Standard Model Higgs searches in ATLAS and CMS

Marco Pieri University of California San Diego

Firenze, 27th November 2012

- Introduction
- The discovery of the new boson
- Analysis in the various channels
- Measurement of the properties of the new boson
 - Mass
 - Couplings
 - Spin-parity
- Summary and outlook

LHC and detectors

The discovery of the new Higgs-like boson

- In March 2012 ATLAS and CMS presented some excess at ~125 GeV
- On July 4th 2012 CMS and ATLAS reported the observation of a new boson with mass about 125 GeV that is consistent with the SM Higgs boson
- 5 main channels in CMS:
 - $H \rightarrow \gamma \gamma$
 - $-H \rightarrow ZZ \rightarrow 4I$
 - $H \rightarrow WW \rightarrow 2I2v$
 - $-H \rightarrow \tau \tau$
 - $-H \rightarrow bb$

Multiple interactions occur for each

- LHC is running at 8 TeV since beginning of April
- Already exceeded 20 fb⁻¹ per experiment of collected data
- Maximum luminosity 7.5 x 10³³ cms⁻²s⁻¹ ۲

CMS Integrated Luminosity, pp, 2012, $\sqrt{s} = 8$ TeV

SM Higgs production and decay

Exploit all four production modes

CMS

Most sensitive search channels at 125 GeV

- 2 channels with excellent mass resolution (1-2%)
 - $\gamma\gamma$ and ZZ -> 4I
 - Search for mass peak over the BG
- 3 channels with worse mass resolution (10-20%)
 - WW -> $2l_{2v}$, $\tau\tau$ and bb
 - Search for excess above estimated BG

Illustrative CMS for ICHEP dataset 5 + 5 fb-1

Channel	σ x BR (7-8 TeV) (pb)	Mean Efficiency	Number of signal events	Average s/b	Mass resolution
γγ untagged	0.045	40%	180	3.5%	1%
γγ VBF	0.003	20%	6	20%	1%
ZZ->4I untagged	0.002	30%	8	150%	1.5%
WW->2l2v untagged	0.2	5%	100	15%	20%
WW VBF	0.015	3%	4	25%	20%
ττ untagged	1.3	2.5%	300	1%	15%
ττ VBF	0.088	2%	15	10%	15%
bb VH	0.13	4%	50	3%	9%

M_H = 125 GeV

Approximate values, only for illustration

Channel	Int Lumi CMS (fb ⁻¹)	Int Lumi ATLAS (fb ⁻¹)
γγ (untagged, VBF tag)	5 + 5	5 + 5
ZZ->4I (untagged)	5 + 12	5 + 5
WW->2l2v (0-1 jet)	5 + 12	13
WW->2l2v (VBF tag)	5 + 12	5 + 5
ττ (untagged, VBF tag, VH tag)	5 + 12	5 + 13
bb (VH tag)	5 + 12	5 + 13

Results that have been updated for the HCP conference in November are indicated in red

2012 analyses have been 'blind'

- All analyses have been developed before looking at the signal region
- This avoids possible experimental bias

CM

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

$M_{\gamma\gamma}$ =125.9 GeV σ_M/M =0.9%

Search for a small mass peak over large and smooth background

Events /

- Irreducible: 2y QCD production
- Reducible: y+jet with 1 additional fake photon, QCD with 2 fake photons, DY with electrons faking photons GeV
- Narrow mass peak
 - mass resolution 1-2%
- Studied mass range: 110-150 GeV
- Split into event classes ٠ to enhance the sensitivity

- **ATLAS**
 - Split into 9 categories
 - Diphoton P_{Tt} , η , converted/ unconverted

- CMS
 - Cut based and MVA based analyses
 - Split into 4 categories + VBF analysis

- 4 non-VBF event classes split based on a diphoton Boosted Decision Tree (BDT) classifier output + dijet tag classes
- BG is estimated by fitting to a polynomial in the full mass range (3rd to 5th order)
 - Possible BG bias is always less than 20% of the statistical error
 - Different BG estimation in cross check analysis gives consistent results

