TELESCOPE ARRAY: RECENT RESULTS, FUTURE PLANS

Douglas Bergman University of Utah
$4^{\text {th }}$ Workshop on Air Shower Detection at High Altitude 31 January 2013

TA Experiment

T Abu-Zayyad¹, R Aida², M Allen¹, R Azuma³, E Barcikowski¹, JW Belz¹, T Benno4, DR Bergman ${ }^{1}$, SA Blake ${ }^{1}$, O Brusova¹, R Cady ${ }^{1}$, BG Cheon ${ }^{6}$, J Chiba ${ }^{7}$, M Chikawa ${ }^{4}$, EJ Cho ${ }^{6}$, LS Cho 8, WR Cho ${ }^{8}$, F Cohen ${ }^{9}$, K Doura ${ }^{4}$, C Ebeling ${ }^{1}$, H Fujiii ${ }^{10}$, T Fujii1 ${ }^{11}$, T Fukuda ${ }^{3}$, M Fukushima ${ }^{9,22}$, D Gorbunov ${ }^{12}$, W Hanlon ${ }^{1}$, K Hayashi ${ }^{3}$, Y Hayashi ${ }^{11}$, N Hayashida ${ }^{9}$, K Hibino ${ }^{13}$, K Hiyama ${ }^{9}$, K Honda ${ }^{2}$, G Hughes ${ }^{5}$, T Iguchis, D Ikeda ${ }^{9}$, K Ikuta ${ }^{2}$, SJJ Innemee ${ }^{5}$, N Inoue ${ }^{14}$, T Ishii ${ }^{2}, \mathrm{R}$ Ishimori ${ }^{3}$, D Ivanov ${ }^{5}$, S Iwamoto ${ }^{2}$, CCH Jui', K Kadota ${ }^{15}$, F Kakimoto ${ }^{3}$, O Kalashev ${ }^{12}$, T Kanbe 2, H Kang ${ }^{16}$, K Kasahara 17, H Kawai ${ }^{18}$, S Kawakami ${ }^{11}$, S Kawana ${ }^{14}$, E Kido ${ }^{9}$, BG Kim ${ }^{19}$, HB Kim ${ }^{6}$, JH Kim ${ }^{6}$, JH Kim ${ }^{20}$, A Kitsugi ${ }^{9}$, K Kobayashi 7, H Koers ${ }^{21}$, Y Kondo ${ }^{9}$, V Kuzmin ${ }^{12}$, YJ Kwon ${ }^{8}$, JH Lim ${ }^{16}$, SI Lim ${ }^{19}$, S Machida ${ }^{3}$, K Martens 22, J Martineau ${ }^{1}$, T Matsuda ${ }^{10}$, TMatsuyama ${ }^{11}$, JN Matthews ${ }^{1}$, M Minamino ${ }^{11}$, K Miyata ${ }^{7}$, H Miyauchi ${ }^{11}$, Y Murano ${ }^{3}$, T Nakamura ${ }^{23}$, SW Nam ${ }^{19}$, T Nonaka 9, S Ogio ${ }^{11}$, M Ohnishi9, H Ohoka ${ }^{9}$, T Okuda ${ }^{11}$, A Oshima ${ }^{11}$, S Ozawa ${ }^{17}$, IH Park ${ }^{19}$, D Rodriguez ${ }^{1}$, SY Roh ${ }^{20}$, G Rubtsov ${ }^{12}$, D Ryu ${ }^{20}$, H Sagawa ${ }^{9}$, N Sakurai, LM