B0-1800m)
~000m? -0 BM channels

CRYSTAL ELECTROMAGNETIC
CALORIMETER (ECAL)
~f 6k scintillating POWO, crystals

PRESHOOWER
Gilicon strips
~168m¢ ~137K channels

TN

=~1.3000 tonnes

SUPERCONDUCTING
SOLENOID
Michium-titanium ool

b - it FORWARD

CALORIMETER
Steel + quarlz fibres

HADRON CALORIMETER (HCAL) ' i
Total welght 14000 tonnes Brass + plastic scintilator MUON CHAMBERS
Overall diameter : 15.0 m ~7k channels Barrel: 250 Drift Tube & 480 Resistive Plate Chambers
Overall length : 287 m Endcaps: 473 Cathode Strip & 432 Resistive Plata Chambers

Magnetic field 38T
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