Composition, Particle Physics & Sources of UHECRs

Glennys Farrar New York University

4th Workshop on Air Shower Detection at High Altitude Naples, Jan. 31, 2013

Galactic Magnetic Field

It is now possible to estimate magnetic deflections in the Galactic Magnetic Field

Glennys Farrar and Ronnie Jansson

Center for Cosmology and Particle Physics New York University

> RJ & GF, Ap.J. <u>757</u>, 14 (2012) coherent & striated RJ & GF, Ap.J.Lett. <u>761</u>, L11 (2012) random & n_{cre} GF, RJ, I Feain & B. Gaensler JCAP (2012) Cen A

35 parameter model of the GMF χ^2 /dof = 1.064 for > 10k dof 40,000 Rotation Measures $\sim \int_{z}^{\infty} dz \, n_{e}(\mathbf{x}) \, B_{\parallel}(\mathbf{x})$ of distant quasars VMAP total & **polarized synchrotron** emission of Milky Way (>10⁵ datapoints) $\sim \int_z^\infty dz n_{cre}(\mathbf{x}) B_{\perp}^2(\mathbf{x})$ WMAP total & **polarized synchrotron** Complementary JF12 model has coherent, "striated" and random pieces fit => $B_{stri} \approx \pm 1.2$ • Disk with spiral arms • Toroidal Halo

• Out-of-plane "X" field

Nitty-gritty I: RMs

- 40403 extragalactic RMs
 - some are duplicate measurements of same source
- Map to 8 10⁻⁴ sq-deg Healpix pixels; 50M
 - if multiple measurements, take the best quality ones
 - average. => 38627 pixels with RMs
- Remove outliers
 - for each pixel, measure mean & variance of neighbors
 - remove pixels > 3 sigma from local mean; iterate
 - 666 pixels removed
- Bin to 2067 pixels (13.4 sq-deg) sky has 3072; some have
- Measure variance from sub-pixels
- Subtract foregrounds (GIMMs) Wolleben et al (2010)

Nitty-gritty II: Synchrotron Maps

- WMAP 7-yr K-band, 22 GHz synchrotron maps
- Bin to 2067 pixels (13.4 sq-deg)
- Measure variance from sub-pixels
- Foreground
 - contributes ~1/r²; need masking (?)
 - try 4 masks:
 - WMAP polarization (black, upper plot) 27%
 - extended WMAP to remove hi-PI regions attributable to local structures (grey) 35%
 - Pull > 3 (black, lower plot) or > 2 (grey)

$$p = \sqrt{(Q^2 + U^2)/(\sigma_Q^2 + \sigma_U^2)}$$

JF12 Coherent GMF Model

BES	t-fit GMF parameters v	WITH $1 - \sigma$ INTERVALS.	above	<u>below</u> plane			
Field	Best fit Parameters	Description	10 рс				
Disk	$b_1 = 0.1 \pm 1.8 \mu\text{G}$	field strengths at $r = 5 \text{ kpc}$					
	$b_2 = 3.0 \pm 0.6 \mu\text{G}$						
	$b_3 = -0.9 \pm 0.8 \mu \text{G}$			•			
	$b_4 = -0.8 \pm 0.3 \mu \text{G}$						
	$b_5 = -2.0 \pm 0.1 \mu \text{G}$			1911.			
	$b_6 = -4.2 \pm 0.5 \mu \text{G}$		5	8			
	$b_7 = 0.0 \pm 1.8 \mu \text{G}$						
	$b_8 = 2.7 \pm 1.8 \mu \text{G}$	inferred from $b_1,, b_7$	5 kpc				
	$b_{ m ring} = 0.1 \pm 0.1 \mu { m G}$	ring at $3 \text{ kpc} < r < 5 \text{ kpc}$					
	$h_{\rm disk} = 0.40 \pm 0.03 \ \rm kpc$	disk/halo transition					
	$w_{\mathrm{disk}} = 0.27 \pm 0.08 \mathrm{~kpc}$	transition width	Ткрс				
Toroidal	$B_{\rm n} = 1.4 \pm 0.1 \mu {\rm G}$	northern halo					
halo	$B_{\rm s} = -1.1 \pm 0.1 \mu {\rm G}$	southern halo					
	$r_{\rm n} = 9.22 \pm 0.08 \ {\rm kpc}$	transition radius, north	•	⊙ î			
	$r_{ m s} > 16.7~{ m kpc}$	transition radius, south	-1698 a	19991			
	$w_{\rm h} = 0.20 \pm 0.12 \; {\rm kpc}$	transition width	a second s	111.			
	$z_0 = 5.3 \pm 1.6 \text{ kpc}$	vertical scale height					
X halo	$B_{\mathrm{X}} = 4.6 \pm 0.3 \mu\mathrm{G}$	field strength at origin					
	$\Theta_{\rm X}^0 = 49 \pm 1^{\circ}$	elev. angle at $z = 0, r > r_{\rm X}^c$					
	$r_{\rm X}^{\rm c} = 4.8 \pm 0.2 \ {\rm kpc}$	radius where $\Theta_{\rm X} = \Theta_{\rm X}^0$					
	$r_{\rm X} = 2.9 \pm 0.1 \; {\rm kpc}$	exponential scale length	-3 -2 -1 0 μG	1 2 3			
striation	$\gamma = 2.92 \pm 0.14$	striation and/or $n_{\rm cre}$ rescaling					
Note. –	– For the parameter $r_{\rm s}$ only	y a lower 68%-bound is given.					
\wedge -lieid							
1	$L(z,h,w) = \left(1 + e^{-2}\right)$	2(z -h)/w	······································	5 kpc			

