Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

Precision Measurements at Jefferson Lab Testing the Standard Model and Exploring Beyond

Wouter Deconinck

LNF Workshop on Jefferson Lab at 12 GeV December 18, 2012

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

Outline

Standard Model and Beyond

Dark Heavy Photons

APEX: A' Experiment HPS: Heavy Photon Search DarkLight

Parity-Violating Electron Scattering

Qweak Experiment MOLLER Experiment SoLID Experiment (PV-DIS) Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

Precision Tests of the Standard Model

Contemporary view of the Standard Model

Standard Model is an effective low-energy theory of the more fundamental underlying physics.

Experimental approaches to uncover the underlying physics

- Energy frontier: direct searches for new particles
- Precision or intensity frontier: searches for indirect effects

Energy frontier

- Highest energies
- Few signature events
- Real particle creation
- E.g.: LHC, ILC

WILLIAM&MARY

Precision or intensity frontier

- Modest or low energies
- High statistical precision
- g-2, EDM, $\beta\beta$, rare decays
- Dark photons, parity-violation \rightarrow Jefferson Lab 12 GeV

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

Precision Tests of the Standard Model

Challenges for the Standard Model

- Hierarchy problem: m_H much lower than naively expected
- Cold dark matter, dark energy: no observed explanations for 96% of the energy density of the universe

Sence: Robert Einfauer lource: NASAWMAP Science Team

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

Dark Heavy Photons

Dark gauge fields in addition to Standard Model

- Standard Model $SU(3) \times SU(2)_L \times U(1)_Y$ with extra $U(1)_D$
- New neutral vector boson: dark heavy photon A'
- No direct couplings between A' and Standard Model
- Kinetic mixing ϵ through X loops well above TeV
- Effective coupling strength to charged particles given by ϵq
- Region of interest is $m(A') \approx \text{MeV-GeV}$ with $\epsilon \approx 10^{-2} \text{--} 10^{-5}$

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

Dark Heavy Photons: Candidates for Dark Matter

Dark matter annihilation

PAMELA positron excess

Dark matter scattering

• DAMA/Libra seasonal variation

Parity-Violating Electron Scattering

Summary 000

Dark Heavy Photons: Search Strategy

Search strategy at JLab

- Search for an e⁺e⁻ resonance associated with A' decay (Bjorken, Essig, Schuster, Toro, Phys. Rev. D80, 2009)
- For heavy photon decay to lepton pair with coupling α' small, then lifetime large and vertex displaced
- Minimize hadronic processes (Z^2/A) with heavy targets

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

Dark Heavy Photons: Planned Experiments

Parameters

- Mass *m*(*A*')
- Coupling ϵ with $\epsilon^2 = \alpha'/\alpha$

Experiments

- APEX
- HPS
- DarkLight
- MAMI
- VEPP-3

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

APEX: The A' Experiment

Narrow Resonance Search

- Hall A High Resolution Spectrometers (HRS)
- Tungsten target ribbons

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

APEX: The A' Experiment

Narrow Resonance Search

- Hall A High Resolution Spectrometers (HRS)
- Tungsten target ribbons
- Invariant mass distributions (with injected signal)

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

APEX: The A' Experiment

Published Results of Test Run

- Demonstration of feasibility (high read-out rates)
- 6 days of data: quick analysis and publication

Parity-Violating Electron Scattering

Summary 000

HPS: Heavy Photon Search

Forward Compact Spectrometer

- Spectrometer 20 m downstream of CLAS spectrometer in magnetic chicane (horizontal 'sheet of flame')
- 2.2 and 6.6 GeV electron beam (450 $\mu A)$ on W foil targets
- Fast trigger and particle identification in calorimeter (ECal)
- Muon system with four hodoscope layers between iron absorbers
- Two modes of operation:
 - Narrow resonance search
 - Displaced vertex search

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

HPS: Heavy Photon Search

Target and Silicon Vertex Tracker

- Rotating target foil to achieve cooling
- SVT with 60 μ m strip pitch

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

HPS: Heavy Photon Search

Analyzing Magnet, ECal, Muon System

- SVT inside 1T magnetic field of analyzing dipole
- Calorimeter: inner modules PbWO₄, outer modules lead-glass
- Muon system

