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Bayesian Forecast Evaluation and Ensemble Earthquake Forecasting

by Warner Marzocchi, J. Douglas Zechar,* and Thomas H. Jordan

Abstract The assessment of earthquake forecast models for practical purposes
requires more than simply checking model consistency in a statistical framework.
One also needs to understand how to construct the best model for specific forecasting
applications. We describe a Bayesian approach to evaluating earthquake forecasting
models, and we consider related procedures for constructing ensemble forecasts. We
show how evaluations based on Bayes factors, which measure the relative skill among
forecasts, can be complementary to common goodness-of-fit tests used to measure the
absoluteconsistencyofforecastswithdata.Toconstruct ensemble forecasts,weconsider
averages across a forecast set, weighted by either posterior probabilities or inverse log-
likelihoods derived during prospective earthquake forecasting experiments.We account
for model correlations by conditioning weights using the Garthwaite–Mubwandarikwa
capped eigenvalue scheme. We apply these methods to the Regional Earthquake Like-
lihood Models (RELM) five-year earthquake forecast experiment in California, and we
discusshowthis approachcanbegeneralized toother ensemble forecasting applications.
Specific applications of seismological importance include experiments beingconducted
within theCollaboratory for theStudyofEarthquakePredictability (CSEP)andensemble
methods for operational earthquake forecasting.

Online Material: Tables of likelihoods for each testing phase and code to analyze
the RELM experiment.

Introduction

Although deterministic earthquake prediction remains an
elusive goal, probabilistic earthquake forecast models have
begun to quantify the temporal variation of seismic hazard
and risk (Vere-Jones, 1995; Field, 2007; Schorlemmer and
Gerstenberger, 2007; van Stiphout et al., 2010). One recent
advance has been the establishment of the Collaboratory for
the Study of Earthquake Predictability (CSEP) as an interna-
tional program for the prospective evaluation and comparison
of forecasting models (Jordan, 2006; Gerstenberger and
Rhoades, 2010;Marzocchi et al., 2010; Zechar, Schorlemmer,
et al., 2010; Nanjo et al., 2011). Another advance is the devel-
opment of operational earthquake forecasting (OEF) as a set of
procedures for the public dissemination of authoritative infor-
mation about time-varying seismic hazard (Jordan et al., 2009,
2011; Jordan and Jones, 2010). OEF requires the evaluation of
earthquake forecast models for reliability and skill, and CSEP
has been specifically proposed as the infrastructure for con-
ducting these evaluations (Jordan et al., 2011). Reliability is
an absolute measure of performance describing the statistical
agreement between the forecast probabilities of target events
and the observed frequencies of those events (e.g., the

mean observation conditional on a particular forecast). Skill
measures the statistical performance of one model relative to
another. To be useful for OEF purposes, a model must demon-
strate some degree of reliability and skill. Here we consider
several methodological issues related to the CSEP evaluation
of OEF models.

Current CSEP experiments involve prospective blind
tests of model forecasts against observations. The models
forecast the distribution of future seismicity of a specified
type (target earthquakes) in a fixed region during a predeter-
mined testing period; the observations are the locations, mag-
nitudes, and number of target earthquakes that occur during
an experiment. Conceptually, each comparison of model
with observation is formulated as a hypothesis test in which
the null hypothesis is that the observed seismicity (a sample)
is drawn from the forecast (the reference distribution). CSEP
testing centers now involve many of these hypothesis tests
for each experiment (see, e.g., Schorlemmer et al., 2007;
Zechar, Gerstenberger, and Rhoades, 2010), and the results
of each test are summarized and reported as quantile scores
that are equivalent to p-values. These tests follow a general
procedure: one uses the forecast to simulate many catalogs
and computes a parameter of interest (typically, some like-
lihood) for each simulated catalog; one then compares the
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same parameter for the observed catalog with the distribution
of parameter values from simulations. When a p-value is
small (typically, less than 0.05), the null hypothesis is
rejected, indicating that the forecast is inconsistent with the
observation. For example, the S(pace)-test (Zechar, Gersten-
berger, and Rhoades, 2010) is based on the spatial likelihood
of the observation given the forecast. If the observed spatial
likelihood is smaller than more than 95% of the simulated
likelihoods, one infers that the spatial component of the
forecast is rejected. The typical outcome of a CSEP experi-
ment is a report card of sorts for each forecast, comprising
decisions to reject (or not reject) the null hypothesis for
different components of the forecast (e.g., spatial distribu-
tion, magnitude distribution, or overall rate). Unfortunately,
such an analysis does not make clear how a given forecast
or set of forecasts might be practically used, say for esti-
mating seismic hazard. Presumably, one would select the
best model from a set of candidate models; because most
CSEP tests are based on likelihood, the best model would
be that which maximizes the likelihood of the observed tar-
get earthquakes.