Observed vs. Simulated data, JF12

13 parameter Random GMF Model

R. Jansson + GRF, Ap. J. Lett. (2012)

Disk Component 8 arms as in JF12; B~1/r; fit separately for Brms in each arm Central region: constant Brms Gaussian vertical profile; 600 pcDisk component $b_1 = 10.81 \pm 2.33 \mu\text{G}$ $b_2 = 6.96 \pm 1.58 \mu\text{G}$ $b_3 = 9.59 \pm 1.10 \mu\text{G}$ $b_4 = 6.96 \pm 0.87 \mu\text{G}$ $b_5 = 1.96 \pm 1.32 \mu\text{G}$ $b_6 = 16.34 \pm 2.53 \mu\text{G}$ $b_7 = 37.29 \pm 2.39 \mu\text{G}$ $b_8 = 10.35 \pm 4.43 \mu\text{G}$ $b_{81} = 0.61 \pm 0.04 \text{kpc}$ Halo: strength, scale height, radial scaleHalo component $B_0 = 4.68 \pm 1.39 \mu\text{G}$ $c^{\text{disk}} = 0.61 \pm 0.04 \text{kpc}$ Striation $\beta = 1.36 \pm 0.36$ $\beta = 1.36 \pm 0.36$		Field	Best-fit Parameters	Description
b affits as in JF 12, $B^{-1/1}$, fit separately for B_{rms} in each arm Central region: constant B_{rms} Gaussian vertical profile; 600 pc Halo: strength, scale height, radial scale Halo Component Component Component $B_0 = 4.68 \pm 1.39 \ \mu G$ Component $C_0 = 10.97 \pm 3.80 \ kpc$ $C_0 = 2.84 \pm 1.30 \ kpc$ Striation $\beta = 1.36 \pm 0.36$ $\beta = 1.36 \pm 0.36$	Disk Component	Disk component	$b_1 = 10.81 \pm 2.33 \mu\text{G}$ $b_2 = 6.96 \pm 1.58 \mu\text{G}$ $b_3 = 9.59 \pm 1.10 \mu\text{G}$	Field strengths at $r = 5$ kpc
fit separately for B_{rms} in each arm Central region: constant B_{rms} Gaussian vertical profile; 600 pc Halo: strength, scale height, radial scale $\frac{Halo}{component} = \frac{1.36 \pm 0.36}{p_1 = 1.30 \pm 0.34 \mu G}$ $R_0 = 4.68 \pm 1.39 \mu G$ $R_0 = 10.97 \pm 3.80 \text{ kpc}$ $r_0 = 1.36 \pm 0.36$ $\int \frac{1}{4} \frac{1}{3} \frac{1}{2} \frac{1}{1} $	8 arms as in JF 12; B~ 1/r;		$b_4 = 6.96 \pm 0.87 \mu\text{G}$	
Central region: constant B_{rms} Gaussian vertical profile; 600 pc Halo: strength, scale height, radial scale $\frac{b_7 = 37.29 \pm 2.39 \mu G}{b_8 = 10.35 \pm 4.43 \mu G}$ $\frac{b_{1mt} = 7.63 \pm 1.39 \mu G}{c_0^{1st} = 0.61 \pm 0.04 \mathrm{kpc}}$ $\frac{Halo}{c_0^{1st} = 0.61 \pm 0.04 \mathrm{kpc}}$ $\frac{B_0 = 4.68 \pm 1.39 \mu G}{r_0 = 10.97 \pm 3.80 \mathrm{kpc}}$ $\frac{c_0 = 2.84 \pm 1.30 \mathrm{kpc}}{c_0 = 2.84 \pm 1.30 \mathrm{kpc}}$ Striation $\beta = 1.36 \pm 0.36$	fit separately for B _{rms} in each arm		$b_5 = 1.96 \pm 1.32 \mu\text{G}$ $b_6 = 16.34 \pm 2.53 \mu\text{G}$	
