Outline Produzione inclusiva di bosoni W/Z W/Z + jets W/Z + heavy flavors Migliorare "la teoria" usando i dati Conclusioni e prospettive

Produzione di W/Z e misura delle loro proprietà

Marco Musich¹ Nicola Orlando²

¹ INFN sez. di Torino

² INFN sez. di Lecce, CERN, Dipartimento di Matematica e Fisica "Ennio De Giorgi", Universià del Salento

VI Workshop Italiano sulla Fisica p-p a LHC, Genova, 8-10 Maggio 2013

Istituto Nazionale di Fisica Nucleare

INFN

1/22

Marco Musich, Nicola Orlando

1 Produzione inclusiva di bosoni W/Z

- $_2 W/Z + jets$
- 3 W/Z + heavy flavors
- 4 Migliorare "la teoria" usando i dati
- 5 Conclusioni e prospettive

Sezione d'urto inclusiva di produzione di W/Z

CMS-PAS-SMP-12-011 | e | Phys. Rev. D 85 (2012) 072004

- Misura di precisione, incertezza sperimentale totale sulle sezioni d'urto ~ 5%,
 - dominata dall'incertezza sulla determinazione della luminosità, ~ 4%.
- Dati ben riprodotti da predizione NNLO QCD (Fewz).
- Universalità e/μ in decadimenti $W \rightarrow \ell \nu$ testata allo stesso livello di precisione del PDG.

Drell-Yan

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP13003

- Misurate distribuzioni differenziali $d\sigma/dM e d\sigma/(dMdY)$ normalizzate alla sezione d'urto nella regione del picco della Z (60 < *M* [GeV] < 120).
- Dati confrontati su un'ampio intervallo di massa invariante ([15 GeV, 1500 GeV]) alle predizioni QCD al NNLO (Fewz) ed NLO (Powheg).

FEWZ+CT10 NNLO

FEWZANNPDE2 1 NNI O

FEWZ+CT10W NNLO

FEWZ+ABKM NNLC

FEWZAHERA NNI O

FEWZ+MSTW2008 NNLO

Produzione di W/Z e misura delle loro proprietà

Drell-Yan ad alta massa

- Drell-Yan ad alta massa invariante, $116 < m_{\ell\ell}[GeV] < 1500$.
- Sensibile alle funzioni di distribuzione partoniche ad "alto-x"?
 - Necessaria più statistica.
- Dati confrontati con predizioni NNLO QCD (Fewz) + NLO EW + $\gamma\gamma \rightarrow \ell^+\ell^-$.
 - NLO QCD insufficiente per descrivere in modo accurato i dati.

Impulso trasverso della Z

CMS-PAS-SMP-12-025 e Phys. Lett. B 705 (2011) 415

- Misurata la distribuzione dell'impulso trasverso della Z.
- QCD al NLO+NNLL (ResBos) descrive meglio la regione di basso q_T (≤ 10 GeV); predizioni LO multileg (ALPGEN, MADGRAPH, SHERPA) descrivono bene i dati ad alto q_T (q_T ≥ 20 GeV).
 - Mc@NLO inconsistente con i dati.

Correlazione angolare dei leptoni prodotti in $Z/\gamma^* \rightarrow \ell \ell$

Phys. Lett. B 720 (2013) 32-51

- Correlazione angolare dei leptoni prodotti in $Z/\gamma^* \rightarrow \ell \ell$ è sensibile all'impulso trasverso della Z.
 - Misurare la distribuzione dell'angolo ϕ_{η}^* : $\phi_{\eta}^* = \tan(\phi_{acop}/2)\sin(\theta_{\eta}^*)$

•
$$\phi_{acop} = \pi - \Delta \phi(\ell^+, \ell^-)$$
 , $\cos(\theta^*_{\eta}) = \tanh\left[\frac{(\eta(\ell^-) - \eta(\ell^+))}{2}\right]$

- ϕ_{η}^* é correlato a p_T^Z ma ha migliore risoluzione a basso impulso trasverso (puritá di $\gtrsim 85\%$).
- Dati confrontati alle predizioni NLO+NNLL (ResBos, A. Banfi, et al. Phys. Lett. B **715** (2012) 152), NNLO (Fewz) e vari generatori MC.
- Incertezze sperimentali (dominate dalla statistica) tipicamente un ordine di grandezza piú piccole delle incertezze teoriche.

Produzione associata di jets a bosoni Z/γ^*

arXiv:1304.7098 [hep-ex]

- Dati accuratamente descritti da predizioni LO multileg (Alpgen, Sherpa) ed NLO multileg (Blackhat+sherpa).
 - Parton shower (Herwig) in NLO QCD MC (Mc@NLO) insufficiente ad alta molteplicità (N_{jets} ≥ 3)

Correlazioni angolari azimutali in eventi con produzione di Z/γ^* +jets arXiv:1301.1646 [hep-ex]

- Distribuzioni angolari azimutali presentate in bin inclusivi di molteplicità di jets.
- Dati confrontati alle predizioni QCD LO multi-leg (MADGRAPH e SHERPA), NLO (POWHEG) ed LO • (Рүтніа).

