
Varisano Annagrazia 

LNS-INFN 

 

Sensitive Detectors 

Geant4 simulation code: theory and practical session 



Goal 
• Learn how to retrieve information from the 

simulation: 

 Geant4 simulates the interactions of a particle with 
 matter following its trajectory 

– There are several ways to get information from the interactions: 

• Develop a “Sensitive Detector” (DS), i.e. volume able to generate 
hits. The information can be retrieved by User hooks 
Classes.(G4UserEventAction, G4UserRunAction, 
G4UserSteppingAction,etc) 

• Use “Primitive Scorer” (PS): provided by Geant4. In fact, it 
provides a number of PS each of which accumulates a physical 
quantity for each event. 

• Learn how to write information retrieved from the 
simulation on an external file, like ASCII files or ROOT 
files 

 

 



Part I: Sensitive Detectors (SD) 

 A logical volume becomes sensitive if it has a pointer to a sensitive 
detector (G4VSensitiveDetector) 

 To add sensitivity to a logical volume we must: 

 

1. create instance 

2.   register to SD manager 

3.   assign to logical volume 

1. Create an instance of a sensitive detector 

2.  Register the sensitive detector to the SD manager 

3.  Assign the pointer of your SD to the logical volume 

of your detector geometry 

 



Part I: Sensitive Detectors (SD) 

• A logical volume becomes sensitive if it has a pointer to a sensitive detector 
(G4VSensitiveDetector) 

• To add sensitivity to a logical volume we must: 

• Create an instance of a sensitive detector 

• Register the sensitive detector to the SD manager 

• Assign the pointer of your SD to the logical volume of your detector geometry 

create instance 

register to SD manager 

assign to logical volume 

A sensitive detector can be instantiated several times, where the instances are 
assigned to different logical volumes 
•  Note that SD objects must have unique detector names 
•  A logical volume can only have one SD object attached (But you can implement 

your detector to have many functionalities) 



Part II: User-defined sensitive detectors, 
Hits and Hits Collection 

 A powerful and flexible way of extracting information 

from the physics simulation is to define your own SD 

  Derive your own concrete classes from the base 

classes and customize them according to your needs 

 
G4VSensitiveDetector 

Base class 

MySensitiveDetector 

Concrete class 

in
h
e
ri

ta
n
ce

 

G4VHit 

Base class 

 

MyHit 

Concrete class 

 
in

h
e
ri

ta
n
ce

 



Hit class - 1 

 A hit is a snapshot of a physical interaction of a track in the 
sensitive region of the detector 

 A “Hit” is like a “container”, a empty box which contains the 
information retrieved step by step  
 

The Hit concrete class (derived by G4VHit) must be written by the user: the user 
must decide which variables and/or information the hit should store and when 
store them (Tipically: Momentum, Energy, Position, Volume, Particle type of a given 
track) 

 
 

 The Hit objects are created and filled by the 
SensitiveDetector class (invoked at each step in detectors 
defined as sensitive) and Stored in the “HitCollection”, 
attached to the G4Event and can be retrieved at the 
EndOfEvent 



Hit class - 1 

 A hit is a snapshot of a physical interaction of a track in the 
sensitive region of the detector 

 A “Hit” is like a “container”, a empty box which contains the 
information retrieved step by step  
 

The Hit concrete class (derived by G4VHit) must be written by the user: the user 
must decide which variables and/or information the hit should store and when 
store them (Tipically: Momentum, Energy, Position, Volume, Particle type of a given 
track) 

 
 

 The Hit objects are created and filled by the 
SensitiveDetector class (invoked at each step in detectors 
defined as sensitive). Stored in the “HitCollection”, attached 
to the G4Event: can be retrieved at the EndOfEvent 

In the simulation we can have many different sensitive detectors in the 
same setup (e.g. a calorimeter and a Si detector), for this reason, it is 
possible to define many Hit classes (all derived by G4VHit) storing 
different information 
 
 
 
 
 



Hit Collection- 1 

At each step in a sensitive  detector, the 
ProcessHit() method of the SensitiveDetector 
user class is inkoved: it must create, fill and 
store the Hit objects 

 

Hits collection ( = vector<Hit>) 



Hit Collection- 2 

 Once created in the sensitive detectors, objects of 
the concrete hit class must be stored in a 
dedicated collection 
 Template class G4THitsCollection<MyHit>,  
    which is actually an array of MyHit* 

 The hits collections can be accessed in different 
phases of tracking 
 At the end of each event, through the G4Event (a-

posteriori event analysis) 
 During event processing, through the Sensitive Detector 
   Manager G4SDManager (event filtering) 