Gaussian vertical profile; 600 pc Halo: strength, scale height, radial scale $ \begin{array}{c} b_8 = 10.35 \pm 4.39 \mu G \\ z_0^{-0.84} \equiv 0.04 \mathrm{kpc} \\ Halo \\ component \\ b_0 = 4.68 \pm 1.39 \mu G \\ z_0 = 2.84 \pm 1.30 \mathrm{kpc} \\ z_0 = 2.84 \pm$	Central region: constant B _{rms}		$b_7 = 37.29 \pm 2.39 \mu\text{G}$	
Halo: strength, scale height, radial scale Halo $B_0 = 4.68 \pm 1.39 \mu$ G $r_0 = 10.97 \pm 3.80 \text{kpc}$ $z_0 = 2.84 \pm 1.30 \text{kpc}$ Striation $\beta = 1.36 \pm 0.36$ $\beta = 1.36 \pm 0.36$ $f = 1.36 \pm 0.36$ f	Gaussian vertical profile; 600 pc		$b_8 = 10.35 \pm 4.43 \mu\text{G}$ $b_{\text{int}} = 7.63 \pm 1.39 \mu\text{G}$ $z_0^{\text{disk}} = 0.61 \pm 0.04 \text{kpc}$	Field strength at $r < 5$ kpc Gaussian scale height of disk
$r_{0} = 10.97 \pm 3.80 \text{ kpc}$ $z_{0} = 2.84 \pm 1.30 \text{ kpc}$ Striation $\beta = 1.36 \pm 0.36$ 4 3 2 4 3 2 1	Halo: strength, scale height, radial scale	Halo	$B_0 = 4.68 \pm 1.39 \mu\text{G}$	Field strength
$\frac{1}{3}$		component	$r_0 = 10.97 \pm 3.80 \text{ kpc}$ $z_0 = 2.84 \pm 1.30 \text{ kpc}$	Exponential scale length Gaussian scale height
Image: second		Striation	$\beta = 1.36 \pm 0.36$	Striated field $B_{\text{stri}}^2 \equiv \beta B_{\text{reg}}^2$
Sun Random Regular (disk) 0	Image: second	Regular	(disk)	χ^2 = 1.065 per d.o.f. (2957 d.o.f.) 9

Observed vs model for Random Field

To an extragalactic radio observer, the Milky Way looks like the galaxies we observe!

Milky Way analogues: NGC 891

NGC 5775

Old models fit poorly, JF12 fits well χ^2 per d.o.f. = 1.096, with 6605 observables

Cosmic Ray Deflections

Different GMF models predict very different UHECR deflection

Images & Amplification

Sources near
 the Galactic
 Plane have
 multiple images,
 even at 60 EV

1/3 -0.5 0.5

Some sources
 are amplified by
 factor ~ 10!

(Jansson & Farrar, in prep)

Deflection Map 20-200 EeV protons in JF12 coherent field

- UHECR Deflection in GMF for E/Z = 160, 80, 40, 20 EeV (spread comes from random)
- Auger energy uncertainty ~ 20-25%, GMF has to be > 80 nG to impact locus
- 3 CRs can be protons from Cen A
- 3 more CRs can be from Cen A if they have Z = 2-4

Forward Tracking from Cen A down to 2 EV, including the striated & random fields Azadeh Keivani (LSU) + GF

Just 2 field realizations done so far, more running.
Arcs are intrinsically thin... ³⁰ as seen in data; multiplets can appear to thicken.
Even for Fe, deflection <20²⁰ deg.

