Hadronic physics @ KLOE/KLOE-2

S. Miscetti (LNF-INFN) on behalf of the KLOE-2 Collaboration

- ➤ Status of DAΦNE and of KLOE-2
- Hadronic measurements with KLOE data
- > Highlights of the KLOE-2 Physics Program

JLAB12 e gli altri esperimenti: punti di incontro e prospettive future Laboratori Nazionali di Frascati 19/12/2012

DA Φ NE: the Frascati ϕ -factory

The KLOE experiment

KLOE experiment took data in 2001-2006, before the DA Φ NE upgrade

0 m		
Decay channel	Events (2.5 fb ⁻¹)	
K+K-	3.7×10^{9}	
K _L K _S	$2.5 imes 10^{9}$	
$\rho\pi$ + $\pi^+\pi^-\pi^0$	1.1×10^{9}	
ηγ	$9.7 imes 10^{7}$	
$\pi^0\gamma$	$9.4 imes 10^{6}$	
η′γ	4.6×10^{5}	
ππγ	$2.2 imes 10^{6}$	
η π ⁰γ	5.2×10^{5}	

Drift chamber

★ Gas mixture: 90% He + 10% C₄H₁₀
★ $\delta p_t / p_t < 0.4\%$ (θ>45°)
★ $\sigma_{xy} \approx 150 \ \mu m$; $\sigma_z \approx 2 \ mm$

Electromagnetic calorimeter

- \clubsuit lead/scintillating fibers
- ✤ 98% solid angle coverage
- * $\sigma_{\rm E}$ / E = 5.7% / $\sqrt{(E(GeV))}$
- * $\sigma_t = 57 \text{ ps} / \sqrt{(E(GeV)) \oplus 100 \text{ ps}}$
- * PID capabilities

Magnetic field: 0.52 T

Physics at a φ-factory:
Kaon physics
Light meson spectroscopy
Hadron production in γγ collisions
Search for dark force mediator
Hadronic cross-section via ISR and π⁺π⁻contribution to (g-2)_μ

From KLOE to KLOE-2: γγ taggers

2+2 $\gamma\gamma$ taggers installed and ready for the KLOE-2 run Measurement of lepton momenta in $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-X$

LET : E=160-230 MeV

- Inside KLOE detector
- ≻ LYSO+SiPM
- $rac{}{\sim} \sigma_{\rm E}$ <10% for E>150 MeV

HET : E > 400 MeV

- ➤ 11 m from IP
- Scintillator hodoscopes

$$\succ \sigma_{\rm E} \sim 2.5 {
m MeV}$$

 $\succ \sigma_{\rm T} \sim 200 \ {\rm ps}$

From KLOE to KLOE-2: IP detectors

Major detector upgrades ready Feb 2013. Installation will start March-April 2013

INNER TRACKER

4 layers of cylindrical triple GEM
Better vertex reconstruction near IP
Larger acceptance for low p_t tracks

QCALT

- ➢ W + scintillator tiles + WLS/SiPM
- \succ QUADS coverage for K_L decays

CCAL

≻ LYSO + SiPM

> Better acceptance for low angle γ (21° \rightarrow 10°)

From KLOE to KLOE-2: IP detectors

Major detector upgrades ready Fe Installation will start March-April 2

INNER TRACKER

4 layers of cylindrical triple GEN
 Better vertex reconstruction nea
 Larger acceptance for low p_t trace

QCALT

W + scintillator tiles +QUADS coverage for

CCAL

LYSO + SiPMBetter acceptance for lot

S.Miscetti@JLAB-2012

Commissioning of the KLOE-2 run

Best performances:

 L = 1.5×10³² cm⁻²s⁻¹ (0.8 mA + 0.8mA) (as best KLOE run with 1.8 A + 1.3 A)
 Background level x 2-3 w.r.t. KLOE

- First collisions for KLOE-2 @ end 2010, followed by long machine shutdowns due to severe hardware problems
- DAΦNE commissioning started on November 2011
- Performances obtained for the Siddharta 2008 run not yet reached
- X Machine studies concluded → now 6 months shutdown to install upgrades
 → Temperature control on BeamPipe
- ✗ Crab Waist is working → machine optimization still to be done
- × New beam pipe under construction.

- ✗ Max integrated Lum∼ 8.2 pb/day
- **X** Max Lum/hour ~ 420 nb sustained for 10 hours \rightarrow O(10 pb/day)
- **×** Max lum expected O (20 pb/Day) x 200 dd/year ~ 4 fb/Year

Still harvesting KLOE data...