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

HPS: Heavy Photon Search

Parameter Space

- Two different beam energies: 2.2 GeV and 6.6 GeV
- Resonance search (large α') and displaced vertices (small α')

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

DarkLight

A' production on protons

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

DarkLight

A' production on protons

Internal H₂ gas target

- Small apertures confine gas, plasma windows considered
- Multiple differential pumping stages and target ends

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

DarkLight

A' production on protons

Detector technologies

- 0.5 T toroidal magnet system
- Central and forward silicon trackers
- Drift chambers with 100 μ m resolution
- Lead/scintillator sandwich calorimeter as trigger

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

Dark Heavy Photons: Planned Experiments

Parameters

- Mass *m*(*A*')
- Coupling ϵ with $\epsilon^2 = \alpha'/\alpha$

Experiments

- APEX
- HPS
- DarkLight
- MAMI
- VEPP-3

Dark Heavy Photons 00000000 Parity-Violating Electron Scattering

Summary 000

Electroweak Interaction

Glashow–Weinberg–Salam theory of weak interaction

- Left-handed leptons in doublets, right-handed in singlets
- Gauge symmetry $SU(2)_L imes U(1)_Y$ with couplings g,g'
- Parity-violation is used to measure electroweak parameters

Parity-violation neutral current (quarks)

$$\mathcal{L}_{PV}^{EW} = -\frac{G_F}{\sqrt{2}} \quad \left[g_A^e \left(\bar{e} \gamma_\mu \gamma_5 e \right) \cdot \sum_q g_V^q \left(\bar{q} \gamma^\mu q \right) \right. \\ \left. + g_V^e \left(\bar{e} \gamma_\mu e \right) \cdot \sum_q g_A^q \left(\bar{q} \gamma^\mu \gamma_5 q \right) \right] \\ = -\frac{G_F}{2\sqrt{2}} \quad \left[\sum_q \mathbf{C}_{1q} \left(\bar{e} \gamma_\mu \gamma_5 e \right) \cdot \left(\bar{q} \gamma^\mu q \right) \right. \\ \left. + \sum_q \mathbf{C}_{2q} \left(\bar{e} \gamma_\mu e \right) \cdot \left(\bar{q} \gamma^\mu \gamma_5 q \right) \right]$$

Dark Heavy Photons 00000000 Parity-Violating Electron Scattering

Summary 000

Electroweak Interaction

Parity-violating electron scattering couplings

- Weak vector coupling: $\mathbf{C}_{1\mathbf{q}} = 2g_A^e g_V^q$
- Weak axial coupling: $C_{2q} = 2g_V^e g_A^q$
- Electron coupling: $C_{ee} = 2g_V^e g_A^e$

Particle	Electric charge	Weak vector charge (sin $^2 heta_W pprox 1/4)$
u	+2/3	$-2C_{1u} = +1 - 8/3 \cdot \sin^2 \theta_W \approx +1/3$
d	-1/3	$-2C_{1d} = -1 + 4/3 \cdot \sin^2 \theta_W \approx -2/3$
n(udd)	0	$Q_W^n=-1$
p(uud)	+1	$Q^{ ho}_W = 1-4\sin^2 heta_W pprox 0$
е	-1	$Q_W^e = -1 + 4\sin^2 heta_W pprox 0$

Electron and proton weak charge Q_W^e and Q_W^p

Suppression of weak charges \rightarrow sensitive to new physics

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

Parity-Violating Electron Scattering

Interference of photon and weak boson exchange

Asymmetry between left and right helicity

$$\mathcal{M}^{EM} \propto rac{1}{Q^2} \qquad \mathcal{M}^{NC}_{PV} \propto rac{1}{M_Z^2 + Q^2}$$
 $A_{PV}(p) = rac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto rac{\mathcal{M}^{NC}_{PV}}{\mathcal{M}^{EM}} \propto rac{Q^2}{M_Z^2} \quad \text{when } Q^2 \ll M_Z^2$

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

Parity-Violating Electron Scattering

Interference of photon and weak boson exchange

Asymmetry between left and right helicity in protons

$$A_{PV}(p) = \frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \left[\frac{\epsilon G_E G_E^Z + \tau G_M G_M^Z - (1 - 4\sin^2\theta_W)\epsilon' G_M G_A^Z}{\epsilon(G_E)^2 + \tau(G_M)^2} \right]$$