Scott ${ }^{5}$, PD Shah ${ }^{1}$, T Shibata ${ }^{9}$, H Shimodaira ${ }^{9}$, BK Shin ${ }^{6}$, JD Smith ${ }^{1}$, P Sokolsky ${ }^{1}$, TJ Sonley ${ }^{1}$, RW Springer ${ }^{1}$, BT Stokes ${ }^{5}$, SR Stratton ${ }^{5}$, S Suzuki ${ }^{10}$, Y Takahashi ${ }^{9}$, M Takeda ${ }^{9}$, A Taketa ${ }^{9}$, M Takita ${ }^{9}$, Y Tameda ${ }^{3}$, H Tanaka ${ }^{11}$, K Tanaka 24, M Tanaka ${ }^{10}$, JR Thomas ${ }^{1}$, SB Thomas ${ }^{1}$, GB Thomson ${ }^{1}$, P Tinyakov ${ }^{12,21,}$ I Tkachev ${ }^{12}$, H Tokuno ${ }^{9}$, T Tomida², R Torii', S Troitsky ${ }^{12}$, Y Tsunesada ${ }^{3}$, Y Tsuyuguchi' ${ }^{2}$, Y Uchihori25, S Udo ${ }^{13}$, H Ukai², B Van Klaveren ${ }^{1}$, Y Wada ${ }^{14}$, M Wood ${ }^{1}$, T Yamakawa 9, Y Yamakawa ${ }^{9}$, H Yamaoka ${ }^{10}$, J Yang ${ }^{19}$, S Yoshida ${ }^{18}$, H Yoshii ${ }^{26}$, Z Zundel ${ }^{1}$
University of Utah, ${ }^{2}$ University of Yamanashi, ${ }^{3}$ Tokyo Institute of Technology, ${ }^{4}$ Kinki University, ${ }^{5}$ Rutgers University, ${ }^{6}$ Hanyang University, ${ }^{7}$ Tokyo University of Science, ${ }^{8}$ Yonsei University, ${ }^{9}$ Institute for Cosmic Ray Research, University of Tokyo, ${ }^{10}$ Institute of Particle and Nuclear Studies, KEK, ${ }^{11}$ Osaka City University, ${ }^{12}$ Institute for Nuclear Research of the Russian Academy of Sciences, ${ }^{13}$ Kanagawa University, ${ }^{14}$ Saitama University, ${ }^{15}$ Tokyo City University, ${ }^{16}$ Pusan National University, ${ }^{17}$ Waseda University, ${ }^{18}$ Chiba University ${ }^{19}$ Ewha Womans University, ${ }^{20}$ Chungnam National University, ${ }^{21}$ University Libre de Bruxelles, ${ }^{22}$ University of Tokyo, ${ }^{23}$ Kochi University, ${ }^{24}$ Hiroshima City University, ${ }^{25}$ National Institute of Radiological Science, Japan, ${ }^{26}$ Ehime University
U.S., Japan, Korea, Russia, Belgium

