Pickup design for arrival-time measurements at REGAE

A. Angelovski,¹ M. Hansli,¹ I. Dornmair,^{2,3} B. Zeitler,^{2,3} A. Penirschke,¹ F. Grüner^{2,3} and R. Jakoby¹

¹Technische Universität Darmstadt, Institute for Microwave Engineering and Photonics ²Center for Free-Electron Laser Science, Hamburg ³University of Hamburg

Motivation

- □ High quality electron bunches from Relativistic Electron Gun for Atomic
 - Exploration REGAE for laser-driven wakefield
 - □ Extremely short bunch lengths of approximately10 fs
 - □ Wakefield structure on the order of a few 100 fs
 - Synchronization between the driving laser and the election bunch in order of 10 fs necessary
- □ Very low bunch charges of 100 fC → Very low amplitude of the pickup signal
- Maximization of the induced voltage signal necessary
- Possible detection scheme
 - Broadband
 - Resonant

□ Introduction

- □ Arrival-time measurement techniques
- Pickups for a broadband detection scheme
- □ Pickups for a resonant detection scheme
- □ Conclusion and future work

Introduction

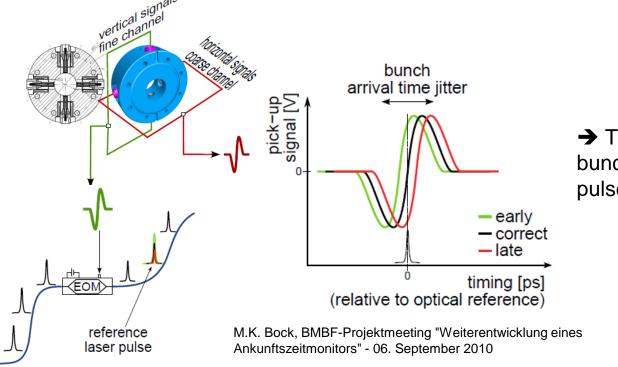
- Development of suitable Pickup structures for arrival-time monitors
 - Project application at the Federal Ministry of Education and Research (BMBF) starting from 01.07.2013
- Preliminary investigations of pickups as a part of the future arrival-time monitors for Laser-driven wakefield accelerators
 - Broadband and resonant

□ Introduction

□ Arrival-time measurement techniques

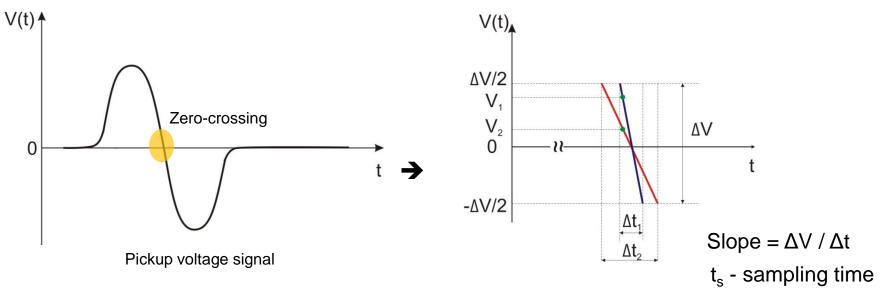
Pickups for a broadband detection scheme

Pickups for a resonant detection scheme


□ Conclusion and future work

Arrival-time measurement techniques - BAMs at FLASH-

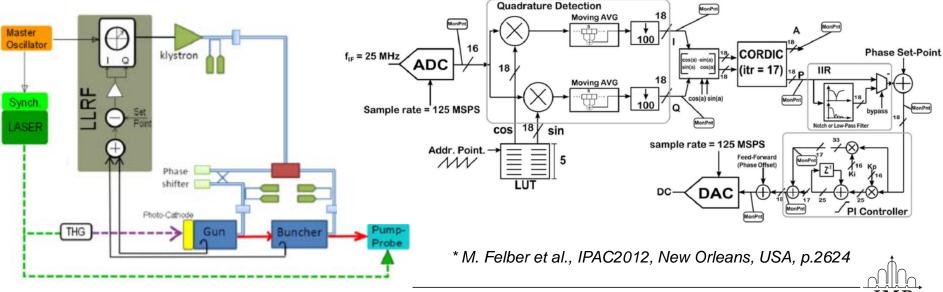
- □ Bunch Arrival-time Monitors (BAMs) at FLASH
 - Electro-optical detection scheme
 - □ Sub-10 fs time resolution for bunch charges higher than 100 pC



➔ The arrival-time of the electron bunch is encoded onto the laser pulse amplitude

Arrival-time measurement techniques - BAMs at FLASH-

- □ Operation with low charged bunches (20 pC and less)
- □ The lower the charge the less the induced voltage in the pickup
- □ The time resolution of the BAM depends on the voltage slope at the zero crossing



- □ Higher slope at zero-crossing increases the sensitivity of the BAM
 - □ Higher peak to peak voltage or
 - Larger bandwidth of the pickup signal