In the forward elastic limit $Q^2 \rightarrow 0$, $\theta \rightarrow 0$ (plane wave) $A_{PV} \xrightarrow{Q^2 \rightarrow 0} \frac{-G_F Q^2}{4\pi \alpha \sqrt{2}} \left[Q_W^p + Q^2 \cdot B(Q^2) \right] \sim Q_W^p$

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

Parity-Violating Electron Scattering

$Q_W^{e,p} \sim 1 - 4\sin^2 \theta_W$

- Precision measurement $\sin^2 \theta_W$
- Running due to loop diagrams
- Effects from TeV-scale physics

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

Parity-Violating Electron Scattering

$Q_W^{e,p} \sim 1 - 4\sin^2 \theta_W$

- Precision measurement $\sin^2 \theta_W$
- Running due to loop diagrams
- Effects from TeV-scale physics

20

Parity-Violating Electron Scattering at Jefferson Lab

Q_{Weak} Experiment

- Measurement of Q_p^W in $\vec{e}p \rightarrow e'p$ on protons in hydrogen
- Completed, preliminary results released in fall 2012

MOLLER Experiment

- Measurement of Q_e^W in $\vec{e}e \rightarrow e'e$ on electrons in hydrogen
- Planned for running at Jefferson Lab 12 GeV

SoLID Experiment (PV-DIS)

- Measurement of $C_{1,2q}$ in $\vec{e}p \rightarrow e'p$ on hydrogen, deuterium
- Planned for running at Jefferson Lab 12 GeV

Parity-Violating Electron Scattering

Summary 000

The Q_{Weak} Experiment

- Precision measurement of a quantity suppressed by fundamental symmetries ($Q_W^p \approx 0$, asymmetry of 230 ppb)
- Elastic scattering of electron beam on proton target to measure the proton weak charge Q_W^p to a precision of 4%

Pushing the envelope of intensity (more events)

- Higher beam current (180 μ A versus usually < 100 μ A)
- Longer cryo-target (35 cm versus 20 cm, < 40 ppb 'boiling')
- Higher event rates up to 800 MHz (integration)

Pushing the envelope of precision

- Electron beam polarization precision of 1% at $1\,\text{GeV}$
- Helicity-correlated asymmetries controlled at ppb level

Dark Heavy Photons 00000000 Parity-Violating Electron Scattering

Summary 000

The Q_{Weak} Experiment

Preliminary Result

- For 4% of total data: $Q_W^p = 0.0945 \pm 0.020 \ (\delta Q_W^p = \pm 21\%)$
- Full data set: $\delta Q^{p}_{W} = \pm 4\%$ and $\delta \sin^{2} \theta_{W} = \pm 0.3\%$

Parity-Violating Electron Scattering

Summary 000

The MOLLER Experiment

Measurement of Lepton Lepton Elastic Reaction

- Elastic scattering of electrons on electrons in hydrogen
- Precision measurement of the weak charge of the electron $Q_W^e \approx 0$ at 11 GeV
 - Asymmetry $A_{PV} \approx 35.6$ ppb, with precision $\delta A_{PV} = \pm 0.7$ ppb
 - Precision $\delta Q_W^e \approx \pm 2.1\%$, $\delta \sin^2 \theta_W = \pm 0.1\%$

Pushing the envelope of intensity (more events)

- Even higher luminosity: $85 \,\mu\text{A}$ on $1.5 \,\text{m}$ long cryo-target
- Event rates up to 150 GHz

Pushing the envelope of precision

- Electron beam polarization precision of 0.4% at 11 GeV

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

The MOLLER Experiment

Experimental Layout

- Long, narrow hybrid toroidal spectrometer system
- Focusing of *ee* and *ep* on segmented quartz detector rings

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

The MOLLER Experiment

Experimental Layout

- Long, narrow hybrid toroidal spectrometer system
- Focusing of *ee* and *ep* on segmented quartz detector rings

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

The MOLLER Experiment

Experimental Layout

- Long, narrow hybrid toroidal spectrometer system
- Focusing of *ee* and *ep* on segmented quartz detector rings