50 publications based on KLOE data set
 This 'old' KLOE data still producing new amazing results
 Most recent analyses will be discussed

η/η' physics

- > η/η' samples produced by radiative Φ decays (Φ →η/η' γ) and selected by looking for monochromatic photons of 353, 50 MeV energy.
- ➢ Fit to the Dalitz-plot for η decaying to 3 pion final state used to extract Q value → related to (u/d/s) masses. This has been done with 450/pb both on neutral and π⁺π⁻π⁰ channels. Fit by H.Leuwayler et al. Study on 2/fb in progress.
- > Ratio of BR($\Phi \rightarrow \eta' \gamma$)/BR($\Phi \rightarrow \eta \gamma$) used to determine gluonium content of η .
- > Limits set ($\eta \rightarrow \pi\pi$) and BR of rare decay channels ($\eta \rightarrow eeee, \pi\pi ee$)
- > In the last period we focused on two channels:
 - 1) $\eta \ensuremath{ \rightarrow \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\gamma}$ (accepted by PLB) ... plan is to move to η'
 - 2) $\eta' \rightarrow \eta \pi \pi$ (work in progress)

 $\Gamma(\eta \rightarrow \pi^+ \pi^- \gamma) / \Gamma(\eta \rightarrow \pi^+ \pi^- \pi^0)$ **Study of the box anomaly**: test of ChPT and its unitarized extensions π+ [Benayoun et al. EPJC31(2003)525; Holstein, Phys. Scripta, T99(2002)55; Borasoy, Nissler, NPA740(2004)362, Picciotto PRD45(1992)1569] ππ-Sizeable effect of the Contact Term expected η/η' both in $\Gamma(\eta \rightarrow \pi^+ \pi^- \gamma)$ and in $M_{\pi\pi}$ distribution VMD CT Exp. data $\pi + \pi - \pi 0$ signal $\eta \rightarrow \pi + \pi - \gamma$ Data sample: 558 pb⁻¹ $\rightarrow \pi + \pi - \pi 0$ 10^{3} Sum of all MC > N($\eta \rightarrow \pi^{+}\pi^{-}\gamma$) = 204,950 > N($\eta \rightarrow \pi^+ \pi^- \pi^0$) = 1.19×10⁶ ➢ B/S = 10% B/S = 0.65% 10^{2} > Main background: $\phi \rightarrow \pi^+ \pi^- \pi^0$ -30 -10 0 10 $E_{\gamma_n} - |\vec{p}_{\gamma_n}|$ (MeV) **Consistent with CLEO** $\frac{\Gamma(\boldsymbol{\eta} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\gamma})}{\Gamma(\boldsymbol{\eta} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{0})} = 0.1856 \pm 0.0005_{stat} \pm 0.0028_{syst}$ measurement, with a factor of 3 improved precision LNF Dec 2012 S.Miscetti@JLAB-2012

$\eta \rightarrow \pi^+ \pi^- \gamma$: fit to the $M_{\pi\pi}$ spectrum

Study of $\eta - \pi$ interactions in $\eta' \rightarrow \eta \pi^+ \pi^-$

Study η-π interaction

Study of $\eta - \pi$ interactions in $\eta' \rightarrow \eta \pi^+ \pi^-$

Previous Measurements:

BNL (sum)	1400 events
CLEO	6700 events
VES	7000 events
BES III	44000 events

Phys. Rev. D10 916 (1974) Phys. Rev. Lett. 84 26 (2000) Phys. Lett. B651, 22-26 (2007) Phys. Rev. D83, 012003 (2011)

 $\succ \gamma \gamma \rightarrow \eta \ (\pi^0 \pi^0)$ studied (under-way) at KLOE

- > Data sample: **240** pb⁻¹ @ \sqrt{s} = 1 GeV (reduced bckg contamination from ϕ)
- > Selected channels: $\eta \rightarrow \pi^+ \pi^- \pi^0 / \pi^0 \pi^0 \pi^0$
- > Main background: $\phi \rightarrow \eta \gamma$ with undetected recoil photon

$$\gamma\gamma \rightarrow \eta \rightarrow \pi\pi\pi$$
 : results

Neutral channel, ~720 signal events:

$$\sigma(e^+e^- \rightarrow e^+e^-\eta, \sqrt{s} = 1 \text{ GeV}) = (32.0 \pm 1.5_{\text{stat}} \pm 0.9_{\text{syst}} \pm 0.2_{\text{BR}(\eta \rightarrow 3\pi)}) \text{ pb}$$

Charged channel, \sim 390 signal events:

$$\sigma(e^+e^- \to e^+e^-\eta, \sqrt{s} = 1 \text{ GeV}) = (34.5 \pm 2.5_{\text{stat}} \pm 1.0 \pm 0.7_{\text{ff}} \pm 0.4_{\text{BR}(\eta \to 3\pi)}) \text{ pb}$$

Combined (correlated errors on neutrals, Lum, FF and rel. BRs)

$$\sigma(e^+e^- \rightarrow e^+e^-\eta, \sqrt{s} = 1 \text{ GeV}) = (32.7 \pm 1.3_{\text{stat}} \pm 07_{\text{syst}}) \text{ pb}$$

***** KLOE measurements same precision w.r.t. best previous results

***** Extraction of $\Gamma(\eta \rightarrow \gamma \gamma)$ from X-sec measurement, FF and $\gamma \gamma$ -flux

$$\Gamma(\eta \rightarrow \gamma \gamma) = (520 \pm 20_{stat} \pm 13_{syst}) \text{ eV}.$$

In agreement with PDG value of the width 510±26 ev. Most precise single determination

Φ Dalitz Decay

Interest in studying low energy vector and pseudo-scalar Dalitz decay increased.