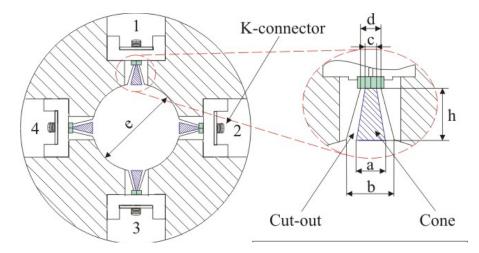
Arrival-time measurement techniques - RF phase detection at IF for REGAE-

- □ One laser for the electron bunches and for pump-probe experiments
 - □ Timing jitter of approx. 10 fs between laser pulses and electron bunches
 - \Box 10 20 fs synchronization was reported* in terms of residual jitter between the laser and
 - the 3 GHz master reference* (M. Felber et al., IPAC2012, New Orleans, USA, p.2624)
- □ Resonant approach with an RF signal of 3 GHz extracted from the photo diode

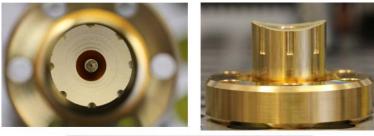
□ Introduction

□ Arrival-time measurement techniques

Pickups for a broadband detection scheme


- □ Pickups for a resonant detection scheme
- □ Conclusion and future work

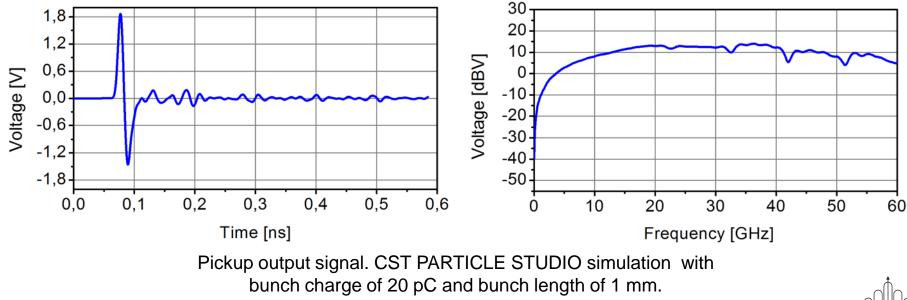
Pickups for a broadband detection scheme at FLASH and XFEL

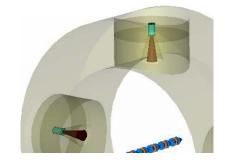

Cone-shaped pickups with bandwidth up to 40 GHz (TU Darmstadt)

 $a = 2.42 \text{ mm} \quad c = 0.70 \text{ mm}$ $b = 5.60 \text{ mm} \quad d = 1.62 \text{ mm}$ e = 40.50 mm (XFEL) e = 34 mm (FLASH)h = 6 mm

Cone shape pickup dimensions for FLASH and XFEL

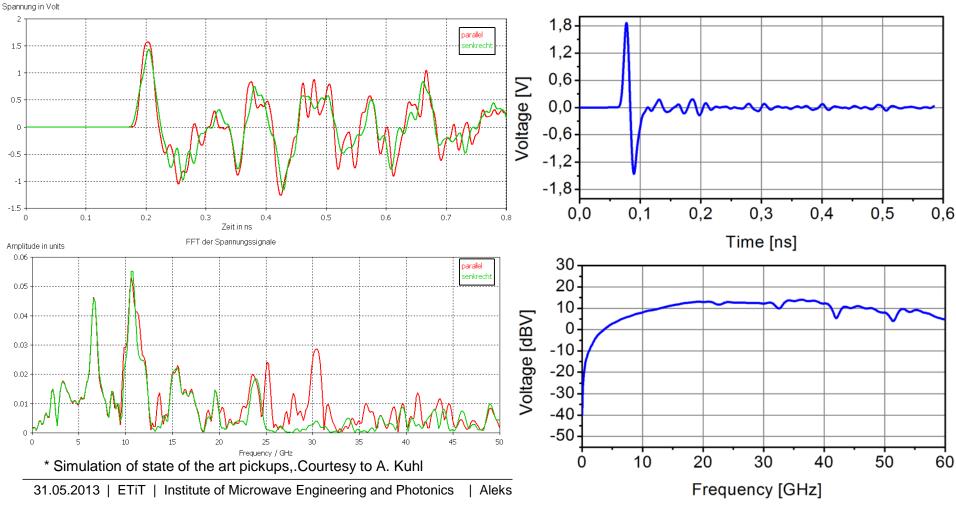
* A. Angelovski et al., *Phys. Rev. ST Accel. Beams* **15**, 112803 (2012)



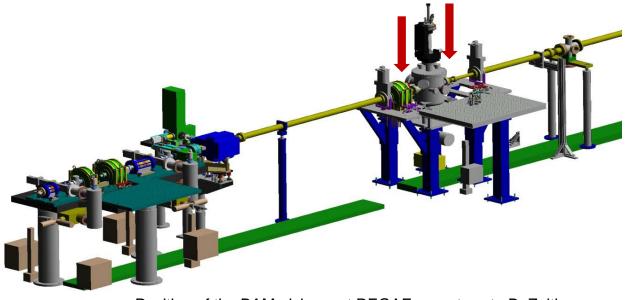

Manufactured cone-shape pickups

Pickups for a broadband detection scheme at FLASH and XFEL

- $\hfill\square$ No resonances at the pickup up to 40 GHz
- □ Fast voltage response
 - □ Reduced capacitance (smaller time constant)
- Tapered cut-out with constant ratio b / a = 2.3 for
 50 Ω matching

