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Analog channel block diagram
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Charge-sensitive preamplifier with gain selection (1 bit)

Unipolar semi-Gaussian shaper with polarity (1 bit) and peaking time (3 bit)
selection options

Asymmetric baseline restorer to achieve baseline shift suppression, may be
included or not (1 bit)

Hit discriminator (comparator)

3-4 bit analog-to-digital conversion will be performed by a Time-Over-Threshold
(TOT) detection
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Four-corners analysis

The analog channel was simulated with the four corner models

The spread in gain and peaking time was reduced by modifying the bias of critical
reference devices in the first and second shaper stage
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25 TT 32 16

FF 38 16
FS 33 15
SF 31 17
SS 28 15

Variations in peaking time: less than ±19 % at 25 ns

Variations in charge sensitivity: less than ±8 % at 25 ns
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Baseline Restorer (BLR)

The unipolar pulse at the shaper output is
followed by an overshoot decaying with a
time constant of several microseconds

This results in a baseline shift at the
shaper output which also affects the
comparator threshold

⇒ Asymmetric DC restorer
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The PMOS acts as a switch:

open during the duration of the negative pulse
at the shaper output ⇒ this portion of the
signal is transmitted to the comparator input
with no alteration

close at the end of the pulse ⇒ ensuring a
rapid return of the pulse waveform to the
baseline and eliminating the long tail in the
shaper output signal

The effect of using a BLR on the noise
performances is presently under investigation
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Injection Circuit

Generates a signal corresponding to the one delivered by the strip sensor and feeds it
directly into the input of the detector readout circuit

The injected charge is obtained
by applying a voltage step to an
injection capacitance integrated
in the channel

The voltage step is obtained by
switching the current provided by
a current steering DAC on a
resistor
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n bit
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DAC
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Dynamic range and resolution:

Explore the full dynamic range of the signals delivered by the sensor ⇒ 15 MIP

1th point lower than the required analog resolution ⇒ 0.2 MIP

QMIN [ke-] QMAX [ke-]
L0 3.2 240

L1-L5 4.8 360

Requirements fulfilled with 7 bit and QMAX =360 ke- ⇒ QLSB=2.81 ke-
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7-bit current steering DAC

Unary current source architecture with 127 cells arranged in a two-dimensional
array (8×16)

Thermometric selection of current cells
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Figure: 7-bit DAC with thermometric selection of
current cells.
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Figure: Switching scheme for the unary
current source.
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Injection Circuit performance
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Output pad: CMOS-to-LVDS converter

Converts the CMOS signal at the input in to LVDS out signal

LVDS standard

Tx

CMOS

VODM
VOCM 350 mV

1.25 V

NOMI
3.5 mA

100

Since the Transmitter is biased at VDD=1.2 V the output signal cannot meet the
LVDS standard specification ⇒ we have established our own values for the Output
Common Mode Voltage VOCM , the Output Differential Mode Voltage VODM and the
Nominal Output Current Inom

LVDS DSSC
Standard Chip

VOCM [V] 1.25 0.60
VODM [mV] 350 200
Inom [mA] 3.5 2.0

The values of VOCM and VODM measured on a termination resistor RT fully meet the
requirements for the signal levels at the receiver input specified by the LVDS standard:
100 mV≤VICM≤ 2.4 V and |VIDM |≥ 100 mV.
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Transmitter schematic and performace
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VDD [V] 1.2
VOCM [V] 0.6
VODM [mV] 200
Inom [mA] 2.0

Power [mW] 2.4
Area [µm2] 30×27
Data Rate 1.6 Gb/s

Current Driver comprises a current source transistor M1, a current sink transistor
M2, and four MOS current switches M3, M4, M5 and M6 in the full-bridge
configuration.

Common-Mode FeedBack keeps the common-mode output voltage stable over
Process, supply Voltage and Temperature (PVT) variations.
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Transmitter performance

Tested with a CMOS input signal at f =300 MHz with the following setup:

coaxial cable
(25 cm)

PCB

SMA
ConnectorTest

Chip

100 Ohm
Resistor

DSO

Differential signal on 100 Ω load resistance: VCM=600 mV and VDM=200 mV
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Input pad: LVDS-to-CMOS converter

Converts the LVDS signal at the input of the pad in to CMOS signal
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Find a solution to reduce the VICM=1.235 V at the FPGA output.
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LVDS Receiver Schematic

M1

M2 M3

M4 M5

M6

Table: Receiver main properties

VDD [V] 1.2
VICM [V] 0.5≤VICM≤1.4
|VIDM | [mV] ≥200
Power [mW] 0.5
Area [µm2] 17×17
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LVDS-to-CMOS Input Pad: timing jitter

Tested with an LVDS square input signal with f =700 MHz and levels of 0.95-1.45 V
(provided by a Tektronix DTG5334 with DTGM30 module)
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An unexpected duty cycle shift appears at f>300 MHz (to be understood)

Duty-cycle jitter: 524 m% (3.74 ps at 700 MHz)

Period jitter: 8.49 ps
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Conclusions

An improved version of the readout channel has been simulated with:

Optimized performance in terms of sensitivity and peaking time spread

Baseline restorer included

The design of an Injection circuit for test and calibration of the front end chip is
under development

Prototypes of the I/O pads have been successfully tested
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