> VPγ * transitions not fully described by VMD

$$\frac{d}{dq^2} \frac{\Gamma(\phi \to \eta e^+ e^-)}{\Gamma(\phi \to \eta \gamma)} = \frac{\alpha}{3\pi} \frac{|F_{\phi\eta}(q^2)|^2}{q^2} \sqrt{1 - \frac{4m^2}{q^2}} \times$$

$$\times \left(1 + \frac{2m^{2}}{q^{2}}\right) \times \left[\left(1 + \frac{q^{2}}{m_{\phi}^{2} - m_{\eta}^{2}}\right)^{2} - \frac{4m_{\phi}^{2}q^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}} \right]^{3/2}$$

T.

Φ Dalitz Decay

- Slopes measurement for the $\Phi \rightarrow \eta e^+e^-$ decay in progress with ~ 1.7 fb⁻¹ and for two main eta decay channels ($\pi^+\pi^-\pi^0, \pi^0\pi^0\pi^0$)
- > Progresses also for the measurement of $\Phi \rightarrow \pi^0 e^+ e^-$
- > Plans to study also PS \rightarrow V γ^* exist (e.g. $\pi^0, \eta \rightarrow \gamma$ e+e-)

✓ High precision on slope reachable (few % w.r.t. 50% of SND measurement)
 ✓ Very different systematics on the two channels. Combined fit planned

Low energy dark forces

Several unexpected astrophysical observations (PAMELA, ATIC, INTEGRAL, DAMA/LIBRA, CoGent...) could be explained with the existence of a hidden gauge sector weakly coupled with SM through a mixing mechanism of a new gauge boson (U, A', V...) with the photon:

✓ U mass range: 1 MeV – few GeV

✓ Coupling constant of electric charge to U: $ε \le 10^{-3}$

 \checkmark U production/decay through photon mixing

[Essig et al., PRD80 015003 (2009)]

Search for dark forces @ KLOE: $\phi \rightarrow \eta U$

Meson having radiative decay to one photon can decay to a U boson

with BR(X \rightarrow YU) ~ $\varepsilon^2 \times |FF_{XY\gamma}|^2 \times BR(X \rightarrow Y\gamma)$

Selected decay chains: $U \rightarrow e^+e^- + \eta \rightarrow \pi^+\pi^-\pi^0$

 $U \rightarrow e^+e^- + \eta \rightarrow \pi^0\pi^0\pi^0$

Irreducible background: ϕ Dalitz decay $\phi \rightarrow \eta \gamma^* \rightarrow \eta l^+ l^-$

Dark forces @ KLOE: ee \rightarrow U g

Production of a photon plus an U boson and decay in a lepton pairs: $e^+ e^- \rightarrow U\gamma \rightarrow l^+ l^-\gamma$, $l = e, \mu$

S.Miscetti@JLAB-2012

Dark forces @ KLOE: Limits on ee \rightarrow U g

U. L. between $2.6 \cdot 10^{-6}$ and $3.5 \cdot 10^{-7}$ in the energy range 600-1000 MeV

Results based on 240 pb⁻¹ small angle γ analysis

Using the 2.5 fb⁻¹ full KLOE data set improves the sensitivity by a factor ~ 3

Changing the µ acceptance selections and including the offpeak sample may allow to check the low (~threshold) invariant mass region

A further factor 2 in sensitivity expected from KLOE2 experiment

LNF Dec 2012

S.Miscetti

Dark forces : ee → hU higgsstrahlung process

LNF Dec 2012

S.Miscetti@JLAB-2012

Dark forces : ee \rightarrow hU higgsstrahlung process

Limits ~ $10^{-8} \div 10^{-9}$ in $\alpha_D \epsilon^2$, which translate in $10^{-3} \div$ some 10^{-4} in ϵ , if $\alpha_D = \alpha_{em}$

Search complementary with BaBar one (same process, different final state and phase space)

Expect a ≈ 2.5 improvement on the limits in KLOE2 because of luminosity + suppression of the K+K⁻ background due to the Inner Tracker insertion \rightarrow full study of the $\epsilon \approx 10^{-4}$ region

KLOE-2 physics program

Goal: O(10) fb⁻¹ in the next 2-3 years to extend the KLOE physics program

[G.Amelino-Camelia et al., Eur. Phys. J. C 68 (2010), 619]

*γγ physics	 ≻ Existence (and properties) of σ/f₀(600) > Study of Γ(S/PS→γγ) > PS transition form factor
Light meson spectroscopy	 Properties of scalar/vector mesons Rare η decays η' physics
Kaon physics	 Test of CPT (and QM) in correlated K decays Test of CPT in K_s semileptonic decays Test of SM (CKM unitarity,lepton universality) Test of ChPT (K_s decays)
Dark forces search	Vector gauge bosons @ O (1 GeV)

KLOE-2 prospects: search for U boson

• Analysis of $e^+e^- \rightarrow U\gamma \rightarrow \mu\mu\gamma$ planned on:

Conclusions

> The high statistics data sample acquired by KLOE still produces copious results in many different fields of physics, η , η' , Dalitz decay of ϕ , η , π , $\gamma\gamma$ -physics, hadronic cross section, Kaon rare decays and kaon interferometry \rightarrow the versality of the detector and precision of the analysis allows us to search for Dark U in 3 different decay chains.

