

Study of LWFA as Injectors for Synchrotron Light Sources

Steffen Hillenbrand,

Ralph Assmann, Oliver Jansen, Vitali Judin, Anke-Susanne Müller, Alexander Pukhov

Motivation

Laser Wake Field Acceleration Simulations

Transfer Line

Behaviour in Synchrotron

Summary

2

Outline

Bundesministerium für Bildung und Forschung

Motivation

LWFA Simulations

Transfer Line

Behaviour in Synchrotron

Summary

3

LWFA as Injectors for Synchrotron Light Sources

The ANKA Synchrotron

Bundesministerium für Bildung und Forschung

Exemplary Simulations have been carried out using the ANKA Synchrotron at KIT, Karlsruhe, Germany.

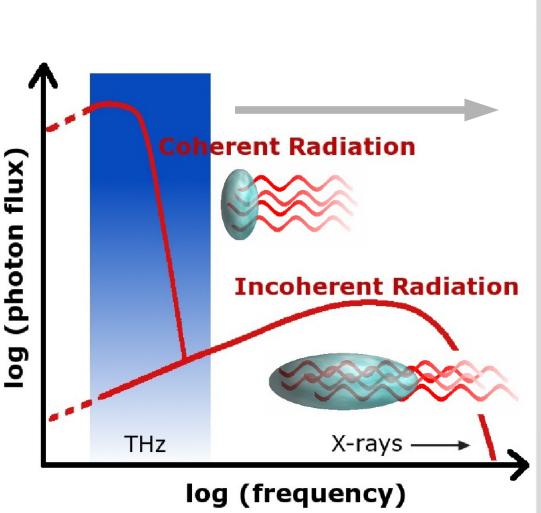
CIT.

 Multi-user
 Synchrotron light facility, in
 operation since
 2003.

Dedicated short pulse operation, O(mm).

LWFA as Injectors for Synchrotron Light Sources

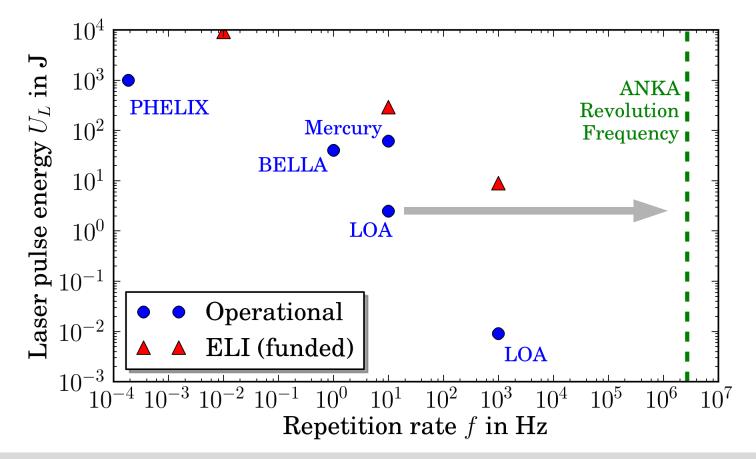
Radiation Spectrum



Bundesministerium für Bildung und Forschung

For bunch lengths shorter than the emitted radiation wavelength, emission becomes coherent.

- THz region currently difficult to access with Synchrotrons.
- LWFA inherently deliver ultra short pulses.


Repetition Frequency

Bundesministerium für Bildung und Forschung

Storing and "re-using" LWFA bunches in a Synchrotron would allow for much higher statistics for experiments.

LWFA as Injectors for Synchrotron Light Sources

Motivation

Laser Wake Field Acceleration Simulations

Transfer Line

Behaviour in Synchrotron

Summary

7

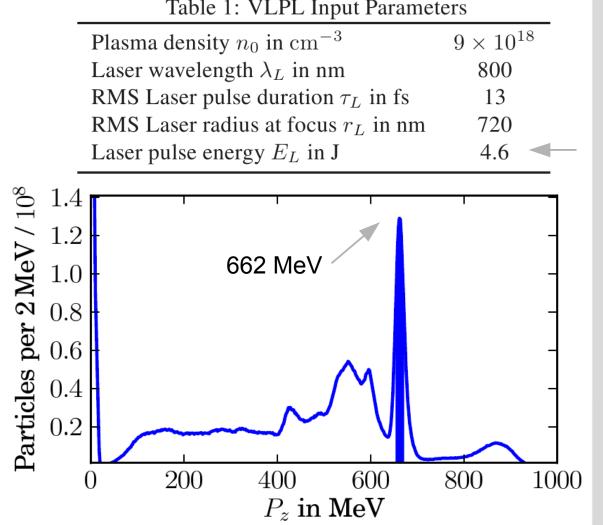
LWFA as Injectors for Synchrotron Light Sources