<u>DPI e scale di splitting</u> k_t in $W (\rightarrow \ell v) + jets$

ArXiv:1301.6872 and ArXiv:1302.1415

- Misurata la rate di interazoni-partoniche-doppie, DPI, in eventi di W+2jets.
- Risultato presentato in termini di parametro d'area efficace (σ_{eff}).
- I dati non evidenziano dipendenza dall'energia del centro di massa della rate di DPI.
- Scale di splitting dell'algoritmo k_i definite rispetto ai costituenti *i*, *j* e l'asse del fascio *B*:

•
$$d_{i,j} = min(p_{Ti}^2, p_{Tj}^2) \Delta R_{ij}^2/R^2$$
, $d_{iB} = p_{Ti}^2$.

• Limitata sensibilità nella regione soffice delle scale; misurare osservabili definite solo con angoli?

Sezione d'urto di produzione di bosoni W in associazione a b-jets

ArXiv:1302.2929 and CMS-PAS-SMP-12-026

- Sezione d'urto in bin di molteplicità di jets.
 - DPI importante ingrediente della sezione d'urto (35%-20%, in base al numero di b-jets).
- Misura consistente con le predizioni NLO QCD (MCFM) ed LO multi-leg (ALPGEN).

Sezione d'urto misurata $\sigma(pp \to W + b\overline{b}) \times BR(W \to \mu\nu) =$ $0.53 \pm 0.05 (stat.) \pm 0.09 (sist.) \pm$ 0.06 (teo.) ± 0.01 (lumi.) pb Sezione d'urto al NLO QCD

(Мсғм) $\sigma(pp \rightarrow W + b\overline{b}) \times BR(W \rightarrow W)$ $\mu\nu$) = 0.52 ± 0.03 *pb*

Sezione d'urto di produzione di bosoni W in associazione a b-jets ArXiv:1302.2929 [hep-ex]

- Misura differenziale di sezione d'urto di produzione di b-jets in associazione a bosoni W in bin di p_T del b-jet.
- Segnale "W+b" definito sottraendo (non sottraendo) il contributo di top-singolo, plot a sinistra (destra).

W+charm CMS-PAS-SMP-12-002

- Misura di sezione d'urto inclusiva di $W^{\pm}(\rightarrow \ell \nu) + c$ e distribuzione della pseudorapidità dei leptoni carichi prodotti nei decadimenti del *W*.
 - Jets con adroni charmati identificati attraverso decadimenti adronici esclusivi dei mesoni D^{\pm} e $D^{\pm}(2010)$, e decadimenti semileptonici inclusivi.
- Dati confrontati alle predizioni al NLO in QCD (МСFM) ottenute con vari sets di PDFs.

Produzione di W/Z e misura delle loro proprietà

Produzione di bosoni Z in associazione a b-jets

CMS-PAS-SMP-13-004

- Misure di sezioni d'urto inclusive di Z+b e Z+bb confrontate alle predizioni QCD LO multileg nello schema a 4 e 5 flavors (MADGRAPH).
 - I dati "privilegiano" lo schema a 5 flavors.

	Multiplicity bin	Measured	MadGraph 5F	MadGraph 4F		
	$\sigma(Z(\ell\ell)+1b)$ (pb)	$3.52 \pm 0.02 \pm 0.20$	3.66 ± 0.02	3.11±0.03		
	$\sigma(Z(\ell\ell)+2b)$ (pb)	$0.36 \pm 0.01 \pm 0.07$	0.37 ± 0.01	$0.38 {\pm} 0.01$		
	$\sigma(Z(\ell\ell)+b)$ (pb)	$3.88 \pm 0.02 \pm 0.22$	4.03 ± 0.02	3.49±0.03		
	$\sigma(Z(\ell\ell)+b)/\sigma(Z(\ell\ell)+j)$ (%)	$5.15 \pm 0.03 \pm 0.25$	5.35 ± 0.02	$4.60 {\pm} 0.03$		

Produzione di Z e due adroni B: correlazioni angolari

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEWK11015

- Correlazioni angolari in eventi con produzione di Z(→ ℓℓ) e due adroni B.
 - Misura degli adroni B basata sull'identificazione di vertici secondari.
- Predizione QCD LO multileg nello schema a 4 flavors (МАДGRАРН) descrive bene i dati.

Marco Musich, Nicola Orlando

Uso dei dati di LHC: PDFs fit

Phys. Rev. D 85 (2012) 072004 e Phys. Rev. Lett. 109 (2012) 012001

- Misure di sezioni d'urto di produzione di W^{\pm}/Z usate in combinazione ai dati di HERA per fittare la PDF del quark strange.
 - Risultato confrontato alle predizioni di Авкм09, Ст10, Msтw08 ed NNPDF2.1.

16/22

Marco Musich, Nicola Orlando

Uso dei dati di LHC: MC tuning?