> DA Φ NE commissioning concluded

- KLOE detector ~ fully operational
- KLOE-2 upgrades are being completed
- Installation of new detectors foreseen for spring 2013
- Expect to collect O(10 fb⁻¹) in the next 2-3 years

> Rich physics program available for KLOE-2

[see Eur. Phys. J. C 68 (2010), 619]

ADDITIONAL MATERIAL

Hadronic Cross Section

Hadronic cross section

- The ~3σ discrepancy between SM predictions and BNL measurement of the muon anomaly still holds
- Dipion threshold [2m_π-0.5 GeV] contributes by a 13% fraction to a_{μ}^{HLO}

At KLOE:

 $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)$ measured at fixed \sqrt{s} with high accuracy ISR used to extract $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ for $\sqrt{s'}$ from $2M_{\pi}$ to \sqrt{s}

KLOE measurements, using absolute normalization:

×240 pb⁻¹ on-peak, undetected photon @ small angle ($\theta_{\gamma} < 15^{\circ}$ or $\theta_{\gamma} > 165^{\circ}$) : $a_{\mu}^{had,\pi\pi}$ [0.35<s'<0.95 GeV²] = (387.2±0.5_{stat} ±2.4_{syst} ±2.3_{th}) 10⁻¹⁰ PLB 670 (2009) 285

×233 pb⁻¹ off-peak, detected photon @ large angle (50°< θ_{γ} <130°) : a_µ ^{had,ππ}[0.10<s'<0.85 GeV²] = (478.5±2.0_{stat}±5.0_{syst}±4.5_{th}) 10⁻¹⁰

$$\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)$$
 from $\pi^+\pi^-\gamma/\mu^+\mu^-\gamma$ ratio

After the two measurements normalized to luminosity, a new KLOE measurement of the hadronic cross section normalized to $\mu^+\mu^-\gamma$ performed

- ✓ 239.2 pb⁻¹,with photon at small angle: 0.87/3.4 Millions of $\mu\mu\gamma/\pi\pi\gamma$ events
- ✓ Careful work to achieve a control of ~1% in the muon selection, especially in the ρ region, where $\pi\pi\gamma/\mu\mu\gamma$ ~ 10 π/μ separation cross checked with three different methods
- ✓ Efficiencies done directly on data
- Excellent data/MC agreement for many kinematic variables

Good agreement between the two measurements, especially in the ρ region

KLOE12: $a_{\mu}^{\pi\pi}$ (0.35-0.95 GeV²) = (385.1 ± 1.1_{stat} ± 4.4_{syst}± 1.2_{theo}) · 10⁻¹⁰ KLOE08: $a_{\mu}^{\pi\pi}$ (0.35-0.95 GeV²) = (387.2 ± 0.5_{stat} ± 2.4_{syst}± 2.3_{theo}) · 10⁻¹⁰

DARK-FORCES

Search for dark forces @ KLOE

- **Meson decays**: $\phi \rightarrow \eta U$, $\eta/\pi^0 \rightarrow U\gamma$... **Peculiar of a light meson factory**
 - e^+e^- collisions: $e^+e^- \rightarrow U\gamma \rightarrow \ell^+\ell^-\gamma$ x-sec \propto 1/s

100 times higher at DA Φ NE w.r.t. b-factories Compensate lower luminosities

♦ *h*'-strahlung: $e^+e^- \rightarrow U^* \rightarrow Uh'$

If the hidden simmetry is spontaneously broken by a Higgs-like mechanism, the existence of at least one other scalar particle, the h', can be postulated

Search for dark forces @ KLOE: $\phi \rightarrow \eta U$

Meson having radiative decay to one photon can decay to a U boson with BR(X \rightarrow YU) ~ $\varepsilon^2 \times |FF_{XY\gamma}|^2 \times BR(X \rightarrow Y\gamma)$

 $\sigma(\phi \rightarrow \eta U) \sim 40$ fb for FF_{\u03c6n}=1, \varepsilon=10^{-3}

Irreducible background: ϕ Dalitz decay $\phi \rightarrow \eta \gamma^* \rightarrow \eta l^+ l^-$ ($\sigma = 0.7$ nb)

The
$$\phi \rightarrow \eta e^+ e^-$$
, $\eta \rightarrow \pi^+ \pi^- \pi^0$, decay

Analysis performed on 1.5 fb⁻¹

BR($\phi \rightarrow \eta e^+ e^-$) = 1.15×10⁻⁴ : ~**123,000** events from irreducible bckg

Background rejection: π -enriched events

A fraction of $\phi \rightarrow KKbar$ and $\phi \rightarrow \pi^+\pi^-\pi^0$ events survive analysis cuts. They can be rejected using Time-of-Flight (ToF) to the calorimeter when an EMC cluster is connected to the track

