TELESCOPE ARRAY: RECENT RESULTS, FUTURE PLANS

Douglas Bergman University of Utah 4th Workshop on Air Shower Detection at High Altitude 31 January 2013

TA Experiment

T Abu-Zayyad¹, R Aida², M Allen¹, R Azuma³, E Barcikowski¹, JW Belz¹, T Benno⁴, DR Bergman¹, SA Blake¹, O Brusova¹, R Cady¹, BG Cheon⁶, J Chiba⁷, M Chikawa⁴, EJ Cho⁶, LS Cho⁸, WR Cho⁸, F Cohen⁹, K Doura⁴, C Ebeling¹, H Fujii¹⁰, T Fujii¹¹, T Fukuda³, M Fukushima^{9,22}, D Gorbunov¹², W Hanlon¹, K Hayashi³, Y Hayashi¹¹, N Hayashida⁹, K Hibino¹³, K Hiyama⁹, K Honda², G Hughes⁵, T Iguchi³, D Ikeda⁹, K Ikuta², SJJ Innemee⁵, N Inoue¹⁴, T Ishii², R Ishimori³, D Ivanov⁵, S Iwamoto², CCH Jui¹, K Kadota¹⁵, F Kakimoto³, O Kalashev¹², T Kanbe², H Kang¹⁶, K Kasahara¹⁷, H Kawai¹⁸, S Kawakami¹¹, S Kawana¹⁴, E Kido⁹, BG Kim¹⁹, HB Kim⁶, JH Kim⁶, JH Kim²⁰, A Kitsugi⁹, K Kobayashi⁷, H Koers²¹, Y Kondo⁹, V Kuzmin¹², YJ Kwon⁸, JH Lim¹⁶, SI Lim¹⁹, S Machida³, K Martens²², J Martineau¹, T Matsuda¹⁰, T Matsuyama¹¹, JN Matthews¹, M Minamino¹¹, K Miyata⁷, H Miyauchi¹¹, Y Murano³, T Nakamura²³, SW Nam¹⁹, T Nonaka⁹, S Ogio¹¹, M Ohnishi⁹, H Ohoka⁹, T Okuda¹¹, A Oshima¹¹, S Ozawa¹⁷, IH Park¹⁹, D Rodriguez¹, SY Roh²⁰, G Rubtsov¹², D Ryu²⁰, H Sagawa⁹, N Sakurai⁹, LM Scott⁵, PD Shah¹, T Shibata⁹, H Shimodaira⁹, BK Shin⁶, JD Smith¹, P Sokolsky¹, TJ Sonley¹, RW Springer¹, BT Stokes⁵, SR Stratton⁵, S Suzuki¹⁰, Y Takahashi⁹, M Takeda⁹, A Taketa⁹, M Takita⁹, Y Tameda³, H Tanaka¹¹, K Tanaka²⁴, M Tanaka¹⁰, JR Thomas¹, SB Thomas¹, GB Thomson¹, P Tinyakov^{12,21}, I Tkachev¹², H Tokuno⁹, T Tomida², R Torii⁹, S Troitsky¹², Y Tsunesada³, Y Tsuyuguchi², Y Uchihori²⁵, S Udo¹³, H Ukai², B Van Klaveren¹, Y Wada¹⁴, M Wood¹, T Yamakawa⁹, Y Yamakawa⁹, H Yamaoka¹⁰, J Yang¹⁹, S Yoshida¹⁸, H Yoshii²⁶, Z Zundel¹

¹University of Utah, ²University of Yamanashi, ³Tokyo Institute of Technology, ⁴Kinki University, ⁵Rutgers University, ⁶Hanyang University, ⁷Tokyo University of Science, ⁸Yonsei University, ⁹Institute for Cosmic Ray Research, University of Tokyo, ¹⁰Institute of Particle and Nuclear Studies, KEK, ¹¹Osaka City University, ¹²Institute for Nuclear Research of the Russian Academy of Sciences, ¹³Kanagawa University, ¹⁴Saitama University, ¹⁵Tokyo City University, ¹⁶Pusan National University, ¹⁷Waseda University, ¹⁸Chiba University ¹⁹Ewha Womans University, ²⁰Chungnam National University, ²¹University Libre de Bruxelles, ²²University of Tokyo, ²³Kochi University, ²⁴Hiroshima City University, ²⁵National Institute of Radiological Science, Japan, ²⁶Ehime University

U.S., Japan, Korea, Russia, Belgium

31 January 2013

TA Experiment

- TA is in Millard Co, Utah, 2 hours from SLC.
- SD: 507 scintillator counters, 1.2 km spacing, 3-m² active area, two layers.
- FD: 3 sites, each covers 120° azimuth, 3°–31° elevation
- Over 4.5 years of data have been collected.