LWFA Simulation I / II

O. Jansen, A. Pukhov, HHUD Duesseldorf Using the 3D-PIC code VLPL [1]

- Energy spectrum at time of laser depletion is shown to the right.
- Energy acceptance of the ANKA Synchrotron $(p_0 \pm 1\%)$

is indicated by the solid area.


[1] Alexander Pukhov. Three-dimensional electromagnetic relativistic particle-in-cell code VLPL J. of Plasma Physics, 61(3):425, 1999.

8

Bundesministerium für Bildung und Forschung

LWFA as Injectors for Synchrotron Light Sources

 Table 1: VLPL Input Parameters

Steffen Hillenbrand EAAC, 2013

LWFA Simulation II / II

O. Jansen, A. Pukhov, HHUD Duesseldorf

Using the 3D-PIC code VLPL

CERN

Bundesministerium für Bildung und Forschung

All particles Table 2: LWFA e^- -Beam Parameters outside the 662 Central energy p_0 in MeV ANKA Applied energy cut in MeV 655 - 669 RMS energy spread δ in % energy 0.5acceptance Bunch charge q in pC 160 have been 1.0×10^{9} Number of particles Ndiscarded. $1.8 \cdot 10^{-8}$ Geometric emittance ϵ_{geo} in m × rad $2.3\cdot 10^{-5}$ Normalized emittance ϵ_{norm} in m × rad RMS Bunch length σ_z in μm 1.1 Properties RMS Bunch length σ_z in fs 3.7 of the RMS Bunch radius σ_r in μm 1.6 remaining RMS Divergence in rad bunch are 0.01 Twiss $\alpha_x = \alpha_y$ 0.0given in 1.4×10^{-4} Twiss $\beta_x = \beta_y$ in m Tab. 2

LWFA as Injectors for Synchrotron Light Sources

Steffen Hillenbrand EAAC, 2013

Outline

Bundesministerium für Bildung und Forschung

Motivation

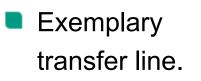
LWFA Simulations

Transfer Line

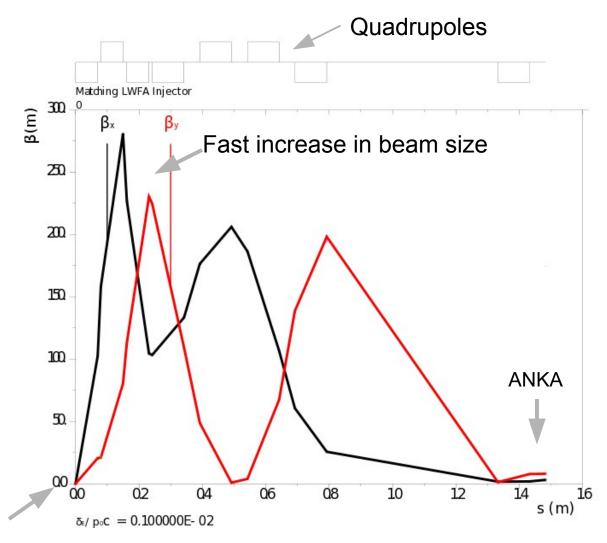
Behaviour in Synchrotron

Summary

10


LWFA as Injectors for Synchrotron Light Sources

Transfer Line


Bundesministerium für Bildung und Forschung

Note the initial explosion in beam size (β-functions)!

 Chromaticity not corrected, already resulting in a significant lengthening of the bunch.