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

The MOLLER Experiment

Projected precision on $\sin^2 \theta_W$

Future experiments

 Better precision will only be reached at linear collider, neutrino factory, or muon collider

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

The SoLID Experiment

Deep Inelastic Scattering: longitudinal nucleon structure

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E^2 \sin^4 \frac{\theta}{2}} \left(\frac{2}{M} F_1(x) \sin^2 \frac{\theta}{2} + \frac{1}{\nu} F_2(x) \cos^2 \frac{\theta}{2}\right)$$

Quark structure through **DIS**

•
$$F_2(x) = x \sum_q e_q^2(q + \bar{q}) \approx 2xF_1(x)$$
 (Callan-Gross)

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

The SoLID Experiment

Deep Inelastic Scattering: longitudinal nucleon structure

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E^2 \sin^4 \frac{\theta}{2}} \left(\frac{2}{M} F_1(x) \sin^2 \frac{\theta}{2} + \frac{1}{\nu} F_2(x) \cos^2 \frac{\theta}{2}\right)$$

Quark structure through **PV-DIS**: interference of γZ

•
$$F_2^{\gamma Z}(x) = x \sum_q e_q g_q^V(q + \bar{q}) \to a_1(x) \sim \sum_q e_q C_{1q}(q + \bar{q})$$

• $F_3^{\gamma Z}(x) = x \sum_q e_q g_q^A(q - \bar{q}) \to a_3(x) \sim \sum_q e_q C_{2q}(q - \bar{q})$

Parity-violating asymmetry (with kinematic factors Y_1 , Y_3)

$$A_{PV} \approx \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left(Y_1 a_1(x) + Y_3 a_3(x) \right)$$

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

The SoLID Experiment

Solenoidal Large Intensity Device

- 2 GeV
- $2 \,\mathrm{GeV}^2 < Q^2 < 10 \,\mathrm{GeV}^2$
- 0.2 < x < 1
- 40% azimuthal acceptance
- $\mathcal{L} \approx 5 \cdot 10^{35} \, \mathrm{s}^{-1} \mathrm{cm}^{-2}$

Experimental design

- Counting mode at rate > 200 kHz, 30 independent sectors
- Baffles filter low energy and neutral particles (no line of sight)
- Light gas Čerenkov for 1000–200 : 1 rejection of low-E π^-
- Electromagnetic calorimeter (shashlyk) for 50 : 1 π^- rejection

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

The SoLID Experiment: Weak Axial Couplings

Projected Precision on C_{1q} and C_{2q} Couplings

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

The SoLID Experiment: Other Measurements

Charge Symmetry Violation

- CSV due to EM effects and quark mass difference
- PV-DIS will measure at valence parton level
- Might impact NuTeV

Direct Access to d/u on p

•
$$a_1^p(x) \approx \frac{1 - 0.912 \frac{d}{u}}{1 + 0.25 \frac{d}{u}}$$

• Three experiments at JLab

Non-PV Experiments

• J/ψ , SIDIS on \vec{H} & \vec{He}

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

The SoLID Experiment: Other Measurements

Charge Symmetry Violation

- CSV due to EM effects and quark mass difference
- PV-DIS will measure at valence parton level
- Might impact NuTeV

Direct Access to d/u on p

•
$$a_1^p(x) \approx \frac{1 - 0.912 \frac{d}{u}}{1 + 0.25 \frac{d}{u}}$$

• Three experiments at JLab

Non-PV Experiments

• J/ψ , SIDIS on \vec{H} & \vec{He}

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary 000

Parity-Violating Electron Scattering

$Q_W^{e,p} \sim 1 - 4 \sin^2 \theta_W$

- Precision measurement $\sin^2 \theta_W$
- Running due to loop diagrams
- Effects from TeV-scale physics

31

Summary: Precision Measurements at JLab 12 GeV

Dark Photon Searches

- New opportunities since 2007, excellent fit to JLab's capabilities, test runs completed.
- A' Experiment (APEX): 11 GeV e⁻ on W, Hall A standard spectrometers
- Heavy Photon Search (HPS): 2.2–6.6 GeV *e*⁻ on W, forward spectrometer
- DarkLight: JLab FEL 100 MeV e^- on internal H₂ gas target
- Complimentary regions in mass $m_{A'}$ and coupling lpha'/lpha

