Photon and jet measurements at the LHC

Leonardo Carminati – INFN Milano Piergiulio Lenzi – INFN Firenze

The landscape of QCD

Exclusiveness of the final state

Theoretical predictions

- A lot of progress have been made in phenomenology in recent years
- Many modern generators and analytical predictions have been used to compare to measurements
 - Monte Carlo event generators
 - Pure shower models
 - Pythia, Herwig
 - LO multi leg + Parton Shower
 - Madgraph + Pythia, Alpgen + Pythia/Herwig, Sherpa
 - NLO+Parton Shower
 - POWHEG+Pythia/Herwig, MC@NLO+Herwig
 - Parton level codes
 - Fixed order calculations (NLOJet++, Blackhat, JetPhox)
 - BFKL inspired models (HEJ)

Outline

- Inclusive jets
- Di-jets
- Forward jets
- Inclusive photons
- Photons+jets
- Di-photons

Inclusive jets

Phys. Rev. D 86, 014022 (2012)

- Measurement of inclusive jets for two jet sizes (antiKt)
 - Difference contribution of hadronization and UE corrections
 - At 30 GeV NP~60% for 0.6, NP~10% for 0.4
- Jet Energy Scale is the main source of systematic uncertainty
- Data are compared with the predictions at NLO, including nonperturbative (NP) corrections obtained with a shower MC

Inclusive jets

- Comparison with several MC generators
- General good agreement Phys. Rev. D 86, 014022 (2012)
- POWHEG NLO dijet predictions show dependency on the shower used
 - Improved in newer versions

Inclusive iets

- Similar result from CMS with larger statistics highlighting the PDF sensitivity
- Particularly sensitive to high x gluon
- Comparison to the same PDFs fro ATLAS shows similar results

Inclusive jets

- Very interesting comparison between 7 TeV and 2.76 TeV
 - JES uncertainty cancel to large extent in the ratio
- Powheg is slightly below the data in the central region while the agreement is very good in the forward region

Inclusive jets

- This ratio had constraining power for PDFs
- Gluon becomes harder and the uncertainty gets smaller

ATLAS-CONF-2012-021

CMS-QCD-11-004, submitted to Phys. Rev. D

3-jets over 2-jets ratio

- Measurement of the ratio of events with 3 or more jets over events with 2 or more jets, as a function of average pt of the di-jet system
 - Jets: pT > 150 GeV, |y|<2.5

CMS-QCD-11-003

- Provides a stringent test of hard gluon radiation and higher order effects
- It is used to evaluate a_s

3-jets over 2-jets ratio

- Similar result from ATLAS
- Using a smaller sample, with lower jet pT threshold
 - Leading jet pT > 60GeV
 - All jets pT > 40 GeV
- The observable is also slightly different:
 - This is the ratio between the inclusive pT spectrum for events with 3 jets divided by the inclusive spectrum for events with 2 jets
 - i.e. more than 1 entry per event

Di-jets with - ATLAS studied di-jet events as a function of the activity but

- function of the activity between them
- **Observables:** fraction of events with additional jets above a threshold Q₀
- Powheg NLO di-jet gives a generally good description of data
 - The agreement becomes worse as the rapidity gap increases
- The all order, BFKL inspired description of HEJ gets better and better as the threshold Q_o is increased

JHEP 1109 (2011) 053

JHEP06(2012)036

Jet substructure

- Study of jet mass via jet-substructure resolution techniques
- Three techniques studied, that are aimed at resolving boosted objects decays

- Relevant because they probe the accuracy of the shower

- Effect of reduction of PU dependence

ATLAS-CONF-2012-066

- Herwig++ shows nice agreement with the data, especially for jet pT above 300 GeV

- The agreement is worse for softer jets

CMS-SMP-12-019

300

- Other substructure variables
 - N-subjettiness: a measure of how much a jet looks like made of N subjets
 - Constituents are reconstructed with kT algorithm forcing N jets
- MC tools are able to give nice description of jet substructure

Inclusive photons

- Test of QCD predictions with colorless (clean !) final state
- Large compton scattering contribution probes gluon PDF
- Measurement extracted from fit to the photon isolation or using converted photons

Inclusive photons

- Measurement of inclusive photon production extended up to 1 TeV
- Slight underestimation of the cross section by the NLO calculation at low pT