Event SM Higgs boson expecte			ed signal ($m_{\rm H} = 125 {\rm GeV}$)			Background			
categories							$\sigma_{ m eff}$	FWHM/2.35	$m_{\gamma\gamma} = 125 \mathrm{GeV}$
U		Events	ggH	VBF	VH	ttH	(GeV)	(GeV)	(events/GeV)
-1	BDT 0	3.2	61%	17%	19%	3%	1.21	1.14	3.3 ± 0.4
1 fb	BDT 1	16.3	88%	6%	6%	-	1.26	1.08	37.5 ± 1.3
5.	BDT 2	21.5	92%	4%	4%	-	1.59	1.32	74.8 ± 1.9
leV	BDT 3	32.8	92%	4%	4%	-	2.47	2.07	193.6 ± 3.0
21	Dijet tag	2.9	27%	72%	1%	_	1.73	1.37	1.7 ± 0.2
	BDT 0	6.1	68%	12%	16%	4%	1.38	1.23	7.4 ± 0.6
- qj	BDT 1	21.0	87%	6%	6%	1%	1.53	1.31	54.7 ± 1.5
5.31	BDT 2	30.2	92%	4%	4%	-	1.94	1.55	115.2 ± 2.3
TeV, 5	BDT 3	40.0	92%	4%	4%	-	2.86	2.35	256.5 ± 3.4
	Dijet tight	2.6	23%	77%	-	-	2.06	1.57	1.3 ± 0.2
30	Dijet loose	3.0	53%	45%	2%	-	1.95	1.48	3.7 ± 0.4

Resolution in 2012 somewhat worse that 2011 because for now used prompt-reco

Primary vertex Z position

- ATLAS has pointing calorimetry
 - Z resolution 1.5 cm for two unconverted photons, good enough to have negligible contribution to mass resolution
- CMS uses underlying event and recoil jets,
 - Affected by pileup
 - checked with Z-> $\mu\mu$
 - Overall efficiency >80%
- Both also exploit tracks from converted photons

- Energy resolution extremely important
 - Need precise ECAL calibration
 - CMS uses MVA energy regression
- Energy scale and resolution measured with Z->ee
 - Exploit similarities between electron and photons
 - Precision from tagged photons from Z->μμγ would be smaller

Examples of high resolution event classes

$H \rightarrow \gamma \gamma VBF$ analysis

UCS

- Exclusive dijet tag improves sensitivity by ~10%
- Photon identification is the same
 - tighter lead photon E_t cut (E_t lead/ $M_{\gamma\gamma} > 55/120$)
- Dijet tag selection on dijet variables
 - exploits two additional VBF high p_T jets at large rapidity
- Contamination of gg-fusion ~25%, syst. error 50-70% dominated by underlying event

Unweighed data events and BG model parametrizations

- Sum of mass distributions for each event class, weighted by S/(S+B)
- B is integral of background model over a constant signal fraction interval
- This plot is not used in the analysis and it is for illustration only, it adds all event classes together

November 27, 2012

•

P-value: probability that a BG only fluctuation is more signal-like than observation

Similar results from cut based and cross Check MVA analysis (3.7 and 4.6 σ)

	ATLAS	CMS
Mass position of minimum local p-value	126.5 GeV	125 GeV
Local significance at minimum	4.5 σ	4.1 σ
Fitted value of μ	1.8 ± 0.5	1.56 ± 0.43

μ is the signal strength modifier $\mu = \sigma/\sigma_{SM}$

November 27, 2012

$H \rightarrow ZZ \rightarrow 4I$ (4 μ , 4e, 2e2 μ)

- Clean channel: 2 high mass pairs of opposite sign isolated electrons or muons coming from PV
- Narrow mass peak
 - Very good mass resolution 1-2 %

- Background
 - irreducible: ZZ
 - reducible: Z+jets, Zbb, tt, WZ
- Very small BR ~10⁻⁴ at 125 GeV

m_{4μ} = 125.1 GeV

pt (muons)= 36.1, 47.5, 26.4, 71 .7 [GeV] m₁₂= 86.3 GeV, m₃₄= 31.6 GeV 15 reconstructed vertices!