Hit Collection- 3 

many kinds of Hits (and Hits Collections) 



Hit Collection- 3 

many kinds of Hits (and Hits Collections) 

o  The G4HCofThisEvent stores all hits collections 
created within the event 
• Hits collections are accessible and can be 

processes e.g. in the EndOfEventAction() 
method of the User Event Action class 

 
o A G4Event object has a G4HCofThisEvent object at 

the end of the event processing (if it was 
successful) 
• The pointer to the G4HCofThisEvent object 

can be retrieved using the 
           G4Event::GetHCofThisEvent() method 



SD and Hits 

 

 The principal goal of the sensitive detector is to manage 
and create hit objects through these three virtual 
methods (see also next slide) 
 Initialize() 
 ProcessHits() (Invoked for each step if step starts in logical 

volume having the SD attached) 
o Using information from particle steps, a sensitive detector 

either  
o constructs, fills and stores one (or more) hit object 
o accumulates values to existing hit 

 EndOfEvent() 
 

 

 
 

 



Sensitive Detector (SD) 

User 

concrete 

SD class 

Base SD class 



SD implementation: constructor 

• Specify a hits collection (by its unique name) for each 
type of hits considered in the sensitive detector: 

• Insert the name(s) in the collectionName vector 

 

Base SD class 



SD implementation: Initialize() 
• The  Initialize()  method is invoked at the beginning of each event 

• Construct all hits collections and insert them in the G4HCofThisEvent object, which 
is passed as argument to Initialize(). 

• The AddHitsCollection() method of G4HCofThisEvent requires the collection 
ID 

•  The unique collection ID can be obtained with GetCollectionID(): 

•  GetCollectionID() cannot be invoked in the constructor of this SD class (It is 
required that the SD is instantiated and registered to the SD manager first). 

• we defined a private data member (collectionID), which is set at the first call 
of the Initialize() function. 



SD implementation: ProcessHits() 
• This ProcessHits() method is invoked for every step in the 

volume(s) which hold a pointer to this SD (= each volume 
defined as “sensitive”) 

• The principal task of this method is to generate hit(s) or to 
accumulate data to existing hit objects, by using 
information from the current step. 

 

G4bool 

(hit) 



SD implementation: EndOfEvent() 

• This EndOfEvent() method is invoked at the 
end of each event. 

 



Processing hit information - example 

retrieve 
index 

retrieve all hits 
collections 

retrieve hits 
collection by index 

• Retrieve the pointer of a hits collection with the GetHC()method of G4HCofThisEvent collection 
using the collection index (a G4int number) 

•  Index numbers of a hit collection are unique and don’t change for a run. The number can be 
obtained by G4SDManager::GetCollectionID(“name”); 

• Notes: 
•  if the collection(s) are not created, the pointers of the collection(s) are NULL: check 

before trying to access it 
•  Need an explicit cast from G4VHitsCollection (see code) 



Processing hit information - example 

loop over 
individual hits, 
retrieve the data 

• Loop through the entries of a hits collection to access individual hits 
•  Since the HitsCollection is a vector, you can use the [] operator to get the hit object    
       corresponding to a given index 

• Retrieve the information contained in this hit (e.g. using the Get/Set methods of the concrete 
user Hit class) and process it. 

• Store the output in analysis objects. 



Strategy 

1. Create your detector geometry 

 Solids, logical volumes, physical volumes 

2. Implement a sensitive detector and assign an instance of it to the logical volume 
of your geometry set-up 

 Then this volume becomes “sensitive” 

  Sensitive detectors are active for each particle steps, if the step starts in this 
volume 

3.  Create hits objects in your sensitive detector using information from the particle 
step 

  You need to create the hit class(es) according to your requirements 

  Use Touchable of the read-out geometry to retrieve geometrical info associated 
with this 

4.  Store hits in hits collections (automatically associated to the G4Event object) 

5.  Finally, process the information contained in the hit in user action classes (e.g. 
G4UserEventAction) to obtain results to be stored in the analysis object 



Native Geant4 scoring 

• Alternatively to user-defined sensitive detectors, 
primitive scorers provided by Geant4 can be used 

• Geant4 provides a number of primitive scorers, 
each one accumulating one physics quantity (e.g. 
total dose) for an event 

• It is convenient to use primitive scorers instead of 
user-defined sensitive detectors when: 
–  you are not interested in recording each individual 

step, but accumulating physical quantities for an event 
or a run  

– you have not too many scorers 



G4MultiFunctionalDetector 

 G4MultiFunctionalDetector is a concrete class derived from 
G4VSensitiveDetector 

 It should be assigned to a logical volume as a kind of 
(ready-for-the-use) sensitive detector 

 It takes an arbitrary number of G4VPrimitiveSensitivity 
classes, to define the scoring quantities that you need 
  Each G4VPrimitiveSensitivity accumulates one physics quantity 

for each physical volume 
  E.g. G4PSDoseScorer (a concrete class of G4VPrimitiveSensitivity 

provided by Geant4) accumulates dose for each cell 

 By using this approach, no need to implement sensitive 
detector and hit classes! 