Phys. Lett. B 720 (2013) 32-51 e CMS-PAS-SMP-12-025

- Sensibilità dei dati alla modellizzazione del p_T della Z?
- Usare l'osservabile ϕ^* per tuning di MC?
 - Discussione avviata nel meeting di Les Houches 2011 (si guardi slides Tuning WG report)

Marco Musich, Nicola Orlando

Conclusioni e prospettive

- ATLAS e CMS hanno studiato in dettaglio la produzione di bosoni di gauge *W*[±]/*Z* misurando una grande varietà di osservabili in molteplici topologie.
- "Ottimizzare" le misure per derivare informazioni sulle PDF o per tuning di MC:
 - misure doppio-differenziali per fit di PDF?
 - fittare simultaneamente le PDF dei quark charm e strange alle sezioni d'urto inclusive W[±]/Z?
 - usare ϕ^* per tuning di generatori (nella regione di basso q_T dei bosoni vettori)?
 - misurare distribuzioni angolari.
- Prospettive a breve/lungo termine?
 - Investire più lavoro sull'interpretazione dei dati pubblicati o in fase di pubblicazione: W[±]/Z inclusivo, Z+b, W+c.
 - Misure più esclusive e misure di precisione.

Backup

Produzione di W/Z ad LHC

Sistematiche, due esempi

CMS-PAS-SMP-12-011 e ArXiv:1302.2929 [hep-ex]

Canale elettronico

Source	W+	W-	W	W^+/W^-	Z	W/Z
Lepton reconstruction & identification	2.8%	2.5%	2.5%	3.8%	2.8%	3.8%
Momentum scale & resolution	0.4%	0.7%	0.5%	0.3%	-	0.5%
E_{T}^{miss} scale & resolution	0.8%	0.7%	0.8%	0.3%	-	0.8%
Background subtraction / modeling	0.2%	0.3%	0.3%	0.1%	0.4%	0.5%
Total experimental	3.0%	2.7%	2.7%	3.8%	2.8%	3.9%
Theoretical uncertainty	2.1%	2.6%	2.7%	1.5%	2.6%	2.0%
Lumi	4.4%	4.4%	4.4%	-	4.4%	
Total	5.7%	5.8%	5.8%	4.1%	5.8%	4.4%

canale muoníco

Source	W^+	W^{-}	W	W^+/W^-	Z	W/Z
Lepton reconstruction & identification	1.0%	0.9%	1.0%	1.2%	1.1%	1.5%
Momentum scale & resolution	0.3%	0.3%	0.3%	0.1%	-	0.3%
E ^{miss} scale & resolution	0.5%	0.5%	0.5%	0.1%	-	0.5%
Background subtraction / modeling	0.2%	0.1%	0.1%	0.2%	0.4%	0.4%
Total experimental	1.2%	1.1%	1.2%	1.2%	1.2%	1.7%
Theoretical uncertainty	2.0%	2.5%	2.2%	1.4%	1.9%	2.5%
Lumi	4.4%	4.4%	4.4%	-	4.4%	-
Total	5.0%	5.2%	5.1%	1.8%	4.9%	3.0%

	w+b	
_		

Fiducial cross-section [pb]						
	1 jet	2 jet	1+2 jet			
$\sigma_{\rm fid}$	5.0	2.2	7.1			
Statistical uncertainty	0.5	0.2	0.5			
Systematic uncertainty	1.2	0.5	1.4			
Breakdown of systematic uncertainty [%]						
Jet energy scale	15	15	15			
Jet energy resolution	14	4	8			
b-jet efficiency	6	4	5			
c-jet efficiency	1	1	0			
light-jet efficiency	1	3	2			
ISR/FSR	4	8	3			
MC modelling	8	4	6			
Lepton resolution	1	1	0			
Trigger efficiency	1	2	2			
Lepton efficiency	1	2	1			
E_{T}^{miss} scale	3	6	2			
E_{T}^{miss} pile-up	2	2	2			
b-jet template	3	5	4			
c-jet template	4	2	3			
light-jet template	0	0	0			
Multijet template	2	2	2			
Total syst. uncertainty	24	23	20			

Hard double-parton interactions in W ($\rightarrow \ell \nu$) + 2 *jets events* ArXiv:1301.6872

- Testing double-parton-interactions, DPI, in W+2jets measuring the fraction of DPI ($f_{DPI}^{(D)}$) and the effective parameter area (σ_{eff}).
 - The measurement procedure exploit the assumption of factorization of DPI dynamic.

$$f_{DPI}^{(D)} = \frac{N_{W(0j)+2j(DPI)}}{N_{W+2j}} \qquad \sigma_{eff} = \frac{N_{W(0j)}}{f_{DPI}^{(D)} N_{W+2j}} \cdot \frac{N_{2j}}{\mathcal{L}_{2j} \epsilon_{2j}}$$

- Extract from data $f_{DPI}^{(D)}$ by a fit to the distribution $\Delta_{jets}^n = \frac{\overrightarrow{p}_1^T + \overrightarrow{p}_1^T}{|\overrightarrow{p}_1^T| + |\overrightarrow{p}_1^T|}$.
 - Δⁿ_{iets} proved to be robust against jet-related systematics.
- No dependence on the CM energy has been observed for DPI.

Marco Musich, Nicola Orlando Produzione di W/Z e misura delle loro proprietà