$H \rightarrow ZZ \rightarrow 4I$: invariant mass spectrum

Low mass

Data

Zγ*, ZΖ

m_H=126 GeV

160

ATLAS

H→ZZ^(*)→4I

200

m₄₁ (GeV)

180

250

m₄ [GeV]

Z+X

CMS: use other kinematical variables

MELA: Matrix Element Likelihood Analysis: uses kinematic inputs for signal to ZZ background discrimination $\{m_1, m_2, \theta_1, \theta_2, \theta^*, \Phi, \Phi_1\}$

$$\text{MELA} = \left[1 + \frac{\mathcal{P}_{\text{bkg}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{\text{sig}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]^{-1}$$

Improves the sensitivity by ~20% compared to using the mass alone

$H \rightarrow ZZ \rightarrow 4I$ exclusion

ATLAS: Not updated after discovery papers in July

H→ZZ→4l p-value

	ATLAS	CMS
Mass position of minimum local p-value	125 GeV	126.0 GeV
Local significance at minimum	3.6 σ	4.5 σ
Expected	2.7 σ	5.0 σ
Fitted µ	1.4 ± 0.6	0.8 ± 0.3

CSD

H→WW→lvlv

- Most sensitive channel around 2 x M_w (125 <~ M_H <~ 200 GeV)
- No narrow mass peak (mass resolution ~20%)
- Main backgrounds
 - WW (irreducible but signal tends to have smaller angle between leptons)
 - Z+jets, WZ, ZZ, tt, W + jets
- Analysis can be performed in exclusive jet multiplicities (0, 1, 2-jet bins) and flavour (ee, μμ, eμ)
 - Different BG
 - 2 jet bin mainly corresponds to VBF dijet tag

H->WW->eµvv candidate in CMS

- Same flavour has much larger BG and larger systematic errors (cut based analysis used)
- ATLAS only uses different flavour signature
 - Due to PU effect on MET resolution
 - Define 4 categories: $e\mu$ and μe (first is highest PT) and 0-jet and 1-jet categories
- New for CMS: 2D shape analysis in M_{\parallel} , M_{T} variables

 $m_T \equiv$

H+ 1-jet

ATLAS 4 categories at 8 TeV

November 27, 2012

 18 ± 6

 40 ± 22

 10 ± 2

 13 ± 7

 2 ± 1

 11 ± 6

 37 ± 13

141

 114 ± 18

- Observed 2.6 σ at 125 GeV (1.9 σ expected)
- Fitted $\mu = 1.5 \pm 0.6$

CMS: 2D shape analysis

- Only for most sensitive channels
- Use M_{II} vs M_T
- Different types of BG have different distributions
- 2D fit is able to constrain the BG in different regions
- Simpler than previous MVA analysis because it is the same for all masses

2D analysis

CMS

CMS WW results

- Combine published 7 TeV cut based with 8 TeV 2D shape analysis
- Observed: 3.1 σ at 125 GeV (expected: 4.1 σ)
 - Evidence of H->WW->lvlv decay
- Signal strength μ = 0.74 ± 0.25 at 125 GeV

New boson's decays to fermions

- Couplings of the new boson in the Yukawa sector are not yet directly observed
- H(125) presumably couples to quarks, indicated by presence of gg-fusion
- H->ττ decay not yet established

H→TT analysis

Production/signature

VH (ATLAS 2-jet, CMS leptonic decays of V)

0-jet (ATLAS only)

1-jet boosted

2-jet VBF

Complicated analysis, combination of many different sub-channels

Decay $H \rightarrow \tau \tau \rightarrow \ell \ell + 4\nu \ (12\%)$ $H \rightarrow \tau \tau \rightarrow \ell \tau_h + 3\nu \ (46\%)$ $H \rightarrow \tau \tau \rightarrow \tau_h \tau_h + 2\nu \ (42\%)$

Also split e and $\boldsymbol{\mu}$ in the analysis

• More than 10 sub-channels for each of the experiments

H→тт VBF candidate

- Invariant mass calculation
 - Use full kinematical fit
 - Mass resolution: 15-20%

Visible mass

Reconstructed TT mass spectrum

JCSD

H→TT results

	ATLAS	CMS
Expected 95% CL exclusion	1.2	1.0
Observed exclusion 95% CL	1.9	1.6
Fitted μ	0.7 ± 0.7	0.72 ± 0.52