TA Fluorescence Detectors

4th WASDHA

Typical Fluorescence Event

31 January 2013

TA Surface Detector

- Powered by solar cells; radio readout.
- Self-calibration using single muons.
- In operation since March, 2008.

31 January 2013

Typical SD Event

31 January 2013

Stereo and Hybrid Observation

Many events are seen by several detectors.

- **FD** mono has ~5° angular resolution.
- Add SD information (*hybrid* reconstruction) get ~0.5° resolution.
- Stereo FD resolution ~0.5°

Need stereo or hybrid for composition analysis.

Independent SD and FD operation until 2010.
 Hybrid trigger is in operation now.

SD Spectrum

- 4 years of data
- 11909 events
- New analysis method
 - Constant-intensity-cut and geometric aperture no longer sufficient
 - Can extend measurement below the energy plateau
 - Use HEP methods of Data/MC comparisons in calculating acceptance (aperture)

Aperture calculation

- Generate using measured spectrum and composition
- Treat simulated data exactly the same as real data: same format, same analysis chain, same cuts
- Verify aperture calculation via Data/ MC comparisons

Data/MC Comparisons

Zenith angle

Azimuth angle

31 January 2013

4th WASDHA

350

6.869 / 10

 $\textbf{0.969} \pm \textbf{0.018}$

350

0.7377

Data/MC Comparisons

S₈₀₀

31 January 2013

First Energy Estimate

For each energy find make \log_{10} S800-vs-sec θ curve from MC Estimation energy by looking up, interpolating between log₁₀S800vs-sec θ curves

Energy Scale

- SD and FD energy estimations disagree
- FD estimate possesses less model-dependence
- Set SD energy scale to FD energy scale using wellreconstructed events from all 3 FD detectors
- □ 27% renormalization.
- 21% systematic uncertainty in FD energy scale

31 January 2013

SD Exposure

SD Spectrum with Broken PL Fit

31 January 2013

GZK Significance

- What's the statistical significance of the HE break (GZK cut-off)?
- Calculate the number expected with no break and compare to the number seen
- Expect 58.6, observe 21,
 5.6 σ

Integral Flux: E_{1/2} Measurement

- Can also ask where is the flux down by half from what it would have been without the GZK.
- Have to compare the integral fluxes
- Our measurement compares well with Berezinsky's prediction from protons

Comparison: TA-SD with HiRes

Comparison: TA-SD with Auger

31 January 2013

Middle Drum Mono Spectrum

- All FD spectrum measurements (monocular, stereo, hybrid) depend on a changing aperture. The aperture grows with energy.
- This changing aperture *must* be calculated by MC simulation.
- Again we rely on full analysis of simulated data in the same format as actual data, and comparisons of distributions between data and MC, to verify this calculation.

MD Mono Data/MC

Zenith angle

SD & FD Comparisons

31 January 2013

MD-SD Hybrid Spectrum

Hybrid: fewer events, much better resolution

MD-SD Hybrid Spectrum

Area of SD Array

N(E)

Accepted

 $V_{Generated}$

29

SD, MD Mono, MD Hybrid

SD, Mono, Hybrid, HiRes

Stereo FD Composition

- Measure X_{max} for Black Rock Mesa/Long Ridge FD stereo events
- Create simulated MC event set
- As always, apply exactly the same procedures in simulated data as with the actual data

Stereo Data/MC Comparisons

31 January 2013

4th WASDHA

35

Stereo Data/MC Comparisons

31 January 2013

Stereo Data/MC Comparisons

31 January 2013

30

2.5

35

4th WASDHA

<X_{max}> after reconstruction

Measured $\langle X_{max} \rangle$ vs $\log_{10} E$

Measured X_{max} Distributions

31 January 2013

X_{max} Distributions, QGSJetII

Preliminary

31 January 2013

X_{max} Distributions: K-S Tests

³¹ January 2013

MD Hybrid Composition

- X_{max} comes from MD FD detector
- SD just aids geometrical resolution
- Will again compare measured <X_{max}> to fulldetector-simulated model results