Summary: Precision Measurements at JLab 12 GeV

Parity-Violating Electron Scattering

- Excellent control of electron beam, experience with techniques
- Unique access to weak couplings probes TeV-scale processes
- MOLLER: precision measurement of weak mixing angle $\sin^2 \theta_W$
- SoLID: access to weak vector and axial quark couplings $C_{1,2q}$
- Complimentary to direct 'beyond Standard Model' searches

Dark Heavy Photons

Parity-Violating Electron Scattering

Summary: Precision Measurements at JLab 12 GeV

- International collaborations with opportunities for involvement
- Promising program of precision measurements in near future

Qweak Experiment

Additional Material

Atomic Hydrogen Polarimetry

Møller polarimetry

- 300 mK cold atomic H
- 8 T solenoid trap
- $3 \cdot 10^{16} \text{ atoms/cm}^2$
- $3 \cdot 10^{15-17}$ atoms/cm³
- 100% polarization of *e* in the atomic hydrogen

Advantages

- High beam currents
- No Levchuk effect
- Non-invasive, continuous

Reference: E. Chudakov, V. Luppov, IEEE Trans. on Nucl. Sc. 51, 1533 (2004).

Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge *uud* $Q_W^p = -2(2C_{1u} + C_{1d})$

Early experiments

- SLAC and APV
- Electron scattering
 - HAPPEx, GO
 - PVA4/Mainz
 - SAMPLE/Bates

Q_{Weak} experiment

Figure: Young, Carlini, Thomas, Roche

Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge *uud* $Q_W^p = -2(2C_{1u} + C_{1d})$

Early experiments

- SLAC and APV
- Electron scattering
 - HAPPEx, G0
 - PVA4/Mainz
 - SAMPLE/Bates

Q_{Weak} experiment

Figure: Young, Carlini, Thomas, Roche

Parity-Violating Electron Scattering: Quark Couplings

Weak vector charge *uud* $Q_W^p = -2(2C_{1u} + C_{1d})$

Early experiments

- SLAC and APV
- Electron scattering
 - HAPPEx, G0
 - PVA4/Mainz
 - SAMPLE/Bates

Q_{Weak} experiment

Figure: Young, Carlini, Thomas, Roche

The Q_{Weak} Experiment: High Power Cryotarget

Nov 17, 2008 FLUENT 12.0 (3d phos rke)

Operational Parameters

- Transverse flow: 2.8 m/s
- Target length: 35 cm
- Beam current: 150 μA
- Heating power: 2.5 kW

Design using CFD

Power for other cryotargets

The Q_{Weak} Experiment: High Power Cryotarget

Low-frequency 'boiling' noise

- Helicity flip rate 960 Hz \rightarrow 240 Hz (quartet cycles)
- Target density fluctuations at low frequencies occur
- Power spectrum of signal

Current dependence

- Additional noise smaller than statistical width
- Consistent for different current and beam rasters
- Current to $180 \,\mu\text{A}$

The *Q_{Weak}* Experiment: Main Detector Preradiated Čerenkov detector bars

- + 8 fused silica radiators, 2 m long \times 18 cm \times 1.25 cm
- Pb preradiator tiles to reduce low-energy tracks (neutrals)
- Light collection: total internal reflection
- 5 inch PMTs with gain of 2000, low dark current
- 800 MHz electron rate per bar, defines counting noise

The Q_{Weak} Experiment: Main Detector

Event mode characterization

- Larger signal in + or end depending on proximity
- Number of photo-electrons ≈ 85 per track

Integrating data chain noise

- Current source (9V battery)
- Collect integrating data
- Width (≈ 230 ppm) is consistent with expectations
- Two orders of magnitude better resolution than in counting mode

The Q_{Weak} Experiment: Main Detector

Event mode characterization

- Larger signal in + or end depending on proximity
- Number of photo-electrons ≈ 85 per track

Integrating data chain noise

- Current source (9V battery)
- Collect integrating data
- Width (≈ 230 ppm) is consistent with expectations
- Two orders of magnitude better resolution than in counting mode