Three views of channel compatibility plots

 Fitted signal strength in different categories/channels/run periods

Not yet evidence of $\tau\tau$ decay

- BR in SM at 125 GeV ~60%
- BG too large (7-8 orders of magnitude larger, needs additional tag
- Both ATLAS and CMS use VH associated production
 - Ζ->ee, μμ, νν
 - W->e,μ
- Mass resolution ~10%
- Also start exploiting ttH production
 - Much less sensitive and for now only 2011 data analyzed

- Both experiment observe ZV with Z->bb
 - ~5 times larger cross section
 - All BG except diboson 'signal' subtracted in the plots
- CMS sees larger excess than ATLAS at 125 GeV

	ATLAS	CMS
Expected 95% CL exclusion	1.9	1.1
Observed exclusion 95% CL	1.8	2.4
Observed significance	0.64	2.2 σ
Expected significance	0.15	2.1 σ
Fitted µ	-0.4 ± 0.7 ± 0.8	1.3 ± 0.7

Some excess observed in CMS

November 27, 2012

- Method for CL calculation is LHC-type CLs
 - Frequentist CLs with profiled likelihood test statistics and log-normal treatment of nuisance parameters
 - ATL-PHYS-PUB/CMS NOTE 2011-11, 2011/005, (2011)
- To extract the values of the parameters, we scan the profile likelihood ratio:

$$q(a) = -2 \ln \frac{\mathcal{L}(\text{obs} | s(a) + b, \hat{\theta}_a)}{\mathcal{L}(\text{obs} | s(\hat{a}) + b, \hat{\theta})}$$

where \hat{a} and $\hat{\theta}$ are the values of the parameters and the nuisances that maximize the likelihood

- To parametrize the couplings, follow LHC working group prescription (arXiv:1209.0040)
 - SM dependent models, search for small deviations

No new combination after the observation paper

- Observation is confirmed with excesses of 6 - 7 σ in the 2 experiments at a mass near 126 GeV

Exclusion in the rest of the mass range

At high mass most sensitive channels are WW and ZZ decays

	ATLAS	CMS
Expected exclusion 95% CL	110 – 580 GeV	110 - 680 GeV
Observed exclusion 95% CL	130 - 560 GeV	129 - 720 GeV

CMS

- After the discovery the questions we ask are:
 - What is the mass?
 - Is this particle a Higgs boson?
 - Is it consistent with the SM Higgs boson?
- To answer these we should:
 - Measure the production cross sections and BR
 - Measure the couplings
 - Measure spin and parity
 - Spin 1 excluded by the observation of the diphoton decay
- Both ATLAS and CMS are now starting to address all these questions

Signal strength µ in different channels

ATLAS ATLAS Preliminary m_H = 126 GeV $W,Z H \rightarrow bb$ vs = 7 TeV: Ldt = 4.7 fb⁻¹ vs = 8 TeV: Ldt = 13 fb⁻¹ $H \rightarrow bb$ $H \rightarrow \tau \tau$ Vs = 7 TeV: ∫Ldt = 4.6 fb⁻¹ vs = 8 TeV: Ldt = 13 fb⁻¹ $H \rightarrow WW^{(*)} \rightarrow IvIv$ $H \rightarrow \tau \tau$ √s = 8 TeV: ∫Ldt = 13 fb⁻¹ $H \rightarrow \gamma \gamma$ √s = 7 TeV: ∫Ldt = 4.8 fb⁻¹ $H \rightarrow \gamma \gamma$ Vs = 8 TeV: Ldt = 5.9 fb⁻¹ $H \rightarrow 77^{(1)} \rightarrow 4$ Vs = 7 TeV: Ldt = 4.8 fb vs = 8 TeV; Ldt = 5.8 fb $H \rightarrow WW$ Combined $\mu = 1.3 \pm 0.3$ √s = 7 TeV: ∫Ldt = 4.6 - 4.8 fb⁻¹ √s = 8 TeV: ∫Ldt = 5.8 - 13 fb⁻¹ $H \rightarrow ZZ$ -1 +1 n 0.5 0 Signal strength (µ)

CMS

- Overall μ
 - ATLAS: 1.3 ± 0.3
 - CMS: 0.9 ± 0.2
- Everything consistent with SM within errors, no large deviations observed
- χ^2 probability of channel compatibility with SM ~50%