MD Hybrid: X_{max}

MD Hybrid: X_{max} Distributions

31 January 2013

MD Hybrid: X_{max} Distributions

31 January 2013

MD Hybrid: K-S Tests

Large Scale Structure

- The only real *a priori* expectation for anisotropy is that it should be associated with the matter distribution in the Universe
 Method
 - Calculate a flux from the actual distribution of galaxies (2MASS XSCz): 110 000 galaxies from 5 Mpc to 250 Mpc
 - Take flux from beyond 250 Mpc as uniform
 - Assume proton primaries
 - Account for all interactions and redshift losses
 - Apply Gaussian smearing in arrival direction, with the angular size treated as a free parameter. This mimics magnetic field deflections and angular resolution.
 Compare prediction to data by the flux sampling test

LSS: Data & Models (at 6°)

31 January 2013

LSS: Result of K-S Test

31 January 2013

LSS: Add Galactic Field

 Can improve compatibility with structure by including deflections in the Galactic field

 Use field model consistent with Faraday rotation measurements

 Need both disk and halo components

Exotic Searches

Photons
 Use shower front curvature

 Use old/new shower discriminant: number of muon peaks in FADC trace.

Conclusions on Current Results

- SD spectrum observes the GZK Cutoff with 5.6 σ significance
- All the TA spectra agree well and agree with HiRes, consistent with proton origin of GZK Cutoff.
- Two independent measurements of composition both show proton-dominated or light composition
- Arrival directions better compatible with largescale structure than isotropy at the highest energies.
- Galactic field is important at lower energies.

31 January 2013

Future Plans: Low Energy

- A lot of physics was skipped in the push to observe the GZK cutoff.
 - End of the rigidity-dependent cutoff that starts with the knee (at 3x10¹⁵ eV).
 - The second knee
 - The galactic-extragalactic transition
- Study the 10¹⁶ and 10¹⁷ eV decades with hybrid detectors.
- Need to observe from 3×10¹⁵ eV to 3×10²⁰ eV all in one experiment. That is TA, TALE and NICHE.

TALE

- Add 10 telescopes at the Middle Drum site, looking from 31°-59° in elevation.
 - Operate in conjunction with the TA Middle Drum FD.
- High elevation allows measurement of close-by showers

TALE

Add infill array (400m and 600m spacing) for hybrid observation. Hybrid provides accurate geometric reconstruction for composition measurements

TALE

- TALE hybrid will cover energies down to 10^{16.5} eV
- TALE will be able to confirm the observation of the Iron knee seen by Kascade-GRANDE and measure the heavy-tolight composition change expected in the 10¹⁷ eV decade.

 To go lower in energy than TALE, need to use Cherenkov light
 Aim to build a Non-

Imaging CHErenkov array (NICHE) within the field-of-view of the TALE FD.

 To go lower in energy than TALE, need to use Cherenkov light
 Aim to build a Non-Imaging CHErenkov array (NICHE) within the field-of-view of the

31 January 2013

TALE FD.

- To go lower in energy than TALE, need to use Cherenkov light
- Aim to build a Non-Imaging CHErenkov array (NICHE) within the field-of-view of the TALE FD.
- Use light, easy-todeploy counters
- Rely on timing width for composition

Can easily measure below 10¹⁶ eV with fairly wide spacing Can go below Knee with smaller spacing Expect overlap of at least a decade in energy with TALE Cross calibration of energy and X_{max} measurements

31 January 2013

TARA

- Rates at the highest energies are too low
 Need bigger
 - experiments.
- Bistatic radar detection:
 - Remote sensing
 - Inexpensive
 - 100% duty cycle

Conclusion

- TA has spectrum and composition measurements consistent with protonic extragalactic cosmic rays
- There are plans to extend the low energy down to the Knee to be able to measure the composition and spectrum of UHECRs over 5 orders-ofmagnitude in energy
- We are also working on new techniques to extend the available aperture to measure reasonable fluxes at even higher energies