Hadron Spectroscopy and the CLASI2 Forward Tagger

Raffaella De Vita INFN –Genova Frascati, December 19th 2012

Why Hadron Spectroscopy

- QCD is responsible for most of the mass of matter that surrounds us
- Understanding the origin of this mass, i.e. the mass of hadrons, is a necessary step to reach a deep understanding of QCD
 - Revealing the nature of the mass of the hadrons
 - Identify the relevant degrees of freedom
 - Understand the role of gluons
 - Investigate the origin of confinement
- Hadron spectroscopy is a key tool to investigate these topics

Hadron Spectroscopy and the CLAS12 Forward Tagger

Frascati, December 19th 2012

Spectroscopy at CLASI2

The construction of a *Low Q Tagging Facility* or *Forward Tagger* has been proposed to launch a spectroscopy program with CLAS12 using quasi-real photo-production

- Electron scattering at "0" degrees (2.5° 4.5°)
 low Q² virtual photon ⇔ real photon
- Photon tagged by detecting the scattered electron at low angles
 - high energy photons $6.5 < E_{\gamma} < 10.5 \text{ GeV}$
- Quasi-real photons are linearly polarized
 - polarization ~ 70% 10% (measured event-by-event)
- High Luminosity (unique opportunity to run thin gas target!)
 - Equivalent photon flux $N_{\gamma} \sim 5 \times 10^8$ on 5-cm H_2 (L=10³⁵ cm⁻²s⁻¹)
- Multiparticle hadronic states detected in CLASI2
- High resolution and excellent PID (kaon identification)
- Complementary to tagged Bremsstrahlung photon beam

CLASI2

Forward Detector:

- TORUS magnet
- Forward SVT tracker
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Preshower calorimeter
- E.M. calorimeter (EC)

Central Detector:

- SOLENOID magnet
- Barrel Silicon Tracker
- Central Time-of-Flight

Proposed upgrades:

- Micromegas (CD)
- Neutron detector (CD)
- RICH detector (FD) - Forward Tagger (FD)

The CLASI2 Forward Tagger

Electron detection via **Calorimeter + Tracker + Veto** proposed by INFN, JLab, CEA-Saclay, U. Edinburgh, U. Glasgow, JMU, NSU, Ohio U.

- calorimeter to determine the electron energy with few % accuracy → homogenous PbWO₄ crystals
- tracker to determine precisely the electron scattering plane and the photon polarization → micromegas
- veto to distinguish photons from electrons
 - \rightarrow scintillator tiles with WLS fiber readout

Forward Tagger	
E'	0.5-4.5 GeV
ν	6.5-10.5 GeV
θ	2.5°-4.5°
Q ²	0.007 – 0.3 GeV ²
W ²	3.6-4.5 GeV
Photon Flux	$5 \times 10^{8} \text{ y/s} @ \text{L}_{e} = 10^{35}$

Performance:

- Energy range:
 - -5 MeV (threshold on single crystal) to 8 GeV
- Angular range:
 - 2.5°-4.5°
- Energy resolution:
 2.3%/√E(GeV) ⊕ 0.5%

FT Calorimeter

Technology:

- PbWO-II Crystals: 332 elements, 15x15x200 mm³
- Readout based on Hamamatsu LAAPD s8664-1010
- Custom FEE: IPN-Orsay preamplifiers
- Operating temperature: 0 °C

FT Hodoscope

Technology:

- Plastic Scintillator tiles: 2 layers with 116 elements, 30x30 and 15x15 mm²
- Readout based on WLS fibers coupled to Hamamatsu 3x3 mm² SiPMs
- Custom FEE: INFN-Genova preamplifiers

Performance:

- > 20 p.e. measured on 15x15 tile (4-mm thickness)
- > 30 p.e. measured on 30x30 tile (4-mm thickness)

Frascati, December 19th 2012

Technology:

- Two double layers of bi-face bulk Micromegas with 500 µm strip readout
- Custom FE electronics (CEA): 3392 channels, based on DREAM Asic
- Same technology adopted for CLAS12 central tracker

Performance:

- Spatial resolution: < 150 μm
- Angular resolution < 0.2° in θ and <3° in ϕ

The Meson-Ex experiment

Exp-11-005

M.Battaglieri, R.De Vita, D.Glazier, C.Salgado, S.Stepanyan, D.Weygand and the CLAS Collaboration

Study the meson spectrum in the I-3 GeV mass range to identify gluonic excitation of mesons (hybrids) and other quark configuration beyond the CQM

- * Hybrid mesons and Exotics
 - Search for hybrids looking at several different final states
 - Charged and neutral decay modes
 - $\gamma p \rightarrow n3\pi, \gamma p \rightarrow p\eta\pi,$
- * Hybrids with hidden strangeness and strangeonia
 - Intermediate mass of s quarks links long to short distance QCD potential
 - Good resolution and kaon Id required
 - $\gamma p \rightarrow p \varphi \pi, \gamma p \rightarrow p \varphi \eta, \gamma p \rightarrow p 2K\pi, ...$
- Scalar Mesons
 - Poorly know f_0 and a_0 mesons in the mass range I-2 GeV
 - Theoretical indications of unconventional configurations (qqqq or gg)
 - $\gamma p \rightarrow p2\pi, \gamma p \rightarrow p2K,$

One of the most important fields in hadron physics and main motivation for the JLab 12 GeV upgrade

Search for Strangeonia in CLASI2

 $\gamma p \rightarrow pX(M=1480, \Gamma=130 \text{ MeV})$

 \rightarrow p $\phi\pi^0 \rightarrow$ p K⁺(K⁻) $\gamma\gamma$

- Unusual BR in $\phi\pi$ (OZI suppressed)
- J^{PC}=I⁻⁻ σ ~ I0nb
- Tetra-quarks or hybrid
- CLASI2 acceptance ~ 10%
- High-p K id relies on kin-fit
- K/ π separation for p<2.6 GeV/c

Frascati, December 19th 2012

Search for hybrids in the 3π channel

$\gamma p \rightarrow n X \rightarrow n \pi^+ \pi^-$

- Possible evidence of exotic meson π₁(1600) in π⁻p→(3π)⁻p (E852-Brookhaven)
- Not confirmed in a re-analysis of a higher statistic sample
- New evidence recently reported by Compass

CLASI2 expected results:

- Good acceptance for resonance masses in the range 1.4-2.4 GeV
- Broad angular coverage in the resonance decay angles
- Large statistics expected with limited run time

PWA in CLASI2

In preparation for the experiment, **PWA tools** are being developed and tested on pseudo data (Monte Carlo) for different reactions as $\gamma p \rightarrow n\pi^+\pi^+\pi^-$

Test for 2 t bins:

- line: generated wave
- |t|=0.2 GeV²
- $|t|=0.5 \text{ GeV}^2$ As a function of $M_{3\pi}$

The CLASI2 detector system is intrinsically capable of meson spectroscopy measurements

Future Developments

The completion of CLAS12+FT installation is foreseen for fall 2015 and the beginning of data taking on proton target early 2016

Next generation experiments with improved-extended equipment:

- Extension of physics program with particle identification over full momentum and angular range
- Improvement of CLAS12 acceptance for neutrals with addition of dedicated calorimeters
- Extension of spectroscopy program to thin targets

Meson spectroscopy in coherent production on ⁴He

* Use coherent quasi-real production on nuclei (⁴He) as spin and isospin filter

- Suppress s-channel baryon resonance background
- Results in simpler PWA: S=I=0 target acts as a filter on final state waves
- Low Q electron-scattering results in high luminosity on thin gas target
- * Requires detection of recoiling nucleus → Radial Time Project Chamber
- * Tested on key reactions for the hybrid search (γ^4 He \rightarrow^4 He $\pi\eta$, γ^4 He \rightarrow^4 He $\pi\eta'$)

Future Developments

The completion of CLAS12+FT installation is foreseen for fall 2015 and the beginning of data taking on proton target early 2016

Next generation experiment with improved-extended equipment:

- Extension of physics program with full momentum angular range particle identification
- Improvement of CLAS12 acceptance for neutrals with addition of dedicated calorimeters
- Extension of spectroscopy program to thin targets

Worldwide collaboration with experimental and theoretical groups for the development of new analysis tools:

- * HAdron SPEctroscopy analysis CenTer (Haspect) in Genova
- Jefferson Lab analysis center
- International workshops (INT2009, ECT*2011, ATHOS 2012, ...)