CMS

From γγ and ZZ -> 4I mass spectra

2D scan µ vs mass

0

122

124

- Results
 - ATLAS 126.0 ± 0.4(stat.) ± 0.4 (syst.)
 - CMS 125.8 ± 0.4(stat.) ± 0.4 (syst.)
- Dominant systematic error is the absolute energy scale
 - largely uncorrelated between CMS and ATLAS

128

m_x (GeV)

126

arXiv:1209.2716

- M_H was the last SM parameter to be directly measured
- Important for EW precision test
- SM p-value of global fit 7%
 - Was 9% without direct measurement of MH
- Including M_H in the SM M_W and $\sin^2\theta_{eff}$ are predicted with a precision superior to the direct measurements and are compatible with them

- Measurement of production cross sections in the different channels
 - Decay BRs are fixed to the SM

- Vector and fermion couplings are scaled by two scale, κ_v and κ_F
- Agree with SM at ~ 1 σ
- Fermiophobic scenario excluded at >4σ level
- Similar conclusions from ATLAS

Invisible width

- Allow for new particles in the loops: parameterize the photon and the gluon loops with effective scale factors (κ_{γ} , κ_{g})
- Allow contribution of invisible decays to the total width
- Other couplings are fixed to the SM

- CMS obtains limit BR_{Inv} < 0.62 at 95% CL
- Similar results from ATLAS

All fitted couplings

CMS

CMS

Model parameters	Assessed scaling factors		
	(95% CL intervals)		
λ_{wz}, κ_z	$\lambda_{ m wz}$	[0.57,1.65]	
$\lambda_{wz}, \kappa_z, \kappa_f$	λ_{wz}	[0.67,1.55]	
κ _v	$\kappa_{ m v}$	[0.78,1.19]	
κ_f	κ_f	[0.40,1.12]	
$\kappa_{\gamma}, \kappa_{g}$	κ_{γ}	[0.98,1.92]	
	κ_g	[0.55,1.07]	
$\mathcal{B}(\mathrm{H} \to \mathrm{BSM}), \kappa_{\gamma}, \kappa_{g}$	$\mathcal{B}(H \to BSM)$	[0.00,0.62]	
$\lambda_{\rm du},\kappa_{\rm v},\kappa_{\rm u}$	$\lambda_{ m du}$	[0.45,1.66]	
$\lambda_{\ell q}, \kappa_{\rm v}, \kappa_{\rm q}$	$\lambda_{\ell q}$	[0.00,2.11]	
	$\kappa_{ m v}$	[0.58,1.41]	
	κ_b	not constrained	
$\kappa_{\mathrm{v}}, \kappa_{b}, \kappa_{\tau}, \kappa_{t}, \kappa_{g}, \kappa_{\gamma}$	$\kappa_{ au}$	[0.00,1.80]	
	κ_t	not constrained	
	κ_g	[0.43,1.92]	
	κ_{γ}	[0.81,2.27]	

First measurement of the parity

- CMS use the ZZ to 4 leptons channel where all decay angles are measured
- Carry out 2D analysis with versus s/b discriminant combined with mass versus parity discriminant :

$$\mathcal{D}_{J^p} = \frac{\mathcal{P}_{\mathrm{SM}}}{\mathcal{P}_{\mathrm{SM}} + \mathcal{P}_{J^p}} = \left[1 + \frac{\mathcal{P}_{J^p}(m_1, m_2, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\mathrm{SM}}(m_1, m_2, \vec{\Omega} | m_{4\ell})}\right]^{-1}$$

- Plot shows log-likelihood ratio between the signal models for 0⁺ and 0⁻
- CMS excludes pseudo-scalar hypothesis at 2.5 σ level (CL_s for 0⁻ is 3%)
- Also possible to use WW, γγ and VBF, analyses are in progress

November 27, 2012

Summary

- After the discovery of the new boson ATLAS and CMS have started to measure its properties
- Branching ratios, couplings and mass have been measured and (unfortunately) they all agree quite well with the SM
- First measurement of the parity disfavours the 0⁻ hypothesis

Outlook

- A few weeks left of running LHC at 8 TeV
- Followed by two years of LHC shutdown to prepare the higher energy, ۲ resume data taking in 2015:
 - CM energy should be between 13 and 14 TeV
- Expect most final results on SM Higgs physics at 8 TeV by next summer ۲
- Current projections for 300 fb⁻¹ at 14 TeV indicate a precision of O(10%)• on the couplings and BRs