LWFA as Injectors for Synchrotron Light Sources

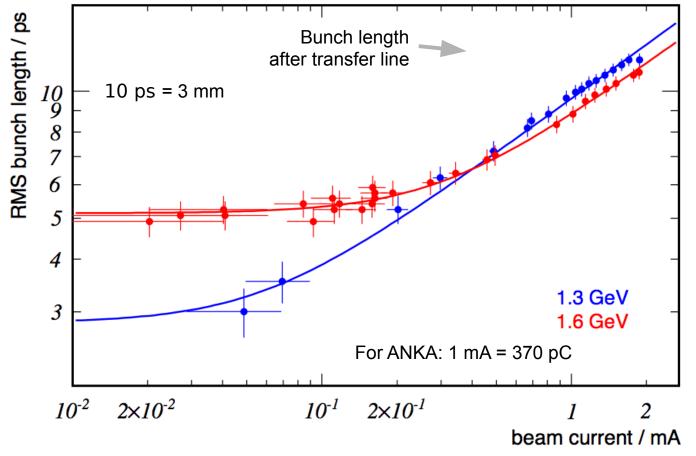
LWFA

Transfer Line - Comments

Bundesministerium für Bildung und Forschung

- Higher order multipoles could be used to (at least partially) compensate the chromaticity, mitigating the bunch lengthening (Cf. eg. [2]).
- If not achromatic, bunch already lengthens to a few mm in the transfer line (factor of ~5000)!
- LWFA simulations have been performed until laser depletion. Density drop at plasma exit should increase beam size and reduce divergence, mitigating the constraints on the transfer line.

- [2] C. Widmann, Design of a Dispersive Beam Transport Line for the JETI Laser Wakefield Accelerator, IPAC11
 - ¹² LWFA as Injectors for Synchrotron Light Sources


Comparison ANKA low-α

Bundesministerium für Bildung und Forschung

Cf. equilibrium bunch length measurements at ANKA [3]

[3] N. Hiller et al., Status of Bunch Deformation and Lengthening Studies at the ANKA Storage Ring, IPAC11

¹³ LWFA as Injectors for Synchrotron Light Sources

Outline

Bundesministerium für Bildung und Forschung

Motivation

LWFA Simulations

Transfer Line

Behaviour in Synchrotron

Summary

ANKA Lattice Parameter

Bundesministerium für Bildung und Forschung

ANKA injection optic, scaled to 662 MeV central energy:

Central energy p_0 in MeV	662	-
Cavity voltage in kV	200	
Cavity frequency in MHz	499	
Circumference in m	110.4	<
Revolution time in ns	368	
Momentum compaction factor	0.008	◄
Natural RMS energy spread	2.4×10^{-4}	Comporable to
Natural geometric emittance in m×rad	$6.8\cdot10^{-9}$	Comparable to LWFA bunch
Radiation energy damping time in ms	79	
Linear energy acceptance in %	1.1	
Synchrotron tune in kHz	22.7	
Synchrotron tune in turns	119.5	
Bunch length in mm	4.0	
Bunch length in ps	13.4	