Background rejection: photon conversions

$e^+e^- \rightarrow \mu^+\mu^-\gamma$: spectrum and upper limits

S.Miscetti@JLAB-2012

Search for U boson @ KLOE: h' -strahlung

 $e^+e^- \rightarrow Uh'$ (dominant if $m_h < m_U$)

$$\sigma \approx 20 \, fb \times \left(\frac{\alpha'}{\alpha}\right) \left(\frac{\varepsilon^2}{10^{-4}}\right) \frac{10^2 \, GeV^2}{s}$$

[B. Batell, M. Pospelov, A. Ritz: PRD79 (2009) 115008]

$$\begin{split} \mathbf{m}_{h} \geq \mathbf{m}_{U} : h' \to UU \to 4l \\ \mathbf{m}_{h} \leq \mathbf{m}_{U} : h' \to \text{``invisible''} & \blacksquare & \blacksquare & \blacksquare & \blacksquare \\ \mathbf{U} \to ll & \blacksquare & \blacksquare & \blacksquare & \blacksquare & \blacksquare \\ \mathbf{U} \to ll & \blacksquare & \blacksquare & \blacksquare & \blacksquare & \blacksquare & \blacksquare \\ \mathbf{u} \geq \mathbf{m}_{h} \geq \mathbf{m}_{h} & \mathbf{\sigma}_{hU} \approx 20 \text{ fb} \\ \mathbf{\tau}_{h} \geq \mathbf{10} \ \mu \text{s} & \blacksquare & \blacksquare & \blacksquare \\ \mathbf{u} \in \mathsf{reasing with} & \blacksquare & \blacksquare & \blacksquare \\ \mathbf{m}_{u} \geq \mathbf{m}_{h} & \blacksquare & \blacksquare & \blacksquare \\ \mathbf{m}_{u} \geq \mathbf{m}_{h} & \blacksquare & \blacksquare & \blacksquare \\ \mathbf{m}_{u} \geq \mathbf{m}_{h} & \blacksquare & \blacksquare & \blacksquare \\ \mathbf{m}_{u} \geq \mathbf{m}_{h} & \blacksquare & \blacksquare & \blacksquare \\ \mathbf{m}_{u} \geq \mathbf{m}_{h} & \blacksquare \\ \mathbf{m}_{u} \geq \mathbf{m}_{u} = \mathbf{m}_{u} =$$

Signature (in the hypothesis that the U decays only to

SM particles): a pair of leptons + missing energy

Feasibility studies for h'-strahlung

MC signal according to: B. Batell, M. Pospelov, A. Ritz: PRD79 (2009) 115008 $\checkmark U \rightarrow e^+e^-$ not selected by our Event Classification algorithms $\checkmark U \rightarrow \mu^+\mu^-$ selected with high efficiency for $m_h < 300$ MeV \longrightarrow Selected channel

QED background suppressed because of:

- ✓ high detection efficiency for γ 's of the KLOE calorimeter
- ✓ missing energy = missing momentum for γ 's but not for massive particles
- ✓ angular distribution of higgs-strahlung $\sin^3\theta$

Large contamination from $\phi \rightarrow K^+K^- \rightarrow \mu^+\mu^-\nu\nu$ background

eta

The light quark masses: study of $\eta \rightarrow 3\pi$ decay

- Quark masses are fundamental parameters of the SM known only through their impact on hadronic interactions and hadron properties
- Changing perspective, the SM predictions of any process involving hadrons are affected by the knowledge of the quark masses
- Precision measurements combining isospin-symmetric results from LQCD with isospinbreaking study in ChPT

 In order to improve on the light quark masses precision, recent theoretical works use a dispersive relations approach and experimental inputs: η→πππ Dalitz plot

 $\Gamma_{NLO}(\eta \rightarrow \pi^+ \pi^- \pi^0) = 167 \text{ eV}$

 $\Gamma_{exp}(\eta \rightarrow \pi^+ \pi^- \pi^0) = 296 \text{ eV}$

$$\eta \rightarrow \pi^+ \pi^- \pi^0$$
 at KLOE

 $φ \rightarrow ηγ$ (E_{γrec} = 363 MeV) $η \rightarrow π^+π^-π^0 \Rightarrow π^+π^-+ 3γ$

450 pb⁻¹ \Rightarrow 1.34 × 10⁶ events in the Dalitz plot

$$|\mathbf{A}(\mathbf{X},\mathbf{Y})|^2 = 1 + a\mathbf{Y} + b\mathbf{Y}^2 + c\mathbf{X} + d\mathbf{X}^2 + e\mathbf{X}\mathbf{Y} + f\mathbf{Y}^3$$

а	$-1.090 \pm 0.005 ^{+0.008}_{-0.019}$
b	$0.124 \pm 0.006 \pm 0.010$
с	$0.002 \pm 0.003 \pm 0.001$
d	$0.057 \pm 0.006^{+0.007}_{-0.016}$
е	$-0.006 \pm 0.007^{+0.005}_{-0.003}$
f	$0.14 \pm 0.01 \pm 0.02$
$P(\chi^2)$	73%

