
S. Pardi

GPGPU Evaluation – Update

Napoli

Silvio Pardi

S. Pardi

Goal of our preliminary tests
•Achieve know-how on the GPGPU architectures in order to test the
versatility and investigate the adoption for some specific tasks interesting for
SuperB.
•Create a list of test which we are interesting for.

•multi-core Technology
•High speed and complex
processing unit
• General Purpose

•many-core technology
• Hundred of simple Processing Units
• Designed to macht the SIMD
paradigm (Single Instruction Multiple
Data)

S. Pardi

The Hardware Available in Napoli

1U rack NVIDIA Tesla S2050
 4 GPU Fermi
 Memory for GPU: 3.0 GB
 Core for GPU: 448
 Processor core clock: 1.15 GHz

2U rack Dell PowerEdge R510
Intel Xeon E5506 eight-
core @ 2.13 GHz
32.0 GB DDR3
8 hard disk SATA (7200
rpm), 500 GB

S. Pardi

B-meson reconstruction algorithm
Combinatorial problem

Problem Modellization: given N quadrivector
(spatial component and energy), combine all
the couple without Repetition. Then calculate
the mass of the new particle and check if the
mass is in a range given by input.

GOAL: Understand the impact, benefits and
limits of using the GPGPU architecture for this
use case, through the help of a toy-model, in
order to isolate part of the computation.

A new stage of the algorithm (2 in figure) has
been implemented by Master’s Students.

1
2

3

S. Pardi

Parallel
implementation
of each module

Start

Read Input

Thread 0:
Sum of n quadrivector

m2=E2-px2-py2-pz2

Thread 1:
Sum of n quadrivector

m2=E2-px2-py2-pz2

Thread k:
Sum of n quadrivector

m2=E2-px2-py2-pz2
…

m0-Δ<m<m0+Δ

Particle found

SI

m0-Δ<m<m0+Δ

SI

m0-Δ<m<m0+Δ

SI

NO NO NO

Sequential code(CPU)
Parallel code (GPU)

START MODULE

END OF THE
MODULE

Particle found Particle found

S. Pardi

Methodology used in the test

• Memory in input
• CudaMalloc input
• CudaMalloc output
• Load input array
• cudaMemcpy() hostTOdevice
• cudaMemset()
• Kernel
• cudaMemcpy() deviceTOhost
• cudaFree()
• free()
• Total time

A sequential version of the toy
algorithm has be implemented to
compare the parallel one.

We increment the input in order to
found the minimal data set in
which the GPU algorithm
overcome the sequential code.

In testing the CUDA algorithm we
measuring the time spent in any
single activities in order to evaluate
the overhead.

S. Pardi

On-going Tests

• Code performance in term of time execution

• We start the code validation in term of
reconstruction capability

S. Pardi

Algorithm Evaluation

GPU overhead

Parallel algorithm go

faster than the serial

Gap

S. Pardi

9/15

First Evaluation test on a set of real data (100.000 events)

Candidato: Angelo Tebano (matr. 566/2750)

Centro di massa:
0,1335 GeV/c2

Centro di massa:
0,4977 GeV/c2

S. Pardi

Conclusion and future work

The GPU benefit is evident when we have a large input, this suggest

the opportunity to process more event at the same time.

We must measure the GPU overhead with multiple jobs that work at

the same time in the node that host the GPU.

We just started to evaluate the code reconstruction capability with

real data. At this stage we used only a little number of particles

we are confident that we can improve the showed graph.