G4VPrimitiveSensitivity 

 Primitive scorers (classes derived from 
G4VPrimitiveSensitivity) have to be registered to the 
G4MultiFunctionalDetector 

 They are designed to score one kind of quantity (surface 
flux, total dose) and to generate one hit collection per 
event 
 automatically named as 

   <MultiFunctionalDetectorName>/<PrimitiveScorerName> 
 hit collections can be retrieved in the EventAction or RunAction 

(as those generated by sensitive detectors) 
 do not share the same primitive score object among multiple 

G4MultiFunctionalDetector objects (results may mix up!) 



Example 
MyDetectorConstruction::Construct() 

{ … 

G4LogicalVolume* myCellLog = new G4LogicalVolume(…); 

G4MultiFunctionalDetector* myScorer = new 
G4MultiFunctionalDetector(“myCellScorer”); 

G4SDManager::GetSDMpointer() -> AddNewDetector(myScorer); 

myCellLog->SetSensitiveDetector(myScorer); 

G4VPrimitiveSensitivity* totalSurfFlux = new 
G4PSFlatSurfaceFlux(“TotalSurfFlux”); 

myScorer->Register(totalSurfFlux); 

G4VPrimitiveSensitivity* totalDose = new  

G4PSDoseDeposit(“TotalDose”); 

myScorer->Register(totalDose); 

} 

Instantiate 

 multifunctional 

detector 

and register in the 

SD manager 

 

create a primitive scorer 

(surface flux) and register it 

create a primitive scorer (total 

dose) and register it 

Attach to volume 



Some primitive scorers that you may find 
useful 

• Concrete Primitive Scorers (-> Application Developers Guide 4.4.6) 

• Track length 

– G4PSTrackLength, G4PSPassageTrackLength 

• Deposited energy 

– G4PSEnergyDeposit, G4PSDoseDeposit 

•  Current/Flux 

– G4PSFlatSurfaceCurrent,G4PSSphereSurfaceCurrent, 

G4PSPassageCurrent,G4PSFlatSurfaceFlux, G4PSCellFlux,  

G4PSPassageCellFlux 

• Others 

–  G4PSMinKinEAtGeneration, G4PSNofSecondary, 

G4PSNofStep, G4PSCellCharge 

SurfaceCurrent : 

Count number of 

injecting particles 

at defined surface. 

SurfaceFlux : 

Sum up 1/cos(angle) 

 of injecting particles 

at defined surface 

CellFlux : 

Sum of L / V of  

injecting particles 

in the geometrical cell. 



G4VSDFilter 

• A G4VSDFilter can be attached to 

G4VPrimitiveSensitivity to define which kind of tracks       
have to be scored (e.g. one wants to know surface flux of 
protons only) 

– G4SDChargeFilter (accepts only charged particles) 

– G4SDNeutralFilter (accepts only neutral particles) 

– G4SDKineticEnergyFilter (accepts tracks in a defined range 
of kinetic energy) 

– G4SDParticleFilter (accepts tracks of a given particle type) 

– G4VSDFilter (base class to create user-customized filters) 



Example 

• MyDetectorConstruction::Construct() 

{ 

G4VPrimitiveSensitivity* protonSurfFlux = new 
G4PSFlatSurfaceFlux(“pSurfFlux”); 

G4VSDFilter* protonFilter = new 

G4SDParticleFilter(“protonFilter”); 

 

protonFilter->Add(“proton”); 

protonSurfFlux->SetFilter(protonFilter); 

myScorer->Register(protonSurfFlux); 

} 

create a primitive scorer 

(surface flux), as before 

create a particle filter and 

Add protons to it 

register the filter to the  primitive 

scorer 

register the scorer to the multifunc. detector 

(as shown before) 



UI commands for scoring 
• UI commands for scoring - no C++ required, apart from instantiating  

G4ScoringManager in main():  
#include “G4ScoringManager.hh” 

int main() 

{ 

  G4RunManager* runManager = new G4RunManager; 

  G4ScoringManager* scoringManager = G4ScoringManager::GetScoringManager(); 

   … 

• All of the UI commands of this functionality is in /score/ directory. 