Bursting vs Continuous Source?

Power-Law at source => Peaked at observer, if burst duration << time-delay smearing

Observational Constraints on UHECR sources (conservative)

UHECR energy injection rate: ~ 10⁴⁴⁻⁴⁵ erg Mpc⁻³ yr⁻¹
UHECR effective source density > ~ 3 10⁻⁵ Mpc⁻³ (could be lower if high Z)
N.b., UHECR arrival time delay ~ 10⁴⁻⁵ yr => bursting source ok if rate > 3 10⁻¹⁰ Mpc⁻³ yr⁻¹

"Classical" models alone don't work

• GRB (Waxman, 95):

- local rate too low
 - Implies UHECRs should come from a few, isolated sources
 - Not enough total UHECR power
- Ice Cube limit on ν 's accompanying GRBs arXiv: 1204.4219

• AGN jets, radio galaxies:

- too few are powerful enough (unless high Z reduces constraint on source density)
 - Implies UHECRs should come from a few, isolated sources

UHECR acceleration Illustrative case – internal shocks in GRB (ultra-relativistic) or AGN (mildly relativistic) jets

→

Theoretical Constraint

GRF + A. Gruzinov "AGN flares and Cosmic Ray Bursts" ApJ 2008

To confine UHECRs: $RB \gtrsim 3 \times 10^{17} \,\Gamma^{-1} E_{20}$ => $L_{\rm bol} \sim \frac{1}{6} c \Gamma^4 B^2 R^2 \gtrsim 10^{45} \Gamma^2 E_{20}^2 \,{\rm erg/s}$

MUST HAVE **Bolometric Luminosity > 10⁴⁵ erg/s** ONLY ACHIEVED IN THE HIGHEST LUMINOSITY AGNS

May 8, 2012

G Farrar, IAS seminar

Need a new class of SOURCEs

• AGN-bursts (GF & A. Gruzinov, 2008)

- major disk instability or tidal disruption event in weak AGN
- induces <u>quasar</u> for ~ 1-6 months
- rate & flux are reasonable
- photon counterparts should be observable (SDSS)
- Stellar tidal disruption events (FG08)
- induces <u>quasar</u> for ~ 1-6 months
- photon counterparts should be observable (SDSS)
- van Velzen et al 2011: 2 TDEs observed in SDSS Stripe 82
 => correct rate & flux!

Consequences of UHECR-burst scenario

- UHECRs:
 - Present AGN luminosity not a measure of flux in UHECRs.
 - Events from a single source display bursting spectrum
 - Composition may include heavy nuclei
- Predicts new class of optical and xray bursts:
 - SDSS: Search of archival data performed
 - N.b., Accompanying photon bursts arrive ~10⁴⁻⁵ years before UHECRs!

Evidence for a bursting source The "Ursa Major" UHECR Cluster

- 4 events in AGASA + HiRes (94 total) HiRes 05 Same position within < 1° Chance probability: 2 10⁻³ GRF 05 Not in Auger field of view :-(
- SDSS => foreground empty! Extragalactic deflection low GRF, Berlind, Hogg 06
 - & GMF deflection low too

GRF, Berlind, Hogg 06

- Spectrum suggests bursting source
 - Energies same within factor-2
 - No events at lower energy
- New: Swift-BAT hard x-ray source at location predicted from UHECR deflections z = 0.047

Out[46]=

Energy spectrum of CRs from an individual bursting source: GRF 07; GF in prep

+ I event in HiRes < 30 EeV

 $\begin{array}{l} \mathsf{E}_{\mathsf{UHECR}}\approx\\ \mathsf{I}\,\mathsf{0}^{49}\,\mathsf{erg}\;(\mathsf{D}_{200})^3\;\mathsf{f}_{\mathsf{GZK}} \end{array}$

Too low for GRB

Tidal Disruption Flares Observed

• 5 strong candidates

2 optical flares in SDSS stripe 82

THE ASTROPHYSICAL JOURNAL, 741:73 (24pp), 2011 November 10 © 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/741/2/73

OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES

SJOERT VAN VELZEN^{1,2,3}, GLENNYS R. FARRAR^{1,4}, SUVI GEZARI⁵, NIDIA MORRELL⁶, DENNIS ZARITSKY⁷, LINDA ÖSTMAN⁸, MATHEW SMITH⁹, JOSEPH GELFAND¹⁰, AND ANDREW J. DRAKE¹¹ ¹ Center for Cosmology and Particle Physics, New York University, NY 10003, USA; s.vanvelzen@astro.ru.nl ² Astronomical Institute "Anton Pannekoek," University of Amsterdam, 1090 GE Amsterdam, The Netherlands ³ Department of Astrophysics/IMAPP, Radboud University, NY 10003, USA ⁴ Department of Physics, New York University, NY 10003, USA

- 2 "blazar mode" flares discovered in 2011 by Swift with extensive multiwavelength follow-up
- UV-Optical TDF, Gezari et al, Nature May 2, 2012
 - Saw peak of flare
- (plus earlier candidates in UV and X-ray)
- Supermassive BH's disrupting a star
- "transient quasar" accelerate UHECRs?

Optical Tidal Disruptions van Velzen, GRF, et al, ApJ 2011

- 2.6M galaxies, 70 obs (SDSS Stripe 82)
- **Unbiased selection** of flare candidates \bullet
 - Hi-res nuclear cut to reduce SNe bkg
 - Color locus to exclude QSO hosts
 - Variability cut to remove variable AGNs

=> 2 TDF candidates

Candidate flares: unlike SNe or AGN

FUV

NUV

21

- Late time UV brighter than any SN:
- **Distinctive color and cooling:**

SDSS TDFs can accelerate UHECRs L_{bol,peak} >10⁴⁷ erg/s, L_{bol} > 10⁴⁵ erg/s for ~ 1 year (GRF in prep)

Tidal Disruption Flares satisfy UHECR source requirements

- $L_{bol} > 10^{45} \text{ erg/sec}$
- TDEs give observed UHECR energy injection rate:
 - ~ 10⁴⁴⁻⁴⁵ erg Mpc⁻³ yr⁻¹
- TDE rate consistent with UHECR effective source density > 3 10⁻⁵ Mpc⁻³ (n.b., typical propagation delay ~ 10 ⁴⁻⁵ yr)

The Ursa Major Cluster

- 5 events seen in HiRes (2) & Auger (3)
- 34, 35, 36 & 50 EeV (rescaling E's by CERN UHECR12)
 - ~13 EeV may be chance
- Swift-BAT hard X-ray AGN:
 - only AGN anywhere nearby
 - Swift-BAT Hard X-ray AGN
 - Recent Chandra observation
 - 200 Mpc; void in foreground
 - JUST WHERE THE SOURCE SHOULD BE!

VHE gamma Signatures of Tidal Disruption Burst

~ 1 month duration

Ursa Major CR spectrum favors BURSTING SOURCE

Composition \Leftrightarrow Particle Physics

Depth of Shower Maximum X_{max} & its increase with Energy

Breaking the degeneracy between models

- 4 toy models to fit CIC + Xmax
- S₁₀₀₀ X_{max} plane scatter plot will help discriminate

GRF & Jeff Allen, in preparation

Simulating UHE air showers

• Use "event generators"

- Designed to fit accelerator data
- Experimental constraints incomplete; LHC helps
- Huge extrapolation in energy (100's of interactions above LHC energies)

• First collision: $E_{CM} > 100 \text{ TeV}$

- May be highly inelastic 1000's of secondaries
- OR diffractive (if p) 10's of secondaries
- Imprints composition information
- Largely determines X_{max}

Keep in mind...

- 10 EeV = 10¹⁹eV ⇔ Sqrt[s_{NN}] = 140 TeV
- Average 10¹⁹ eV shower (QGSJetII) has
 2 20 200 secondary interactions
 above 10¹⁸ 10¹⁷ 10¹⁶eV
- A substantial extrapolation beyond constrained physics!

What knobs can be turned?

- Primary Composition
- Cross section (direct measurement only below 10¹⁷eV)
- Fraction of quasi-diffractive (high elasticity) events: f_{el}
- Multiplicity of non-diffractive events
- Particle content: strangeness fraction, meson-baryon ratio
- Reducing the π^0 fraction is the only thing that helps!

Conventional physics does not allow the π^0 fraction to be changed much

- Isospin invariance => $\pi^0 = \pi^+ = \pi^-$
- Isospin breaking (e.g., from resonance production and decay) is small
- Pion fraction is nearly universal
 - Z⁰-decay:
 - Final states of hadron collisions (central region)
 - Even QGP
- If accounting for UHECR showers requires significantly lower π^0 fraction, that means it requires New Physics!