The *Q_{Weak}* Experiment: Systematic Uncertainties

Largest projected uncertainties on Q_W^p

- Total uncertainty on Q_W^p : 4.1%
- Statistical uncertainty: 3.2%
- Hadronic structure: 1.5%
- Beam polarimetry: 1.5%
- Measurement of Q^2 : 1.0%
- Background events: 0.7%
- Helicity-correlated beam properties: 0.7%

The *Q_{Weak}* Experiment: Systematic Uncertainties

Largest projected uncertainties on Q_W^p

- Total uncertainty on Q_W^p : 4.1%
- Statistical uncertainty: 3.2%
- Hadronic structure: 1.5%
- Beam polarimetry: 1.5%
- Measurement of Q^2 : 1.0%
- Background events: 0.7%
- Helicity-correlated beam properties: 0.7%

The *Q_{Weak}* Experiment: Tracking Mode Reasons for a tracking system?

- Determine Q^2 , note: $A_{meas} \propto Q^2 \cdot \left(Q^p_W + Q^2 \cdot B(Q^2)\right)$
- Quartz detector light output versus position
- Contributions from inelastic background events

Instrumentation of two octants

- Horizontal drift chambers (HDC) for front region
- Vertical drift chambers (VDC) for back region
- Rotation allows measurements in all 8 octants

The Q_{Weak} Experiment: Tracking Mode

Horizontal drift chambers

- 12 planes per octant
- Constructed at Va Tech

• Read-out using JLab F1 TDCs

Vertical drift chambers

- 181 wires in 2 m long multiplexed planes
- 4 planes per octant
- Constructed at W&M

The Q_{Weak} Experiment: Tracking Mode

Simulation of electrons on detector bar (flipped)

Projection of reconstructed tracks to detector bar

- Periodic tracking runs at 50 pA (HDC/VDC) to few nA (VDC)
- Excellent performance of HDC and VDC drift chambers
- VDC track resolution of $250 \,\mu m$ meets design goal
- HDC track resolution of $350 \,\mu\text{m}$ (software work ongoing)

Reconstruction of momentum

The Q_{Weak} Experiment: Tracking Mode

Reconstruction of angle θ

transfer Q^2 (preliminary) (preliminary) Entries 522€ Mean 0.136 120 Mean 0.02604 RMS 0.02678 **RMS** 0.01486 250 100 expected 7.9° expected 0.026200 measured 7.8° 0.02604 measured 150 100 50 20 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.25 0.05 0 1 0.15 $Q^2 (\text{GeV}/c)^2$ θ (rad)

- Excellent agreement with expected kinematics
- Required precision on Q^2 seems not a problem

The Q_{Weak} Experiment: Beam Polarimetry Requirements on beam polarimetry

- Statistical precision of 1% after one hour
- Systematic uncertainty of 1% (on absolute measurements)

Upgrade existing Møller polarimeter $(\vec{e} + \vec{e} \rightarrow e + e)$

- · Scattering off atomic electrons in magnetized iron foil
- Operation limited to dedicated low current runs ($I < 8 \,\mu$ A)

Construction new Compton polarimeter $(\vec{e} + \vec{\gamma} \rightarrow e + \gamma)$

- Compton scattering of electrons on polarized laser beam
- Continuous, non-destructive, high precision measurements
- Systematic uncertainty of 1% (for absolute measurements)

The *Q_{Weak}* Experiment: Beam Polarimetry

Compton polarimeter

- Beam: 150 μ A at 1.165 GeV
- Chicane: interaction region 57 cm below straight beam line
- Laser system: 532 nm green laser
 - 10 W CW laser with low-gain cavity
- Photons: PbWO₄ scintillator in integrating mode
- Electrons: Diamond strips with 200 μ m pitch

The Q_{Weak} Experiment: Beam Polarimetry

Møller polarimetry (preliminary)

- New beamline, refurbished
- Invasive measurements
- Polarization larger than anticipated: 86% to 88% WILLIAM& MARY

Compton polarimetry (preliminary)

- Excellent performance
- Continuous measurements
- Operates at full 180 μA
- Phosphorescence in CsI \rightarrow PbWO₄