Inclusive photons

- New LHC data (with RHIC, Tevatron...) can be used to reduce the uncertainty on the gluon PDF.
- This turns out in a potential reduction of one of the main source of theoretical uncertainty in many LHC analyses

Photon + jets

- Jet pt > 30 GeV, |ŋ|<2.4
- Good agreement with NLO QCD
- Also good agreement with Sherpa
 - Including extended matrix element + parton shower approach to photons

CMS-QCD-11-005

Photon + jets

- The contribution of fragmentation versus direct photons was studied in detail as a function of scattering angle θ^{vj} in the photon-jet rest frame or $m\gamma\phi$
- Shower MC can get the right differential shape with tuning of the two contributions ATLAS-CONF-2013-023

- Effects of fragmentation are also put into evidence by requiring the jet and the photon to have opposite rapidity signs

Phys. Rev. D 85(2012)

photon+jet

- The effect of including ATLAS photon+jet data in the PDF fit is negligible due to the large uncertainties on jet energy scale
- An exercise assuming half the current uncertainty shows a potential of further reduce the gluon PDF uncertainty EPL 101(2013) 61002

Photon + jets

- Rapidity measurements in Z or γ + jet
 - In case of $\gamma,$ probes very similar physics as ATLAS $\theta^{\gamma j}$
- Significant differences between Sherpa and Madgraph
 - maybe due to the different matrix element-parton shower matching prescription?

CMS-SMP-12-004

Diphoton

data/DIPHOX

data/2yNNLO

0.5

- Both ATLAS and CMS measured the ര/d∆∳_സ [pb/rad] diphoton differential cross section as a function of $\Delta \Phi \gamma \gamma m \gamma \gamma PT \gamma \gamma$ and $|\cos \theta *|$ using 4.9 fb-1 and 36 pb-1 of 7 TeV data respectively
- Main background in the SM H-> diphoton searches

 $\sqrt{s} = 7$ TeV, L = 36 pb⁻¹ CMS $|\eta| < 2.5, E_{T_{\gamma}} > 20, 23 \text{ GeV}$ Theory DIPHOX + GAMMA2MC Measured Stat. uncertainties Theoretical scale uncertainties PDF + α_{e} uncertainties

1.5

2

2.5

JHEP01 (2013) 086

3 $\Delta \phi_{\gamma\gamma}$ [rad]

Diphoton

JHEP01 (2013) 086

Fair description SHERPA, PYTHIA fails Deficit at low mgg consisten with

Conclusion

- ATLAS and CMS exploited the LHC Run 1 to make a large amount of QCD precision measurements
 - Ranging from low pt to high pt and from inclusive to exclusive observables
- Still more measurements are in the works
- These measurements have improved significantly our understanding of QCD in several ways
 - Comparison to the recent, most precise event generators
 - With experimental errors that in several cases are comparable or smaller than the corresponding theoretical predictions
 - Improvement on our knowledge of PDFs

Jet reconstruction

- Jets are reconstructed with the anti-kt algorithm, with radius of 0.5 or 0.7
- 3 available algorithms for jet reconstruction
 - Calo-Jets: use only the calorimeter towers
 - Jet-Plus-Track Jets: improve the calorimeter jets using the tracks in the jet cone
 - Particle-Flow jets: uses particle flow candidates as input to the clustering algorithm
 - Particle flow reconstruction:
 - global event reconstruction
 - Identifies muons, electrons, taus, photons, charged hadron, neutral hadrons
 - Combines the information from all detectors

Jet reconstruction

- Jets are reconstructed with the anti-kt algorithm, with radius of 0.5 or 0.7
- 3 available algorithms for jet reconstruction
 - Calo-Jets: use only the calorimeter towers
 - Jet-Plus-Track Jets: improve the calorimeter jets using the tracks in the jet cone
 - Particle-Flow jets: uses particle flow candidates as input to the clustering algorithm
 - Particle flow reconstruction:
 - global event reconstruction
 - Identifies muons, electrons, taus, photons, charged hadron, neutral hadrons
 - Combines the information from all detectors

Jet energy scale

- We use a multi-step procedure to correct the energy of our jets

 $p_{\mu}^{cor} = \mathcal{C} \cdot p_{\mu}^{raw}. \qquad \qquad \mathcal{C} = C_{\text{offset}}(p_T^{raw}) \cdot C_{\text{MC}}(p_T', \eta) \cdot C_{\text{rel}}(\eta) \cdot C_{\text{abs}}(p_T'')$