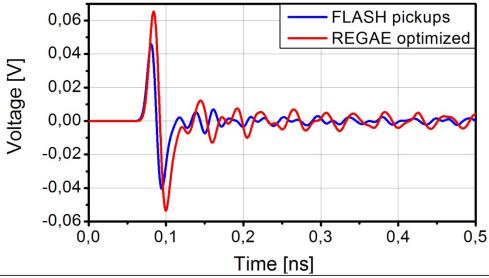

31.05.2013 | ETiT | Institute of Microwave Engineering and Photonics | Aleksandar Angelovski | 11

Pickups for a broadband detection scheme at FLASH and XFEL


Comparison to the state of the art pickups (up to 8 GHz)

Pickups for a broadband detection scheme for REGAE

- □ Two sets of pickups for the beam arrival time monitors
 - □ Before and after the chamber
 - □ Due to the extremely low bunch charge the expected pickup signal is very low
- □ Optimization the pickups for maximum peak voltage is necessary



Position of the BAM pickups at REGAE , courtesy to B. Zeitler

Pickups for a broadband detection scheme for REGAE

- Cone-shaped pickups for REGAE
 - □ Bunch charge of 100 fC
- \Box The pickups need to maintain the 50 Ω geometry , a/b = 2.3
 - □ Increased active surface of the pickups for higher induced signal
 - Combined (mathematically) signal from four pickups

a . b

		FLASH	REGAE
Cone	[mm]	5.60	8.60
Cut-out [mm]		2.42	3.72
Vpp	[V]	0.085	0.12

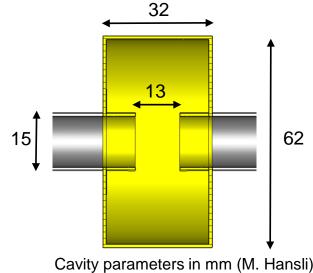
41 % increased peak voltage !

technische UNIVERSITÄT

DARMSTADT

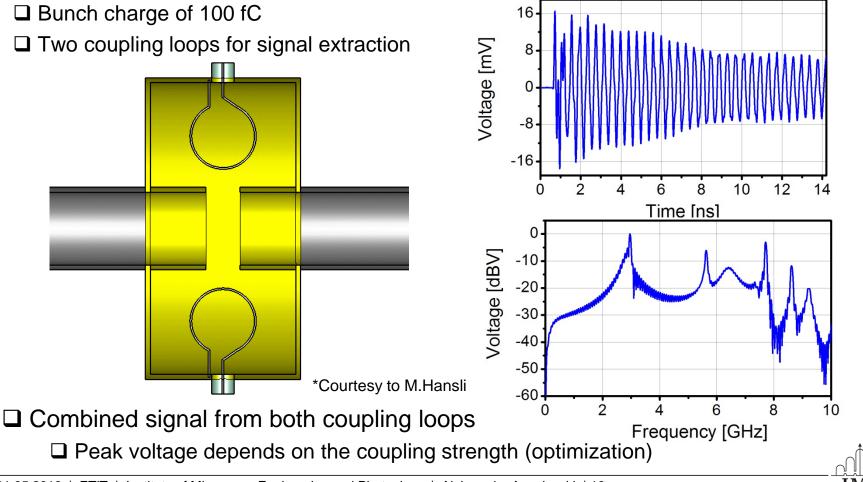
Cone

□ Introduction


- □ Arrival-time measurement techniques
- Pickups for a broadband detection scheme
- Pickups for a resonant detection scheme
- □ Conclusion and future work

Pickups for a resonant detection scheme for REGAE

- Cavity with a resonant frequency of the monopole mode of 3 GHz
- Design of a pill box cavity
 - □ Maximum R/Q value
 - Coupling optimization for maximum pickup signal
- □ Two sets of simulations with CST Studio Suite
 - Eigenmode solver
 - □ Particle studio (wakefield solver)


Cavity parameter	Value
Resonant frequency [GHz]	3
R/Q [Ω]	250.6
Q factor	10.343

Courtesy to M.Hansli

Pickups for a resonant detection scheme for REGAE

□ Simulation of the designed cavity with particle beam

□ Introduction

- Arrival-time measurement techniques
- Pickups for a broadband detection scheme for REGAE
- Pickups for a resonant detection scheme for REGAE
- Conclusion and future work

Conclusion and future work

- □ New Arrival time monitors need to be developed for REAGE
 - Preliminary investigations are shown in this talk
- Two detection schemes are under observation
 - Broadband
 - Resonant
- □ The pickups need to be optimized for maximum peak voltage due to the extremely low bunch charge of 100 fC

- □ Future work :
 - Selection and development of arrival time monitors for REGAE
 - Design of pickups according to the selected detection scheme
 - Design of RF and electronic front-end