Models

and the second and the second to the second and the

 Chiral Symmetry Restoration (CSR) -- proton Matter-induced pi0 stabilization (pi0S) Heavy quark enhancement (DB) Ad-hoc conversion of pions to kaons & baryons New models: Proton-only composition isn't ruled out, for now Future hybrid data can distinguish between composition & new physics

Chiral Symmetry Restoration

• proton primaries

- meson production suppressed
- peripherality-dependent production of CSR
- can fit <Xmax> & RMS at all E

Chiral Symmetry Restoration(-inspired) Model

Chiral Symmetry Restored Phase

- Convert fraction $f_{\rm mes}$ of mesons to nucleon or anti-nucleon
- Increase multiplicity by factor f_{mult}

Lattice QCD predicts Chiral Symmetry is restored at $T_{CS} \ge T_{deconf} = T_{QGP}$

Possible mechanism for meson suppression in CSR phase

1/31/13

G.R.Farrar, Naples

Matter-induced Index of Refraction in QCD

- Coherent interaction of particles including $\underline{\pi}^{0}$'s with ambient matter generates an index of refraction $n = I + \varepsilon$ (c.f. Fermi!)
- Changes E-p relation, making decay $\underline{\pi}^0 \rightarrow \gamma \gamma$ KINEMATICALLY IMPOSSIBLE above E/m = $\varepsilon^{-1/2}$
- DEPENDS ON ENERGY OF π^0 , not of interaction

Egalitarian quark production at VHE

- As the energy increases, the "penalty" for producing heavy quarks decreases (a known phenomenon at high pt, conjecture may also occur at VHE)
- LHC expts find enhanced K/pi ratio; fit that and increase with energy
- Convert light mesons to Charm and Bottom mesons with a probability that increases with energy; fit to get required muon content.

Modern-Politics Model

and the second of the second second

- Convert pions to K's and baryon-antibaryons at all energies above fixed-target experiments (E_{lab} ~TeV)
- Adjust fraction converted to fit UHECR shower data
- Don't worry about consistency with lab experiments (why pay attention to facts????)

Diverse Behaviors wrt Energy

Energy Dependence

Composition

- IndexRefraction: only depends on particle energy, not interaction energy; abrupt transition to new regime.
- CSR: turns on gradually above 10¹⁷ eV, depending on peripherality of collision
- K-B (modern politics): modification at low as well as high energy
- DB mesons: relatively smaller change to physics than CSR; modifications occur at high energies

- · CRS: proton only
- others: fix composition to fit Xmax

Step I: Xmax at 10 EeV

CSR: pure proton

 Fit each of others to mix of p, He, N and Fe

II: CIC (muon content)

Model Parameters

The second se

Model	Composition	Eng. Threshold	Modification
CSR	100p	10 ¹⁷ eV	80% mesons -> baryons ~20% of events at 10 ¹⁷ ev ~90% of events at 10 ¹⁹ eV
MSPD	6% p 7% He 40% C 47% Fe	~10 ^{16.5} eV	Pions do not decay
D-B Meson	5% p 12% He 78% C 5% Fe	10 ¹⁷ eV	2/3 of mesons -> D-B mesons
Рі -> К, В	4% p 15% He 62% C 19% Fe	All Eng.	5% of forward pi's to Baryons 8% of all pi's to kaons

How to discriminate? SX plot!

- Scatter plot for individual hybrid events
- Correlation between ground signal and Xmax
- Big statistics: separate into Energy and zenith bins
- Present statistics: Rescale to common energy and DG (analogous to using S_{38} instead of S_{1000})

Hybrid events can discriminate models

 μ_{Max} vs. X_{Max} [Simulations]

S-X plot

Summary

- Composition & Particle Physics
 - Examples prove that models can be made consistent with present data. Radically new physics may be required.
 - Hybrid data will be able to decide between models [&MPD!]
 - Composition will be determinable.
- Sources Galactic Magnetic Field
 - Trustworthy GMF => correlation studies will be much more powerful and reliable. New phase of analyses underway.

Conclusion

and the same and be the second of the second s

We're at the threshold of a Golden Age of UHECR particle & astrophysics

JF12 predictions in Cen A direction

excellent fit -- FJFG12

Entry plane maps, multiple images