TA Experiment

- TA is in Millard Co, Utah, 2 hours from SLC.
- SD: 507 scintillator counters, 1.2 km spacing, 3- m^{2} active area, two layers.
- FD: 3 sites, each covers 120° avimuth, $3^{\circ}-31^{\circ}$ elevation
- Over 4.5 years of data have been collected.

TA Fluorescence Detectors

31 January 2013
4th WASDHA

Typical Fluorescence Event

TA Surface Detector

■ Powered by solar cells; radio readout.

- Self-calibration using single muons.
- In operation since March, 2008.

Typical SD Event

Fit with AGASA LDF

$$
\begin{aligned}
& \rho(r) \propto\left(\frac{r}{R_{M}}\right)^{-1.2}\left(1+\frac{r}{R_{M}}\right)^{-(\eta-1.2)}\left\{1+\left(\frac{r}{1000}\right)^{2}\right\}^{-0.6} \\
& \eta=(3.97 \pm 0.13)-(1.79 \pm 0.62)(\sec \theta-1) \\
& \text { - } \quad \mathbf{S}(\mathbf{8 0 0}): \text { Primary Energy }
\end{aligned}
$$

- Zenith attenuation by MC (not by CIC).

Stereo and Hybrid Observation

■ Many events are seen by several detectors.
\lrcorner FiD mono has $\sim 5^{\circ}$ angular resolution.
A Add SD information (hybrid reconstruction) get $\sim 0.5^{\circ}$ resolution.

- Stereo FD resolution ~0.5 ${ }^{\circ}$
- Need stereo or hybrid for composition analysis.
- Independent SD and FD operation until 2010.
- Hybrid trigger is in operation now.

SD Spectrum

■ 4 years of data

- 11909 events
- New analysis method
- Constant-intensity-cut and geometric aperture no longer sufficient
」 Can extend measurement below the energy plateau
- Use HEP methods of Data/MC comparisons in calculating acceptance (aperture)

Data/MC Comparisons

Zenith angle

Azimuth angle

Data/MC Comparisons

800

Energy

First Energy Estimate

\square For each energy find make
$\log _{10} 5800-\mathrm{vs}-\sec \theta$ curve from MC

- Estimation energy by looking up, interpolating between $\log _{10} 5800-$ vs-sec θ curves

Energy Scale

- SD and FD energy estimations disagree
- FD estimate possesses less model-dependence
- Set SD energy scale to FD energy scale using wellreconstructed events from all 3 FD detectors
- 27% renormalization.
- 21% systematic uncertainty in FD energy
 scale

SD Exposure

SD Spectrum with Broken PL Fit

GZK Significance

- What's the statistical significance of the HE break (GZK cut-off)?
- Calculate the number expected with no break and compare to the number seen
- Expect 58.6, observe 21, 5.6σ

Integral Flux: Ey/2 Measurement

- Can also ask where is the flux down by half from what it would have been without the GZK.
- Have to compare the integral fluxes
- Our measurement compares well with Berezinsky's prediction from protons

Comparison: TA-SD with HiRes

Comparison: TA-SD with Auger

Middle Drum Mono Spectrum

- AII FID spectrum measurements (monocular, stereo, hybrid) depend on a changing aperture. The aperture grows with energy.
- This changing aperture must be calculated by MC simulation.
- Again we rely on full analysis of simulated data in the same format as actual data, and comparisons of distributions between data and MC , to verify this calculation.

MD Mono Data/MC

R_{p}

Zenith angle

SD \& FD Comparisons

MID-SD Hybrid Spectrum

- Hybrid: fewer events, much better resolution

Hybrid Resolutions

MD Monocular Resolutions

MD-SD Hybrid Spectrum

SD, MD Mono, MD Hybrid

SD, Mono, Hybrid, HiRes

Stereo FD Composition

■. Measure $X_{\max }$ for Black Rock Mesa/Long Ridge FID stereo events

- Create simulated MC event set
- As always, apply exactly the same procedures in simulated data as with the actual data

Stereo Data/MC Comparisons

31 January 2013

4th WASDHA

Stereo Data/MC Comparisons

31 January 2013

4th WASDHA

Stereo Data/MC Comparisons

31 January 2013

4th WASDHA

$-x_{\max }>$ from Corsika

31 January 2013
4th WASDHA

$<X_{\max }>$ after reconstruction

31 January 2013
4th WASDHA

Measured $\left.<X_{\max }\right\rangle$ vs $\log _{10} E$

31 January 2013
4th WASDHA

Measured $X_{\max }$ Distributions

max

Distributions, QGSJetII

Preliminary

31 January 2013

max

Distributions: K-S Tests

MD Hybrid Composition

- $X_{\text {max }}$ comes from MD FD detector
- SD just aicls geometrical resolution
- Will again compare measured $\left\langle X_{\max }\right\rangle$ to full-detector-simulated model results

MID Hybrid: $X_{\max }$

MD Hybrid: $X_{\max }$ Distributions

MD Hybrid: $X_{\max }$ Distributions

MD Hybrid: K-S Tests

Large Scale Structure

- The only real a priori expectation for anisotropy is that it should be associated with the matter distribution in the Universe