Despite its widespread application throughout science,
classical binary hypothesis testing has some intrinsic short-
comings (Rozeboom, 1960). One main class of drawbacks is
related to the typical output of a statistical test: the decision to
reject or not reject a hypothesis does not match the contin-
uous nature of probabilistic forecasting. If one chooses a cri-
tical p-value of 0.05, a small difference, 0.04 instead of 0.06,
leads to opposite conclusions that are hardly justifiable in
terms of the physics of the forecasting hypothesis/model.
More generally, the structure of classical hypothesis testing
pushes researchers to do something more than evaluate models/
hypotheses: the binary output of rejection/non-rejection im-
plies that some decision has been made, for example, to
use or not to use a candidate model. If we have N independent
models under test and use a critical p-value of 0.05, the prob-
ability to reject at least one model by chance is (1 − 0:95N).
As N becomes larger, it becomes increasingly likely to
exclude models that are probably reliable.

Another class of shortcomings was particularly well-
described by Box and Draper (1987): “…all models are
wrong; the practical question is how wrong do they have
to be not to be useful.” With many data, a goodness-of-fit
test is likely to reject all models, that is, all models will ap-
pear to be unreliable. For example, a perfectly fair coin does
not exist, and so the hypothesis that heads and tails are
equally likely to appear upon flipping a coin is not exactly
true. On the other hand, a model may be useful even though it
is not the true model: in reality, a probability of 0.5 is a good
choice for betting on the outcome of a coin toss. The signifi-
cance level of a model’s predictive performance and the util-
ity of this model are not the same thing; one may find that
two models are statistically different (i.e., the hypothesis of
equality is rejected), but the probability gain of the better
model may be negligible for practical purposes.

Here we explore methods for enhancing the CSEP eva-
luation of earthquake forecast models and for facilitating
their use in OEF. In particular, we proffer a set of Bayesian
procedures to evaluate earthquake forecasts, update these
evaluations during sequential testing phases, and combine
different (though possibly correlated) models into ensemble
forecasts in a way that takes past predictive performance into
account.

Bayesian Forecast Evaluation

A typical point null hypothesis in classical statistical
testing is expressed in the form ϑ � ϑ0, where ϑ is a con-
tinuous parameter. For most parameterized models, this hy-
pothesis will have a zero probability of being true, given that
ϑ is continuous. A Bayesian test provides a posterior distri-
bution of ϑ, and this posterior distribution is more informa-
tive than a decision of whether or not to reject the null
hypothesis.

Similarly, a Bayesian approach to evaluating forecast-
ing models replaces decisions to reject with more informative
posterior distributions; such an approach is particularly use-
ful when comparing the performances of multiple models.
Suppose we observe a vector of data Ω and want to compare
two competing models/hypotheses, H1 andH2, that comprise
a complete set of mutually exclusive models/hypotheses; that
is, their probabilities sum to 1, but only one of them is true.
The posterior probability of each model Hi, that is, the prob-
ability that Hi is the data-generating model, is

P�HijΩ� �
P�Hi�P�ΩjHi�

P�Ω�

� P�Hi�P�ΩjHi�
P�H1�P�ΩjH1� � P�H2�P�ΩjH2�

; (1)

where P�ΩjHi� is the likelihood and P�Ω� is the probability
of the observations Ω. Because P�Ω� is constant for all mod-
els and can be difficult to know, equation (1) is sometimes
expressed as the proportionality

P�HijΩ� ∝ P�Hi�P�ΩjHi�: (2)

Of course, in most real cases, no set of models can be
considered complete and composed of mutually exclusive
models. Moreover, if every model is wrong, it seems that
P�HijΩ� must be zero. These objections to the Bayesian
view can be addressed by interpreting P�HijΩ� as the poste-
rior probability that the model Hi is the best among a set of
candidate models; that is, Hi is the model that will have the
maximum likelihood score using a set of independent data in
a long-run experiment. The set can then be considered com-
plete because a best model always exists (Hoeting et al.,
1999). P�Hi� and P�HijΩ� are the prior and posterior prob-
abilities, respectively, that Hi is the best model.