CMS Projection

Backup

Detectors

- LHC is running at 8 TeV since beginning of April
- Already exceeded 20 fb⁻¹ per experiment of collected data
- Maximum luminosity 7.5 x 10³³ cms⁻²s⁻¹

Pileup

- Multiple interactions occur for each bunch crossing (in-time and out-of-time pileup)
- Mean PU ~10 events in 2011 and ~20 events in 2012

Effects of pileup:

- Apply corrections event by event for photons and jets
- Adds energy in isolation cones
 - corrected for pileup energy estimated event by event
- PU jets affect central jet veto and VBF jet tagging
 - Try to reject PU jets (wider and with tracks coming from different PV)

Hard interaction

Results not updated after discovery papers in July

	ATLAS	CMS
Expected exclusion 95% CL	0.8 x SM at 125 GeV	0.76 x SM at 125 GeV
Observed exclusion 95% CL	112.0-122.5, 132.0-143.0 GeV	110.0-111.0, 114-121, 129-132, 138-149 GeV

 $\tau_{\mu}\tau_{h}$

200

250

m_{ττ} [GeV]

- Trigger important, not fully efficient for hadronic τ decays
- Invariant mass calculation
 - Use full kinematical fit
 - Mass resolution: 15-20%

- Background in all channels is • dominated by Z -> $\tau\tau$
- Use real Z -> $\mu\mu$ events. Replace • muons in data with fully simulated τ , referred as "τ embedding"

m_{bb} [GeV]

Multij

140 160

m_{b5} [GeV]

1-lepton tag, categorize in p_T^W

(e) $p_{\rm T}^W > 200 \,{\rm GeV}$

November 27, 2012

CMS, other combination compatibility plots

Tagged modes

Tagged modes and separate decays

- First measurement of new boson couplings when interpreted as a Higgs boson
- Scale vectorial and fermionic couplings by C_V and C_F (use LO)

Production	Decay	LO SM	
VH	$H \to bb$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$
${ m tt}{ m H}$	$H \to bb$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$
VBF	$H \to \tau \tau$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$
$\rm ggH$	$H \to \tau \tau$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$
$\rm ggH$	$H \rightarrow ZZ$	$\sim \frac{C_F^2 \times C_V^2}{C_F^2}$	$\sim C_V^2$
$\rm ggH$	$H \to WW$	$\sim rac{C_F^2 imes C_V^2}{C_F^2}$	$\sim C_V^2$
VBF	$H \to WW$	$\sim rac{C_V^2 \times C_V^2}{C_F^2}$	$\sim C_V^4/C_F^2$
ggH	$H\to\gamma\gamma$	$\sim \frac{C_F^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^2$
VBF	$H\to\gamma\gamma$	$\sim \frac{C_V^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^4/C_{\!F}^2$

- Best fit: $(C_V, C_F) = (1, 0.5)$
- Consistent within 2σ with the SM Higgs boson

Solid contour: 68% CL Dashed contour: 95% CL

• From inclusive $ZZ \rightarrow 4I$ and $WW \rightarrow 2I2v$

$$- R_{WW/ZZ} = 0.9^{+1.1}_{-0.6}$$

Vacuum stability

Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the M_t - M_h plane. **Right**: Zoom in the region of the preferred experimental range of M_h and M_t (the gray areas denote the allowed region at 1, 2, and 3σ). The three boundaries lines correspond to $\alpha_s(M_Z) = 0.1184 \pm 0.0007$, and the grading of the colors indicates the size of the theoretical error. The dotted contour-lines show the instability scale Λ in GeV assuming $\alpha_s(M_Z) = 0.1184$.