- C_{offset} accounts for detector noise and pile-up
- The method uses correction factors extracted from the full simulation of CMS, $\rm C_{_{MC}}$
- Residual differences with respect to data are accounted for as further scaling factors
 - C_{rel} accounts for non-uniformity in eta. It is obtained applying on data and MC the di-jet balance method
 - C_{abs} accounts for residual absolute scale differences between data and MC. It is obtained applying on data and MC the γ +jet and Z +jet pT balancing
- In this MC + residual method effects like the presence of additional radiation spoiling dijet or γ +jet and Z +jet balancing enter only at second order

Jet energy scale

- Total systematic uncertainty on the energy scale for particle-flow jets
- The main sources of uncertainty are:
 - The photon energy scale, known at 1%
 - The relative response across detector regions
 - Pile-up effects
 - Extrapolations down to 0 for the additional activity in the balance methods
 - Dependency on jet flavor in the MC used

Jet energy resolution

- Determined with di-jet and $\gamma+jet\ pT$ balance

- Plots show two example regions in η
- Resolution is of the order of 10% around 50 GeV

Inclusive jets

- From 20 GeV to 1.5 TeV
- It is interesting to compare different jets sizes
 - Difference contribution of hadronization and UE corrections
- Main systematic: jet energy scale
- Data are compared with the predictions at NLO, including non-perturbative (NP) corrections obtained with a shower MC
- Good agreements NNPDF and CT10
- MSTW better at large rapidities

Di-jet mass

- Measured in up to 5 TeV in bins of rapidity - Jet pT > 20 GeV, $|\eta| < 4.4$

Di-jet mass

- Measured in up to 5 TeV in bins of rapidity - Jet pT > 20 GeV, $|\eta| < 4.4$

Azimuthal decorrelation

- $\Delta \phi$ between the two leading jets in the event
 - It is very sensitive to additional radiation effects (hence to higher order corrections) but also to MPI and hadronization

 $\Delta \phi_{dijet} << \pi$

 $\Delta\phi_{dijet}=\pi$

- Comparison to NLO QCD

 Good agreement over the entire range

Phys. Rev. Lett. 106 (2011) 12200 1

Azimuthal decorrelation

- Comparison to shower MC
 - Good description of all models chosen
 - Sherpa, with LO multileg matrix elements agrees very well with the data in the high end of the spectrum
 - Also pure shower models (Pythia8, Herwig) tuned to previous measurements agree well with the data

PRL 106 (2011) 172002

Event shapes

- Very nice agreement with pyre shower models, like Herwig and Pythia6
- Comparison to LO

 + PS programs, like
 AlpGen and
 Madgraph shows
 deviation from the
 data
 - Overtuning of the standalone Parton Shower?

Photon + jets

- The contribution of fragmentation versus direct photons was studied in detail as a function of scattering angle $\theta^{\nu j}$ in the photon-jet rest frame
- Shower MC can get the right differential shape with tuning of the two contributions

41

Di-jet mass

- Powheg NLO dijet showered with Pythia6 with dedicated LHC tune gives the best description of data
- Fixed order NLO tends to slightly overestimate large masses

Event shapes

Ŀ

J2

- Distributions of central transverse thrust and thrust minor, using central jets as input, in the transverse plane

$$\tau_{\perp,\mathcal{C}} \equiv 1 - \max_{\hat{n}_{\mathrm{T}}} \frac{\sum_{i} |\vec{p}_{\perp,i} \cdot \hat{n}_{\mathrm{T}}|}{\sum_{i} n_{\perp,i}}$$

 The modeling of Pythia and Alpgen seem to be better than that of Herwig in this observable

Di-jets with rapidity gaps

- Configuration with a central and a forward jet
- Best

comparison is obtained with angular ordered Parton Shower (Herwig and Herwig++)

- The normalization is overestimated in NLO di-jet powheg

- Good description from all order BFKL inspired HEJ JHEP06(2012)036

Diphoton

CMS-SMP-12-004

- Fragmentation enhanced regions (costheta*->1) not well described
- SHERPA does a reasonable job (as before)
- Especially relevant for the measurement of spin in $\gamma\gamma$

JHEP01 (2013) 086

JHEP 01 (2012) 133