• *c*, *e* compatible with zero (C violation) • fit without cubic term $(fY^3) \Rightarrow P(\chi^2) \sim 10^{-6}$

[JHEP0805(2008)006]

A new analysis is in progress with:

- larger data sample: 2 fb-1
- improved analysis strategy
- reduced main systematic uncertainty due to event classification efficiency (evaluated from min. bias data)

After cuts have:

- MC signal $1.7275 \cdot 10^6$
- MC background $1.63\cdot 10^4$
- Background at $\sim 1\%$

 $\eta \rightarrow \pi^0 \pi^0 \pi^0$ at KLOE

• Symmetric Dalitz plot: $|A|^2 \propto 1 + 2 \alpha Z \implies$ only one parameter

$$Z = \frac{2}{3} \sum_{i=1}^{3} \left(\frac{3E_i - M_{\eta}}{M_{\eta} - 3M_{\pi}} \right)^2 = \frac{\rho^2}{\rho_{max}^2}$$

(ρ = distance from the Dalitz plot center)

 450 pb⁻¹; 7 prompt photons ⇒ 6.5 ×10⁵ events

 $\alpha = -0.0301 \pm 0.0035^{+0.0022}_{-0.0036}$

[PLB 694 (2010) 16]

Strong interactions correlate the two amplitudes $A(\eta \rightarrow \pi^+ \pi^- \pi^0)$ and $A(\eta \rightarrow \pi^0 \pi^0 \pi^0)$: from the Dalitz plot of $\eta \rightarrow \pi^+ \pi^- \pi^0$

 $\Rightarrow \quad \alpha = -0.038 \pm 0.003^{+0.012}_{-0.008}$

[JHEP0805(2008)006]

The light quark masses: study of $\eta \rightarrow 3\pi$ decay

- Using dispersive relations and the fit to the η→π⁺π⁻π⁰ data a reasonable agreement with precise experimental analyses of the η→π⁰π⁰π⁰ channel, is obtained.
- The Q value obtained with this procedure provides useful information on quark masses.
- New more precise data on η→π⁺π⁻π⁰ important in order to reduce systematics on Q² associated to the residual mismatch with the neutral channel.
- New analysis of the whole KLOE dataset (~2fb⁻¹) with new analysis strategy to reduce systematics
- At KLOE-2 with the inner tracker and more data we expect a further significant improvement

 $\eta/\eta' \rightarrow \pi^+ \pi^- \gamma$: motivations

Study of the box anomaly: test of ChPT and its unitarized extensions [Benayoun et al. EPJC31(2003)525; Holstein, Phys. Scripta, T99(2002)55; Borasoy, Nissler, NPA740(2004)362, Picciotto PRD45(1992)1569]

Sizeable effect of the Contact Term expected both in $\Gamma(\eta \rightarrow \pi^+ \pi^- \gamma)$ and in $M_{\pi\pi}$ distribution

9]	π+/	//+
	ρ	+π-
	η/η΄ 🔪 γ	η/η΄ Ҳ
	VMD	СТ

Decay	PDG 2010	Prediction with Contact Term (HLS)	Prediction without Contact Term
η → π⁺π⁻γ	60±4 eV	56.3±1.7 eV	100.9±2.8 eV
η' \rightarrow π ⁺ π ⁻ γ	60±5 keV	48.9±3.9 keV	57.5±4.0 keV

HLS: Benayoun, Eur. Phys. J. C31 (2003) 525

- > CLEO result (2007) ~ 3 σ 's lower than previous
 - measurements

$$\Gamma_{\rm CLEO}(\eta \rightarrow \pi^+ \pi^- \gamma) = (52 \pm 4) \, {\rm eV}$$

$$\Gamma(\eta \rightarrow \pi^+ \pi^- \gamma) / \Gamma(\eta \rightarrow \pi^+ \pi^- \pi^0)$$

value	events	author	year
0.203 ± 0.008	PDG average		
0.175 ± 0.007 ± 0.006	859	Lopez	2007
0.209 ± 0.004	18 k	Thaler	1973
0.201 ± 0.006	7250	Gormley	1970

T

$\eta \rightarrow \pi^+ \pi^- \gamma$: fit to the M_{$\pi\pi$} spectrum

"Model-independent approach to $\eta/\eta' \rightarrow \pi^+\pi^-\gamma$ (Stollenwerk, Hanhart, Kupsc, Meißner and Wirzba PLB707 (2012) 184-190)