LWFA as Injectors for Synchrotron Light Sources

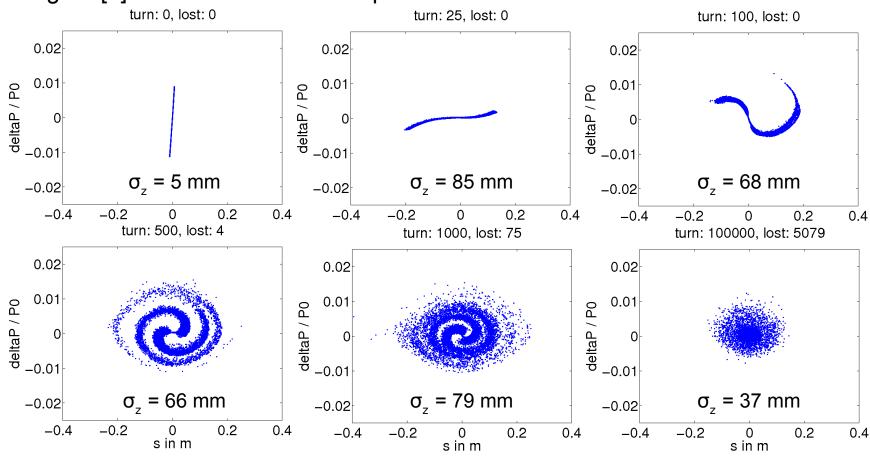
15

Reminder: Damping Time

Bundesministerium für Bildung und Forschung

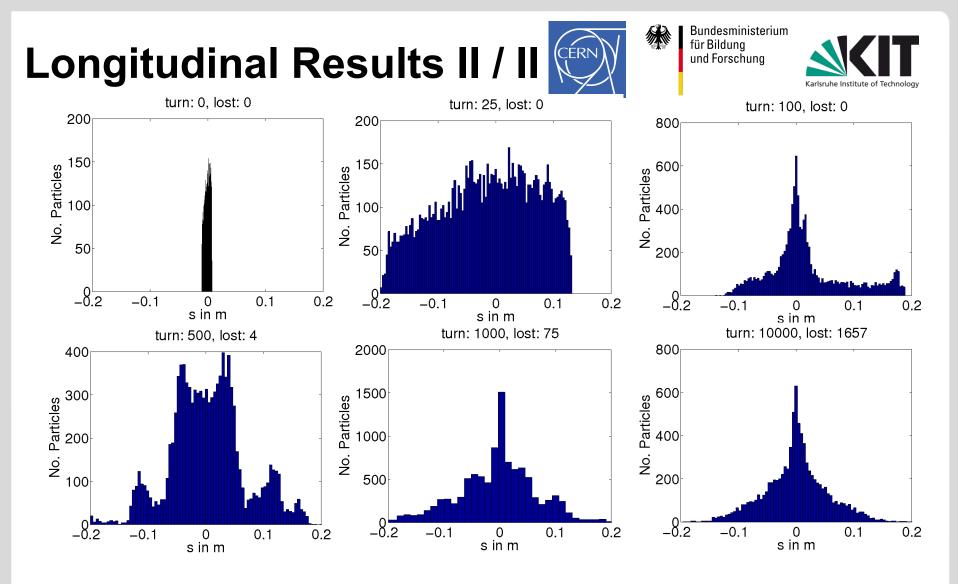
- For electron storage rings, the emittance is given as the equilibrium between radiative damping and quantum excitation.
- Exact damping times depend on lattice structure and beam energy.
- For ANKA at 662 MeV, the (longitudinal) energy damping time is ~80 ms, corresponding to ~200.000 revolutions.
- Naively, one could expect that lengthening process happens on this time scale.

¹⁶ LWFA as Injectors for Synchrotron Light Sources


Longitudinal Results I / II

Bundesministerium für Bildung und Forschung

Using AT [4] with 10.000 simulated particles



Bunch length increases rapidly (independent of initial length)!

[4] A.Terebilo, Accelerator Toolbox for MATLAB, SLAC-PUB-9732, 2001

17

LWFA as Injectors for Synchrotron Light Sources

Density profiles could still lead to interesting radiation properties.

Has to be investigated further.

¹⁸ LWFA as Injectors for Synchrotron Light Sources

Momentum Compaction

Bundesministerium für Bildung und Forschung

The momentum compaction factor is defined as:

$$\alpha_c = 1/L \times \oint [D(s)/\rho(s)]ds$$

It gives the path length difference ΔL per revolution for a particle with an energy deviation Δp via the relation

$$\alpha_c \frac{\Delta p}{p_0} = \frac{\Delta L}{L}$$

■ For ANKA, 10⁻⁴ < α_c < 10⁻².

The observed lengthening is consistent with analytical estimates.

Comments I / II

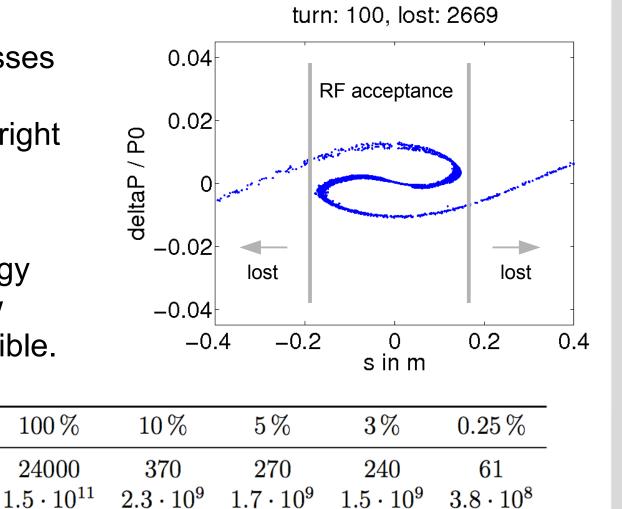
20

Bundesministerium für Bildung und Forschung

- Operating at a lower α_c and applying a stricter energy cut could slow the lengthening process by a factor ~1000.
- Assuming lengthening in the transfer line can be suppressed,
 - the bunch length would still reach the length customary for Synchrotrons with dedicated low- α_c operation within a few 100 turns.
- Space charge and CSR (Coherent Synchrotron Radiation) effects should even accelerate this process.