 • Define a scoring mesh 

/score/create/boxMesh <mesh_name> 

/score/open, 

/score/close 

• Define mesh parameters 

/score/mesh/boxsize <dx> <dy> <dz> 

/score/mesh/nbin <nx> <ny> <nz> 

/score/mesh/translate, 

Define primitive scorers 

/score/quantity/eDep <scorer_name> 

/score/quantity/cellFlux 

 <scorer_name> 

currently 20 scorers are available 

 

• Define filters 

/score/filter/particle <filter_name> 

<particle_list> 

/score/filter/kinE <filter_name> <Emin> 

<Emax> <unit>  

currently 5 filters are available 

• Output 

/score/draw <mesh_name> <scorer_name> 

/score/dump, /score/list 

 
Have a look at the dedicated extended examples released with Geant4: 

• examples/extended/runAndEvent/RE02 (use of primitive scorers) 

• examples/extended/runAndEvent/RE03 (use of UI-based scoring) 



Define a scoring mesh 
• To define a scoring mesh, the user has to specify the followings.  

– Shape and name of the 3D scoring mesh. Currently, box is the only available shape.  

– Size of the scoring mesh. Mesh size must be specified as "half width" similar to the 
arguments of G4Box.  

– Number of bins for each axes. Note that too many bins cause immense memory 
consumption.  

# define scoring mesh  

/score/create/boxMesh boxMesh_1  

/score/mesh/boxSize 100. 100. 100. cm  

/score/mesh/nBin 30 30 30 

Optionally, position and rotation of the mesh. If not specified, the mesh is positioned at the center of 

the world volume without rotation.  

The mesh geometry can be completely independent from the real material geometry. 

# Translation/Rotation of scoring mesh 

/score/translate 0. 0. 10. cm 

/score/mesh/rotate/rotateZ 45. deg 



Scoring quantities 

• A mesh may have arbitrary number of scorers. Each scorer scores one physics quantity (xxxxx). 

– energyDeposit * Energy deposit scorer. 

– cellCharge * Cell charge scorer. 

– cellFlux * Cell flux scorer. 

– passageCellFlux * Passage cell flux scorer 

– doseDeposit * Dose deposit scorer. 

– nOfStep * Number of step scorer. 

– nOfSecondary * Number of secondary scorer. 

– trackLength * Track length scorer. 

– passageCellCurrent * Passage cell current scorer. 

– passageTrackLength * Passage track length scorer. 

– flatSurfaceCurrent * Flat surface current Scorer. 

– flatSurfaceFlux * Flat surface flux scorer. 

– nOfCollision * Number of collision scorer. 

– population * Population scorer. 

– nOfTrack * Number of track scorer. 

– nOfTerminatedTrack * Number of terminated tracks scorer. 

 
/score/quantity/xxxxx <scorer_name> 



Filter 
• Each scorer may take a filter. 

– charged * Charged particle filter. 

– neutral * Neutral particle filter. 

– kineticEnergy * Kinetic energy filter. 
/score/filter/kineticEnergy <fname> <eLow> <eHigh> <unit> 

– particle * Particle filter. 
/score/filter/particle <fname> <p1> … <pn> 

– particleWithKineticEnergy * Particle with kinetic energy filter. 

  
/score/quantity/energyDeposit   eDep 

/score/quantity/nOfStep   nOfStepGamma 

/score/filter/particle   gammaFilter   gamma 

/score/quantity/nOfStep   nOfStepEMinus 

/score/filter/particle   eMinusFilter   e- 

/score/quantity/nOfStep   nOfStepEPlus 

/score/filter/particle   ePlusFilter   e+ 

/score/close 

 

Close the mesh when defining scorers is done.  

Same primitive scorers 
with different filters 
may be defined. 



Write scores to a file 

• Single score 

/score/dumpQuantityToFile <mesh_name> <scorer_name> <file_name> 

 

• All scores 

/score/dumpAllQuantitiesToFile <mesh_name> <file_name> 

 

• By default, values are written in CSV. 

 

• By creating a concrete class derived from G4VScoreWriter base class, the user can 
define his own file format. 

– Example in /examples/extended/runAndEvent/RE03 

– User’s score writer class should be registered to G4ScoringManager. 

 

 



Example of file output in command-based 
scores 

# Dump scores to a file 

/score/dumpQuantityToFile  boxMesh_1 nOfStepGamma  nOfStepGamma.txt 

/score/dumpQuantityToFile boxMesh_1 eDep eDep.txt 

nOfStepGamma.txt 

eDep.txt 



Writing information on an external file 
For a long time, Geant4 did not provide any native data analysis tool. As a general 

rule, the user was supposed provide his own code to output results to an appropriate 

analysis format and to use an external analysis tool. 