CMS H→bb

 Best fit value at m_H=125 GeV (lowest p-value): 1.4 ± 0.6

- Couplings to W and Z boson scale together in SM.
- Parameterization:
 - $\kappa F, \kappa Z, \lambda_{WZ} = \kappa W/\kappa Z$ - κF, κZ profiled
- Result are consistent with SM:
 - λ_{wz} in [0.68-1.55] at
 95% CL

ATLAS ZZ mass resolution

Coupling scale factors

Produc	tion	modes	Detectable	deo	cay modes	Currently und	letectable decay modes
$rac{\sigma_{ m ggH}}{\sigma_{ m ggH}^{ m SM}}$	=	$\left\{ egin{array}{l} \kappa_{ m g}^2(\kappa_{ m b},\kappa_{ m t},m_{ m H}) \ \kappa_{ m g}^2 \end{array} ight.$	$\frac{\Gamma_{\rm WW^{(*)}}}{\Gamma_{\rm WW^{(*)}}^{\rm SM}}$	=	$\kappa_{ m W}^2$	${\Gamma_{tar{t}}\over \Gamma^{SM}_{tar{t}}} =$	κ_t^2
$rac{\sigma_{\mathrm{VBF}}}{\sigma_{\mathrm{VBF}}^{\mathrm{SM}}}$	=	$\kappa^2_{ m VBF}(\kappa_{ m W},\kappa_{ m Z},m_{ m H})$	$\frac{\Gamma_{\mathbf{ZZ}^{(*)}}}{\Gamma^{\mathbf{SM}}_{\mathbf{ZZ}^{(*)}}}$	=	$\kappa_{\rm Z}^2$	$rac{\Gamma_{ m gg}}{\Gamma_{ m gg}^{ m SM}}$:	see Section 3.1.2
$rac{\sigma_{ m WH}}{\sigma_{ m WH}^{ m SM}}$	=	κ_W^2	$rac{\Gamma_{b\overline{b}}}{\Gamma^{SM}_{b\overline{b}}}$	=	$\kappa_{\rm b}^2$	$\frac{\Gamma_{c\overline{c}}}{\Gamma_{c\overline{c}}^{SM}} \ = \ % \frac{\Gamma_{c\overline{c}}}{\Gamma_{c\overline{c}}^{SM}} \ = \ % \Gamma_{c\overline{c$	$\kappa_{ m t}^2$
$rac{\sigma_{ m ZH}}{\sigma_{ m ZH}^{ m SM}}$	=	κ_Z^2	$\frac{\Gamma_{\tau^-\tau^+}}{\Gamma^{SM}_{\tau^-\tau^+}}$	=	κ_{τ}^2	$rac{\Gamma_{{f s}ar {f s}}}{\Gamma^{{f SM}}_{{f s}ar {f s}}} \ =$	κ_b^2
$rac{\sigma_{ m tar{t}H}}{\sigma_{ m tar{t}H}^{ m SM}}$	=	κ_t^2	$\frac{\Gamma_{_{\gamma\gamma}}}{\Gamma^{SM}_{_{\gamma\gamma}}}$	=	$\left\{ egin{array}{l} \kappa_{\gamma}^2(\kappa_{ m b},\kappa_{ m t},\kappa_{ m au},\kappa_{ m W},m_{ m H}) \ \kappa_{\gamma}^2 \end{array} ight.$	${\Gamma_{\mu^-\mu^+}\over \Gamma^{SM}_{\mu^-\mu^+}} \ =$	κ_{τ}^2
			$\frac{\Gamma_{Z\gamma}}{\Gamma^{SM}_{Z\gamma}}$	=	$\left\{\begin{array}{l} \kappa_{(\mathrm{Z}\gamma)}^{2}(\kappa_{\mathrm{b}},\kappa_{\mathrm{t}},\kappa_{\mathrm{\tau}},\kappa_{\mathrm{W}},m_{\mathrm{H}})\\ \kappa_{(\mathrm{Z}\gamma)}^{2}\end{array}\right.$	Total width $rac{\Gamma_{ m H}}{\Gamma_{ m H}^{ m SM}} =$	$\left\{ egin{array}{l} \kappa_{ m H}^2(\kappa_i,m_{ m H}) \ \kappa_{ m H}^2 \end{array} ight.$

- 6 scale factors:
 - κV, κt, κb, κτ, κg, κγ
- Fit them individually while profiling the others

November 27, 2012

Marco Pieri UC San Diego

- BG: background
- MVA: MultiVariate Analysis
 - usually Boosted Decision Tree (BDT), could also be Neural Network (NN)
- VBF: Vector Boson Fusion process
- P-value: probability to observe a background fluctuation from background only, larger that the one observed in data
- VH: WZ, HZ associated production