Comments II / II

Bundesministerium für Bildung und Forschung

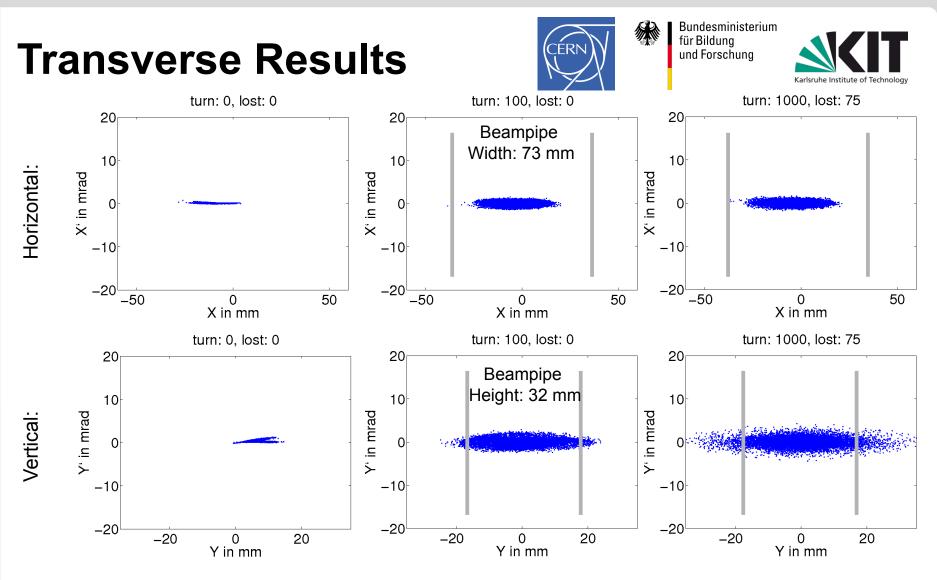


- Only longitudinal losses considered so far, see example to the right for $p_0 \pm 3\%$.
- An increase of energy acceptance to a few percent seems feasible.

Max. energy deviation

Bunch charge q in pC

Number of particles N



LWFA as Injectors for Synchrotron Light Sources

 $100\,\%$

24000

Steffen Hillenbrand EAAC, 2013

- Losses to the beam pipe have not yet been considered.
- They would soon become a major contribution.

22

LWFA as Injectors for Synchrotron Light Sources

Outline

Bundesministerium für Bildung und Forschung

Motivation

LWFA Simulations

Transfer Line

Behaviour in Synchrotron

Summary

- The possibility to inject LWFA generated bunches into a Synchrotron has been studied.
- Preserving their ultra short length seems challenging.
- Evolution of bunch density profile could still lead to interesting radiation properties, but needs to be investigated further.

Thank you for your attention!

For more information, please see: Steffen Hillenbrand *et al.*, "Study of Laser Wakefield Accelerators as Injectors for Synchrotron Light Sources", WEPEA012, Proceedings of IPAC'13

LWFA as Injectors for Synchrotron Light Sources

Steffen Hillenbrand EAAC, 2013

Backup slides

LWFA as Injectors for Synchrotron Light Sources

Steffen Hillenbrand EAAC, 2013

Transfer Line I / II

Bundesministerium für Bildung und Forschung

- Initially round beam has to be matched to flat ANKA lattice parameters (Tab. 3).
- Note the 5 orders of magnitude difference in the β-functions (beam size)!

Table 3: ANKA Twiss Parameters at Injection Point

16.6	
6.5	
-0.03	
-0.07	
	6.5 -0.03

- The matching has been performed using MAD-X [2].
- The large initial divergence made the use of pulses quadrupole magnets [3] necessary.

[2] W. Herr and F. Schmidt. A MAD-X primer. CERN-AB-2004-027-ABP, 2004.
[3] M. Winkler *et al.*, Development and test of iron-free quadrupole lenses with high magnetic flux densities, Nucl. Inst. B, 2003 DOI: 10.1016/S0168-583X(02)02120-1

²⁷ LWFA as Injectors for Synchrotron Light Sources