Measurement of $\sigma(e^+e^- \rightarrow \eta\gamma)$ @ 1 GeV

For electron and positron beams colliding with energy E, the cross section for production of a state X in $\gamma\gamma$ interactions with photon 4-momenta q_1 and q_2 is

$$\sigma(e^+e^- \to e^+e^-X) = \int \sigma_{\gamma\gamma \to X}(q_1, q_2) \, \Phi(q_1, q_2) \, \frac{d\vec{q_1}}{E_1} \frac{d\vec{q_2}}{E_2} \,, \tag{2.1}$$

where the $\gamma\gamma$ differential luminosity $\Phi(q_1, q_2)$ has been calculated in [14–16] using different approximations and is proportional to $(\alpha/2\pi)^2 (\ln E/m_e)^2$. For a narrow resonance of spin 0 the formation cross section is

$$\sigma_{\gamma\gamma\to\chi} = \frac{8\pi^2}{m_X} \Gamma_{X\to\gamma\gamma} \,\,\delta(w^2 - m_X^2) \,\,|F(q_1^2, q_2^2)|^2 \,, \tag{2.2}$$

where $\Gamma_{X\to\gamma\gamma}$ is the radiative width, and $w^2 = (q_1 + q_2)^2$. The transition form factor, $F(q_1^2, q_2^2)$, is equal to one for real photons and is usually parametrized in the form

$$F(q_1^2, q_2^2) = \frac{1}{1 - bq_1^2} \frac{1}{1 - bq_2^2},$$
(2.3)

inspired by the Vector Dominance Model [17]. The parameter b for the η meson has been measured at high q^2 values in $\gamma\gamma$ experiments with single-tagging [18–20] and in the η leptonic radiative decays $\eta \rightarrow \ell^+ \ell^- \gamma$ [21–23] at low q^2 values, closer to those of this measurement. The results do not show appreciable dependence on q^2 and the value assumed in this analysis, $b_{\eta} = (1.94 \pm 0.15) \text{ GeV}^{-2}$, was obtained as an average of the measurements at low q^2 .

DA Φ NE: beam profiles @ IP and parameters

	DAΦNE (KLOE run)	DA ΦNE Upgrade
l _{bunch} (mA)	13	13
N _{bunch}	110	110
β _y * (cm)	1.7	0.65
β _x * (cm)	170	20
σ _y * (μ m)	7	2.6
σ _x * (μ m)	700	200
σ <mark>z (mm)</mark>	25	20
θ_{cross} (mrad) (half)	12.5	25
$\Phi_{Piwinski}$	0.45	2.5
L (cm ⁻² s ⁻¹)	1.5x10 ³²	>5x10 ³²

• QM interference

Search for $K_S \rightarrow \pi^0 \pi^0 \pi^0$ @ KLOE

 \mathbf{x} K_L interactions in the calorimeter to tag K_S decay

x6 prompt γ 's required

xAnalysis based on γ counting and kinematic fit in the $2\pi^0$ and $3\pi^0$ hypothesis

*****Dominant background : $K_S \rightarrow 2\pi^0 + 2$ fake clusters

The analysis has been updated

- improving clustering
- hardening Ks tagging
- processing the entire data set

This result points to the feasibility of the first observation at KLOE-2

S.Miscetti@JLAB-2012

KLOE-2 prospects: K_SK_L interferometry

Most precise test of quantum coherence in an entangled system:

$$\zeta_{0\overline{0}} = (1.4 \pm 9.5_{\text{STAT}} \pm 3.8_{\text{SYST}}) \times 10^{-7}$$

 ζ decoherence parameter (QM predicts ζ =0)

Quantum gravity effects might induce: 1)decoherence and CPT violation (at most γ =O(m_K²/M_{Planck})~2x10⁻²⁰ GeV)

2) decoherence and CPT violation induce modification of the initial correlation of the kaon pair (at most ω =O(m_K²/M_{Planck}/ $\Delta\Gamma$) ~1x10⁻³)

KLOE-2 prospects: K_SK_L interferometry

Sensitivity to QM coherence and CPT-invariance

Most precise test of quantum coherence in an entangled system performed @ KLOE

The improvement in sensitivity with $O(10 \text{ fb}^{-1})$ and the IT is a factor of ~ 4 with respect to the KLOE analysis, slightly dependent on the different parameters