■ Method

\lrcorner Calculate a flux from the actual distribution of galaxies (2MASS XSCz): 110000 galaxies from 5 Mpc to 250 Mpc

- Take flux from beyond 250 Mpc as uniform

د Assume proton primaries

- Account for all interactions and redshift losses
- Apply Gaussian smearing in arrival direction, with the angular size treated as a free parameter. This mimics magnetic field deflections and angular resolution.
- Compare prediction to data by the flux sampling test

LSS: Data \& Models (at 6°)

31 January 2013
4th WASDHA

LSS: Result of K-S Test

LSS: Add Galactic Field

- Can improve compatibility with structure by including deflections in the Galactic field
■ Use field model consistent with Faraday rotation measurements
- Need both disk and halo components

Exotic Searches

- Photons
- Use shower front curvature
- Neutrinos
- Use old/new shower discriminant: number of muon peaks in FADC trace.

Conclusions on Current Results

- SD spectrum observes the GZK Cutoff with 5.6 o signfificance

■ All the TA spectra agree well and agree with HiRes, consistent with proton origin of GZK Cutoff.

- Two independent measurements of composition both show proton-dominated or light composition
- Arrival directions better compatible with largescale structure than isotropy at the highest energies.
- Galactic field is important at lower energies.

Future Plans: Low Energy

- A lot of physics was skipped in the push to observe the GZK cutoff.
- End of the rigidity-dependent cutoff that starts with the knee (at $3 \times 10^{15} \mathrm{eV}$).
」 The second knee
」The galactic-extragalactic transition
\square Study the 10^{16} and $10^{17} \mathrm{eV}$ decades with hybrid detectors.
- Need to observe from $3 \times 10^{15} \mathrm{eV}$ to $3 \times 10^{20} \mathrm{eV}$ all in one experiment. That is TA, TALE and NICHE.

TALE

- Add 10 telescopes at the Middlle Drum site, looking from $31^{\circ}-59^{\circ}$ in elevation.
\lrcorner Operate in conjunction with the TA Middle Drum FD.
- High elevation allows measurement of close-by showers

TALE

- Add infill array (400 m and 600 m spacing) for hybrid observation.
- Hybrid provides accurate geometric reconstruction for composition measurements

TALE

- TALE hybrid will cover energies down to $10^{16.5}$ eV
- TALE will be able to confirm the observation of the Iron knee seen by Kascade-GRANDE and measure the heavy-tolight composition change expected in the $10^{17} \mathrm{eV}$ decade.

NICHE

- To go lower in energy than TALE, need to use Cherenkov light
- Aim to build a NonImaging CHErenkov array (NICHE) within the field-of-view of the TALE FD.

NICHE

- To go lower in energy than TALE, need to use Cherenkov light
- Aim to build a NonImaging CHErenkov array (NICHE) within the field-of-view of the TALE FD.

NICHE

- To go lower in energy than TALE, need to use Cherenkov light
- Aim to build a NonImaging CHErenkov array (NICHE) within the field-of-view of the TALE FD.
- Use light, easy-todeploy counters
- Rely on timing width for composition

NICHE

- Can easily measure below $10^{16} \mathrm{eV}$ with fairly wide spacing - Can go below Knee with smaller spacing
- Expect overlap of at least a decade in energy with TALE
- Cross calibration of energy and $X_{\text {max }}$ measurements

TARA

- Rates at the highest energies are too low
- Need bigger experiments.
\square Bistatic radar detection:
- Remote sensing
- Inexpensive
- 100% duty cycle

Conclusion

- TA has spectrum and composition measurements consistent with protonic extragalactic cosmic rays
- There are plans to extend the low energy down to the Knee to be able to measure the composition and spectrum of UHECRs over 5 orders-ofmagnitude in energy
- We are also working on new techniques to extend the available aperture to measure reasonable fluxes at even higher energies

