Struttura del nucleone: fattori di forma - SBS e HCAL per la Hall A

E. Cisbani INFN Rome – Sanità Group and Italian National Institute of Health

- Overview of Form Factors
- JLab, Hall A, SBS and FF experiments
- Front Tracker: GEM and μSiD

• HCAL-J

People			
E. Basile	Affiliation	Analysis of lab test	
V. Bellini	СТ	Coordination GEM and HCAL	
E. Cisbani	ISS	Montecarlo, analysis, daq, test, Coordination GEM	
M. Capogni	ENEA/ISS	Digitization, montecarlo, test	
S. Colilli	ISS	GEM assembling and test	
F. De Persio	RM	SiD Detector	
V. De Smet	СТ	Gas simulation, assembling procedure, test	
R. Fratoni	ISS	GEM assembling	
F. Giuliani	ISS	GEM Assembling, electronics	
M. Gricia	ISS	GEM assembling	
A. Grimaldi	СТ	GEM assembling	
L. Lagamba	ВА	Gas system, beam test	
F. Librizzi	СТ	GEM assembling, coordination	
M. Lucentini	ISS	Slow control for test	
F. Mammoliti	СТ	Analysis	
F. Meddi	RM	SiD Detector	
S. Minutoli	GE	Electronics	
P. Musico	GE	Electronics, daq, test	
F. Noto	СТ	Mechanics design and simulation (GEM and HCAL)	
R. Perrino	BA/LE	Gas system, test	
G. Ruscica	СТ	Analysis	
F. Santavenere	ISS	GEM assembling, mechanics	
D. Sciliberto	СТ	GEM assembling	
C. Sutera	СТ	GEM Assembling, test, HCAL	
G. M. Urciuoli	RM	Sid Detector	

+ International collaborators

Definition of EM elastic nucleon Form Factors

The hadronic current: $\mathcal{J}_{\text{hadronic}}^{\mu} = e\overline{N}(p') \begin{bmatrix} \gamma^{\mu}F_{1}(Q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F_{2}(Q^{2}) \end{bmatrix} N(p)$ Dirac FF Pauli FF The Sachs FFs: $G_{E} = F_{1} - \tau F_{2}$ and $G_{M} = F_{1} + F_{2}$ where $\tau = Q^2 / 4M_{\text{nucleon}}^2$

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} \bigg|_{\text{Mott}} \frac{E'}{E} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta}{2} \right]$$

GE contribution suppressed at high Q²

F2 = 0 or $G_E = G_M$ for pointlike particle

 $G_{E,M}^n = \sum_q e_q G_{E,M}^{nq}$ flavour decomposition

19/Dec/2012 - LNF

E. Cisbani / FF & SBS

The "ultimate" description of the nucleon

Proton and Neutron G_E/G_M

- models diverge
- perturbative QCD applicable
- proton behaviour: $G_E/G_M \rightarrow constant$? (not yet)
- Limited statistics

 $\mu \frac{G_{Ep}}{G_{Mp}} = -\mu \frac{P_t}{P_l} \frac{(E_{beam} + E_e)}{2M_p} \tan \frac{\theta_e}{2}$

Longitudinal P₁ and transverse P₊

polarizations of the scattered proton

(Recent) FF Flavour decomposition

Physics goals and experimental challenges

- Determination electrical form factors at high Q² in the regime of valence quark dominance.
- Perform precision measurements of the magnetic form factors
- Uncover the origin of the GEp/GMp fall in the Q²-dependence
- Provide flavor decomposition of the nucleon form factors at small impact parameter (constraint GPDs)

CEBAF in 2014

- Linear recirculating eaccelerator with superconductive cavities
- High lin. polarized beam
- High current (100 µA)
- Max. energy 12 GeV
- 100% duty factor
- Beam released simultaneously on 4 experimental Halls: A, B, C and D