S.Miscetti@JLAB-2012

KLOE-2 prospects: K_SK_L interferometry

Sensitivity to QM coherence, CPT- and Lorentz-invariance

Param.	Present best published measurement	KLOE-2 (IT) L=5 fb ⁻¹	KLOE-2 (IT) L=10 fb ⁻¹	KLOE-2 (IT) L=20 fb ⁻¹
ζ ₀₀	$(0.1 \pm 1.0) \times 10^{-6}$	$\pm 0.26 \times 10^{-6}$	± 0.18 × 10 ⁻⁶	$\pm 0.13 \times 10^{-6}$
ξ _{SL}	$(0.3 \pm 1.9) \times 10^{-2}$	$\pm 0.49 \times 10^{-2}$	$\pm 0.35 \times 10^{-2}$	$\pm 0.25 \times 10^{-2}$
α	(-0.5 ± 2.8) × 10 ⁻¹⁷ GeV	± 5.0 × 10 ⁻¹⁷ GeV	± 3.5 × 10 ⁺¹⁷ GeV	± 2.5 × 10 ⁻¹⁷ GeV
β	(2.5 ± 2.3) × 10 ⁻¹⁹ GeV	± 0.50 × 10 ⁻¹⁹ GeV	± 0.35 × 10 ⁻¹⁹ GeV	± 0.25 × 10 ⁻¹⁹ GeV
γ	(1.1 ± 2.5) × 10 ⁻²¹ GeV	± 0.75 × 10 ⁻²¹ GeV	± 0.53 × 10 ⁻²¹ GeV	± 0.38 × 10 ⁻²¹ GeV
	compl. pos. hyp.	compl. pos. hyp.	compl. pos. hyp.	compl. pos. hyp.
	$(0.7 \pm 1.2) \times 10^{-21} \text{ GeV}$	± 0.33 × 10 ⁻²¹ GeV	± 0.23 × 10 ⁻²¹ GeV	$\pm 0.16 \times 10^{-21} \text{ GeV}$
Re(w)	$(-1.6 \pm 2.6) \times 10^{-4}$	$\pm 0.70 \times 10^{-4}$	$\pm 0.49 \times 10^{-4}$	$\pm 0.35 \times 10^{-4}$
Im(ω)	$(-1.7 \pm 3.4) \times 10^{-4}$	$\pm 0.86 \times 10^{-4}$	$\pm 0.61 \times 10^{-4}$	$\pm 0.43 \times 10^{-4}$
Δa_0	[(0.4 ± 1.8) × 10 ⁻¹⁷ GeV]	$\pm 0.52 \times 10^{-17} \text{GeV}$	± 0.36 × 10 ⁻¹⁷ GeV	± 0.26 × 10 ⁻¹⁷ GeV
Δa_Z	[(2.4 ± 9.7) × 10 ⁻¹⁸ GeV]	$\pm 2.2 \times 10^{-18} \text{ GeV}$	± 1.5 × 10 ⁻¹⁸ GeV	± 1.1 × 10 ⁻¹⁸ GeV
Δa _{X,Y}	[± 6.0× 10 ⁻¹⁸ GeV]	± 1.3 × 10 ⁻¹⁸ GeV	$\pm 0.95 \times 10^{-18} \text{GeV}$	$\pm 0.67 \times 10^{-18} \text{ GeV}$

[...] KLOE preliminary

CPT & Lorentz invariance violation: SME framework

Using the same final state for both kaons ($\pi^+\pi^-$) the two decay are distinguished only by the kaon momentum direction. The decay amplitude written as follows:

$$I(f_1, f_2; \Delta t) = \frac{\Gamma_S^1 \Gamma_S^2}{2\Gamma} e^{-\Gamma |\Delta t|} \left[|\eta_1|^2 e^{\frac{\Delta \Gamma}{2} \Delta t} + |\eta_2|^2 e^{-\frac{\Delta \Gamma}{2} \Delta t} - 2\Re e \left(\eta_1 \eta_2 e^{-i\Delta m \Delta t} \right) \right]$$

$$\eta_1 = \eta_{\pm} = \varepsilon_K - \delta(\vec{p}_{K^1}) \qquad \eta_2 = \varepsilon_K - \delta(\vec{p}_{K^2})$$

 δ_{κ} is the CPT violation parameter in the Kaon system.

According to the SME (Kostelecky) and anti-CPT theorem, CPT violation should appears together with Lorentz Invariance breaking (Greenberg), and thus implying a direction dependent modulation.

$$\delta \simeq i \sin \phi_{SW} e^{i \phi_{SW}} \gamma_K (\Delta a_0 - \vec{\beta}_K \Delta \vec{a}) / \Delta n$$

R. Potting Talk

Ordering Kaon according to their momenta it is possible to have the two η -coefficients containing two different δ_{κ} CPT violating parameter.

6 Dec 2012 A. De Santis - CPT&Lorentz invariance violation at KLOE - DISCRETE2012 9

Fit results

____ 6 Dec 2012 A. De Santis - CPT&Lorentz invariance violation at KLOE - DISCRETE20124

Preliminary results on CPT&Lorentz invariance tests

Preliminary results:

$$\Delta a_{0} = (-6.2 \pm 8.2_{stat} \pm 3.3_{sys}) \ 10^{-18} \ GeV$$

$$\Delta a_{\chi} = (3.3 \pm 1.6_{stat} \pm 1.5_{sys}) \ 10^{-18} \ GeV$$

$$\Delta a_{\gamma} = (-0.7 \pm 1.3_{stat} \pm 1.5_{sys}) \ 10^{-18} \ GeV$$

$$\Delta a_{\chi} = (-0.7 \pm 1.0_{stat} \pm 0.3_{sys}) \ 10^{-18} \ GeV$$

Systematics taken as the maximal fluctuation for the observed effects:

- Direct four pion contribution
- Decay time difference fitting range
- Decay time difference bin width
- Regeneration on BP

KLOE vs AMADEUS data taking

AMADEUS in KLOE (2012)

- 100 pb⁻¹ acquired with DC ON since 5/11/2012
- Carbon target inserted close to DC walls
- Minor problems on EMC calibrations, DC OK
- Max Lum 1.5 x 10**32, 420 nb/hours
- 1600 Lambda/pb → equivalent to 1.3 fb-1 of old KLOE data

2012 8pb-1

LNF Dec 2012