In the latest geant4 releases, a few basic classes for data analysis have been 

implemented: 

– Support for histograms and ntuples 

– Output in ROOT, XML and CSV (ASCII) 

 

   

• Simplest using text (ASCII) files (human-readable) 

• Simplest possible approach = comma-separated values (.csv files) 

• The resulting files can be analyzed by tools such as: Gnuplot, Excel, 

OpenOffice, Matlab, Origin .. 

• Advanced using ntuple files 

• Allows to control what plot you want with modular choice of conditions and 

variables 

        Ex: energy of electrons knowing that (= cuts): (1) position/location, (2) angular       

             window, (3) primary/secondary … 

• Tools: Root 



Output stream (G4cout) 
 • G4cout is a iostream object defined by Geant4. The usage of this object is 

exactly the same as the ordinary std::cout except that the output streams 
will be handled by G4UImanager. 

• Output strings may be displayed on another window or stored in a file. 

Example: 

 

 G4cout      << "Energy deposited--->" <<  " " <<  edep << " " 

  << ”Charge--->" <<  " " << particleCharge << " " 

  << ”Kinetic Energy --->" << "  " << kineticEnergy << " " 

                   << G4endl;  



Output stream (G4cout) 
 

 G4cout      << "Energy deposited--->" <<  " " <<  edep << " " 

  << ”Charge--->" <<  " " << particleCharge << " " 

  << ”Kinetic Energy --->" << "  " << kineticEnergy << " " 

                   << G4endl;  



ASCII file saving 
 In order to allow an object to save data to a file you must: 

• Add to the include list the <fstream> header file 

• Put into the class declaration (file .hh) an ofstream object: 

     std::ofstream myFile; 

• Open the file, in the class constructor, or into a specific method: 
 myFile.open(“filename.out”); 

• To append data to an existing file, you must specify std::ios::app 

• Inside a regularly called method (e.g. inside a virtual method of an User 
Class),   write your data (i.e. G4double, G4int, G4String,…) to file, in the 
same fashion of G4cout: 

 if (myFile.is_open()) // Check that file is opened 

 { 

    myFile << kineticEnergy << ‘\t’ << dose << G4endl; 

    … 

 } 

• Finally close the file, in the class destructor, or into a specific method: 

 myFile.close(); 

 



ROOT 

• ROOT is an Object Oriented Data Analysis Framework. 

• It is heavily used in High Energy Physics. 

• Freely available. 

• http://root.cern.ch/  

 
Using ROOT in your C++ Geant4 code 

it is necessary to add in the header (.hh file) of a specific class devoted to analisys the 

needed include ROOT files, i.e.:  

 

Graphic objects 

NTuples, 1-D(float) & 3-D(double) histograms 

Mandatory headers 

http://root.cern.ch/


ROOT 

Declare the needed ROOT objects in your class header:  

 

 TFile       *theTFile; // ROOT file  

 TH1F      *histoEnergyDepositedPerEvent;  // 1-D histogram 

 TNtuple  *kinFragNtuple; // ntuple 

 … 

Then create an instance for each object in the class constructor, or in a specific method 

(also in case you need to recreate the file more than one  time per simulation):  

theTFile = new TFile(“myFileName”, “RECREATE”); 

This will create the file myFileName.root containing an image of ROOT variables. 

The option “RECREATE” means that an existing file will be overwritten! 



Now you can define a class method (remember to put declarations in .hh file!) to fill each 

 ROOT object. Data are temporarily written to memory, then flushed to file:  

An instance of each defined object can be created, in the class constructor or in a 

specific method called once, via the new operator: 

ROOT 



At the end of the simulation (i.e. at the end of a run) write & finalize the ROOT file. 

You can invoke the method to finalize the file: 

 At the end of the RunAction (if you don’t plan to have many runs) 

 In the object destructor 

 At the end of the main 

It’s a good programming practice to set  

this pointer to NULL in the class constructor 

This will finalize and close the ROOT file, moreover it frees the memory 

Closing all ROOT objects 



Conclusions 

• The final goal of any MC simulation is to retrieve physical information 

• Geant4 provides a powerful and flexible system to 

   retrieve and score information during the run based on: 

– Sensitive Detectors (attached to logical volumes) 

– Hits 

– Hits Collections (attached to the G4Event) 

–  Require concrete classes written by the user to work 

•  An other possibility is to use built-in Geant4 scorers 

– Less work to do but much less flexible 

– Suggested only in case you need a limited amount of  information  
and/or for a restricted scope 



Thanks 