JLab/Hall A

19/Dec/2012 - LNF

FF Proposed Measurements at high Q²

19/Dec/2012 - LNF

E. Cisbani / FF

G_{E}^{p}/G_{M}^{p} Experiment's Figure of Merit

0.15

For polarization transfer experiment with recoil polarization measurement:

Maximize Luminosity (L) and polarimeter efficiency (ε^{pp}) Match electron and hadron acceptances 19/Dec/2012 - LNF E. Cisbani / FF & SBS

SuperBigbite Spectrometer in Hall A

Some challenging experiments in Hall A

Experiment	Luminosity	Tracking Ar	ea	Resolution		
	(s⋅cm²) ⁻¹	(cm²)	Ang (mr	ular ad)	Vertex (mm)	Momentum (%)
GMn - GEn	up to 7.10 ³⁷	40x150) <	1	<2	0.5%
BNL HCalo BigBen 17 m tore Beam BigBite Electron Arm GEM ECalo		and 50x2	200			
GEp(5)	up to	40x120), <0).7	~ 1	0.5%
INFN GEM BNL GEM HCalo BigBen HCalo	8-10 ³⁸	50x200 a	ind ~1	.5		
Target (SD18 Beam	Mosta	80x300)			
Electron Arm Al filter GEM		emandir	ng			
	up to 2.10 ³⁷	40x120), ~ ().5	~1	<1%
Target		40x150 and 50x200				
Beam BigBite						
Electron Arm	High	Large		Do	wn to ~ 7	0 µm
	Rates	Area		spa	atial resol	ution

Maximum reusability: same detectors in different experimental configuration

42

Choice of the technology

Suctor Dequirements	Tracking Technology			
System Requirements	Drift	MPGD	Silicon	
High Background Hit Rate: (low energy γ and e) 1 MHz/cm²	NO	MHz/mm²	MHz/mm²	
High Resolution (down to): 70 μm	Achievable	50 μm	30 µm	
Large Area: from 40×150 to 80×300 cm ²	YES	Doable	Very Expensive	
and modular: reuse in different geometrical configurations	lexibility in rea	GEM μMs dout geometry ate (true in 20	s y and <i>10)</i>	

GEM working principle

Recent technology: F. Sauli, Nucl. Instrum. Methods A386(1997)531

Readout independent from ionization and multiplication stages

Gas Flow / COMSOL MultiPhysics Simulation

1650 mm

Use the same basic 40x50 cm2 3GEM module for all tracker

780 mm

Size defined by technological limits (2010), maximum expected occupancy, capacitive noise of the strips 6 large chambers as combination of GEM modules with small dead area x/y readout on the same module (a la COMPASS)

MonteCarlo + Digitazation + Tracking

6 GEM chambers with x/y readout Use multisamples (signal shape) for background filtering Hit Time htemp Entries 3061871 40000 Mean -161.8 RMS 137.6 35000 30000 25000 High γ + e background hits 20000 $\sim MHz/cm2$ 15000 10000 (Signal is red) 5000 0 -300 -200 -100 100 -400 0 Hit Time (ns)

Background [%]

Background [%]

- Use analog readout APV25 chips
- 2 "active" components: Front-End card and VME64x custom module
- Copper cables between front-end and VME
- Optional backplane (user designed) acting as signal bus, electrical shielding, GND distributor and mechanical support
- Flex adapters available for "standard" PANASONIC GEM connectors.