- Spectroscopy is a key field for the understanding of fundamental questions in hadronic physics and is one of the driving forces for the JLab I2GeV upgrade
- A new detector, the Forward Tagger, is being built to detect the scattered electron at small angle and perform quasi-real photoproduction experiment
- * A broad physics program to study meson spectroscopy in the light quark sector and search for exotic has been launched
- Second generation experiments, exploiting new and improved detection capabilities are foreseen

R. De Vita

Hadron Spectroscopy and the CLAS12 Forward Tagger

Frascati, December 19th 2012

Jefferson Laporatory

Continuous Electron Beam Accelerator Facility

- → E: 0.75 –6 GeV
- \rightarrow I_{max}: 200mA
- → RF: 1499 MHz
- → Duty Cycle: ~ 100%
- \rightarrow s(E)/E: 2.5×10⁻⁵

agger

- → Polarization: 80%
- Simultaneous distribution to 3 experimental Halls

The CLASI2 Forward Tagger

Hadron Spectroscopy and the CLAS12 Forward Tagger

Frascati, December 19th 2012

Lattice QCD

Existence of exotics is supported by LQCD

Fully dynamical calculation by the JLab Hadron Spectrum Collaboration:

- two flavors of light quarks and an heavier (strange) quark
- two lattice volumes large set of operators stable dependence on quark masses

- Good agreement of regular meson spectrum with known states
- Exotic multiplets with quantum numbers 1⁻⁺,0⁺⁻ and 2⁻⁺ are predicted

R. De Vita

Exotics in Photoproduction

***** Photoproduction: exotic J^{PC} are more likely produced by S=1 probe

* Knowledge of the photon polarization can be used as a filter in the PWA

A. Szczepaniak and M. Swat, Phys. Lett. B516 (2001) 72 20 ***** Production rate for exotics is expected to $\gamma p \rightarrow X^+ n$ be comparable to regular mesons regular mesons @ $E_{g} = 5 GeV$ 15 $X = a_{\gamma}$ Few data (so far) but expected cross section similar production rate as 10 Exotic meson @ $E_{g} = 8 GeV$ regular mesons $X = p_1(1600)$ 5

0.0

0.2

Hadron Spectroscopy and the CLAS12 Forward Tagger

0.6

0.4

 $-t [GeV/c]^2$

Hybrids and Exotics

Another category of unconventional mesons are **hybrids**, i.e. states with $q\bar{q}g$ configuration

- In the flux tube model, hybrids arise from
 excitations of the flux tube that connects the quark and antiquark
- The excited flux tube carries non-zero angular momentum that contribute to the quantum numbers of the new system
- Excitation of the flux tube leads to a new spectrum of hadrons that can have both regular and exotic quantum numbers

 $J^{PC} = 0^{-+}, 0^{+-}, 1^{++}, 1^{--}, 1^{-+}, 1^{+-}, 2^{-+}, 2^{+-}$

- For each J^{PC} combination a **nonet** of states is expected
- Masses of the lower states are predicted to be around 2 GeV

Normal meson:

flux tube in ground state $m=0, PC=(-1)^{S+1}$

- Experiment approved for 80 days of production beam time + commissioning and low intensity calibration run (35d)
- * Can be scheduled in parallel to other proton-target runs

Cross sections: $\sigma(\gamma p \rightarrow n 3\pi)$ ~ 10 µb $\sigma(\gamma p \rightarrow p \eta \pi)$ ~ .2 µb $\sigma(\gamma p \rightarrow p K K \pi)$ ~ 10 nb $\sigma(\gamma p \rightarrow p \phi \eta)$ ~ 10 nbExpected yield 20d run

- Assuming exotic meson production ~1%, yield in single mass bins > 5000 events
- Sufficient to run full PWA

