DIRAC SBKService

Overview

SBKService is a part of SuperBDIRAC extension. It is designed to handle all bookkeeping
database (SBK5) operations on behalf of other parts of SuperBDIRAC (webportal, job
handling, jobs, etc.).

Production Analysis Mass data
system System transfer service

SupefBDIRAC

Yy

DIRAC SBK Service

|

Alchemy
mappers

Idea

The main goal of SBKService is to gather all bookkeeping database related functions in
one place, easily accessible for other parts of the system. It also gives level of
abstraction: after setting of SBKService interface (functions that are exported), any
changes can be made on the lower level (database engine, schema, mapping, anything)
without affecting SuperBDIRAC in general.

SBKService should provide functionalities, not access to database. Set of functions
should cover all scenarios of reading and writing information do database.

SuperBDIRAC doesn’t have direct access to database. Database logic is on the
SBKService level.

Details

DIRAC
SBK Service

|

Web Portal

Job

Production
monitoring

SBKService is in fact semi-transparent layer on top of the SQLAlchemy based solution,
which can be considered as kind of standalone - it has it's own interface containing all
database related actions that are later re-exported (this time in a DIRAC way) in
SBKService.

Example:

Function getSiteDetails(siteName) returns object or dictionary with site information.
Function getSiteList() returns list of objects/dictionaries with basic info of each site.
Detail level of functions should be based on usage patterns - if (just as an example)
version of FastSim of a CE is massively accessed, there could be function

getFastSimVersion(siteName) to avoid processing much larger siteDetails object. If not,
getSiteDetails(siteName) should be enough.

Pros
DIRAC Service code is very simple and shouldn’t be changed after interface is frozen.
Objects - all code is object oriented so it’s very natural for Python.

Logic is on the service level - no problems with serializing connection/session objects
(no RPC calls) and can be altered without requiring changes on higher levels.

Identical solution for getting access to SBK was proposed by Andrei Tsaregorodtsev
during DIRAC workshop in Marseille.

Cons

Every new functionality requires implementation on all levels.

How it works on code level

SBKService.py

some DIRAC imports
from sa.manager.site import Site

class SBKHandler (RequestHandler) :

types siteDetails = [StringTypes]
def export siteDetails(self, sitename):
try:
return S OK(Site.siteDetails(sitename))
except:
return S ERROR('Error getting site details')

sa/manager/site.py

from sa.database import Session
from sa.database.entities.site import site

class Site:

@staticmethod

def siteDetails (siteName) :
_site = Session.query(site).filter(site.site == siteName) .one ()
return [site.site, site.ces[0].host]

sa/database/entities/site.py

class site (object):
pass

Last class is empty, it is used by SQLAlchemy to map site table, fields are added
automatically, no functions or extra fields at the moment.