Silicon Detector module

μSiD composed by 2 planes (x/y) each made of 2 of the above modules Maximize area, large segmentation, keep cost reasonable

Disegno finale del PCB X rigido con il piano di massa sagomato

Multilayer bonding pads

Used for: trigger, PID and neutron «tracker»

HCAL-J

- Match acceptance of SBS magnet/polarimeter
- Run with high threshold while maintaining high trigger efficiency

Design derived from COMPASS HCAL1

72 Modules (180 c Iron plates + Scintillators + WLS + Light Guide

Modules (360cm)

24

- Linear energy response
- 5 mrad angular resolution
- 0.5 ns time resolution

Time resolution

Simulation using faster waveshifter dye and PMTs

 \rightarrow meets SBS requirements

To be confirmed/ with prototype HCAL module INFN-CT Task

Need optimization of design and coupling of scintillator-WLS-Light Guide – min cost

19/Dec/2012 - LNF

E. Cisbani / FF & SBS

22 of 15

Conclusion

SBS expected to be in place in 2015

<u>Front tracker</u> essential to operate SBS in high luminosity (likely to be used in A1n DIS experiment before SBS experimes) *Pre-production started*

<u>HCAL-J</u> fundamental in all SBS experiments for proton and neutron detection – need optimization of time resolution. *Finalize prototyping in 2013*

Bright future for the nucleon structure investigation by EM form factors

1815	Prout: all atoms composed of H atoms (protyles)	
1897	Thomson: discover the «corpuscles» (electrons) ⇒ atoms are not the smallest possible division of matter	
1909	Geiger/Marsden/Rutherford: classic model of the atom	Discovery of the nucleus
1913	Bohr: new model fo the atom	
1917		Rutherford/Moseley discover the proton and first hypothesis of the neutron
1928		Chadwick discover the neutron
1933		Stern: measure the proton magnetic moment ⇒ first evidence on internal structure of the nucleon
1935		Yukawa: meson theory
1947	Lamb and Retherford measure the Lamb shift ⇔ modern QED	Powell et al.: discover the pion
1954		Hofstadter: First measurements of the elastic scattering, Form Factors, measure of proton radius
1960-70		DIS, scaling and parton model
1980-		Spin crisis, nucleon transverse momentum (spin) structure
2000		Now many urmanate of the proton form factors

50 years to undestand the atom structure

80 years passed from the first evidence of the structure of the nucleon

19/Dec/2012 - LNF

Support slides

Experimental Halls after 2014

SBS-Hall A Tracker and the constrained of the const		HMS HMS	The GlueX/Hall D Project
Hall A	Hall B/CLAS12	Hall C	Hall D/GLUEX
High res. Mom. spect. Large angular and momentum, high lumi spect. with hadron ID Neutron detector 'Solid' detector 'Möller' detector New beam line	New ~4π toroid detector with extended hadron ID	2 Asymmetric spectrometers, Super high momentum spectrometer Dedicated equipment	Excellent hermetic coverage, Solenoid field High multiplicity reconstruction
100 μA beam Lumi: 10 ³⁸ cm ⁻² s ⁻¹	Forward tagger for quasi-real photons	100 μA beam Lumi: 10 ³⁸ cm ⁻² s ⁻¹	10 ⁸ linearly polarized <12 GeV real γ/s
3He T/L, H to Pb unpol	NH3/ND3 long/trans H/D target (?)	NH ₃ /ND ₃ Polarized long. target, H to Pb unpol	
hallaweb.jlab.org	www.jlab.org/Hall-B	www.jlab.org/Hall-C	www.jlab.org/Hall-D www.gluex.org

<u>High Q² is required</u> to constrain GPDs at short distance scales

The integral of H^q and E^q over x is given by F_1 and F_2

Shown above with the white bands are the regions of x that contribute 90% of the integral's strength (in this case for the proton.)

JLab/2012

From G. Cates

To constraint the GPDs at high x, where valence quarks dominate, we need to to know the form factors at high Q²

19/Dec/2012 - LNF

E. Cisbani / FF & SBS

Plans for Nucleon Form Factors in Hall A

Proton magnetic form factor, GMp: E12-07-108

Proton form factors ratio, GEp/GMp: E12-07-109 Proton Arm

Neutron/proton form factors ratio, GMn/GMp: E12-09-019

Neutron form factors ratio, GEn/GMn: E12-09-016

19/Dec/2012 - LNF