The Bayesian approach emphasizes model comparison.
The posterior odds of H1 and H2 can be expressed as
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P�H2jΩ�
P�H1jΩ�

� P�H2�P�ΩjH2�
P�H1�P�ΩjH1�

� P�H2�
P�H1�

·
P�ΩjH2�
P�ΩjH1�

: (3)

The ratio

B21 �
P�ΩjH2�
P�ΩjH1�

; (4)

is the Bayes factor (Kass and Raftery, 1995). Equation (3)
suggests that the posterior odds are the product of the prior
odds and the Bayes factor. In the case where two models
have the same prior odds and zero degrees of freedom, the
posterior odds are exactly equal to the likelihood ratio. But
the Bayes factor is more general than the likelihood ratio;
for example, the Bayes factor can accommodate prior uncer-
tainties in the model parameters.

Jeffreys (1961) interpreted the Bayes factor as evidence
provided by the data in favor of one model (or hypothesis).
Kass and Raftery (1995) updated Jeffreys’ view and offered
the guide shown in Table 1. The interpretation shown in
Table 1 is general, and it can be tuned for specific contexts
such as criminal trials, where a very strong evidence of guilty
would need a Bayes factor higher than 1000 (Evett, 1991).
We note that these evidence classes scale with the logarithm
of the Bayes factor.

Application to CSEP Experiments

To describe CSEP earthquake forecast experiments, we
adopt the notation of Schorlemmer et al. (2007). The earth-
quake forecast is expressed as the expected number of earth-
quakes in multidimensional bins, with each bin representing
an interval in space, time, and magnitude. (This definition
can be generalized to include other dimensions such as depth
and focal mechanism angles.) The forecast made by the jth
model for the ith bin is denoted by λji. The forecast of the jth
model for all bins is represented by a vector Λj with n ele-
ments, where n is the number of bins. The n-vector Ω tracks
the number of earthquakes per bin, ωi, observed during the
forecast time window τ. In this view, the Hj model produces
the forecast Λj for the time interval τ .

The CSEP suite of tests is mostly based on the concept
of likelihood, that is

exp�L�ΩjΛj�� �
Yn
i�1

Pr�ωijλj
i �; (5)

where L�ΩjΛj� is the logarithm of the joint likelihood.
This quantity is the basis of the N-, L-, and R-tests described
by Schorlemmer et al. (2007) and the M- and S-tests
described by Zechar, Gerstenberger, and Rhoades (2010).
The summation of the log-likelihood per bin (or, equiva-
lently, the product shown in equation 5) implies that the num-
ber of earthquakes that occurred in one bin (ωi) depends only
on the forecast for that specific bin (λj

i ) and not on observa-
tions in adjacent bins (ωk where k ≠ i). This assumption is
debatable, because earthquakes interact and cluster spatially,
but it may hold reasonably well in some practical applica-
tions, in particular when ωi is small. Thus far, CSEP forecasts
also assume that the expected distribution of the number of
events is Poisson. In this case, equation (5) becomes

L�ΩjΛj� �
Xn
i�1

log�Pr�ωijλji ��

�
Xn
i�1

�−λji � ωi ln λ
j
i − lnωi!�: (6)

The Poisson hypothesis in the context of CSEP experi-
ments has been discussed byWerner and Sornette (2008) and
Lombardi and Marzocchi (2010). Specifically, Lombardi and
Marzocchi (2010) showed that the Poisson model is not
appropriate for a class of time-dependent forecast models
(e.g., epidemic-type aftershock sequence models) that repre-
sent earthquake clustering, for instance, during aftershock
sequences (Woessner et al., 2011). The Poisson assumption
may be a better approximation when the expected rates are
low, but this issue has not been comprehensively investi-
gated. For the sake of the illustrations in this article, we adopt
the Poisson hypothesis, although our approach and the ex-
isting CSEP tests can be generalized to any situation in which
the likelihood can be computed.

We note that the Poisson assumption has a greater
impact on classical tests where a model might be rejected
only because this assumption does not hold, while in the
Bayesian view the same model might be penalized but would
not be excluded.

In the Bayesian view of the CSEP testing phase, equa-
tion (1) becomes

P�ΛjjΩ� � P�Λj� exp�L�ΩjΛj��
P�Ω� ; (7)

where P�Λj� is the prior probability of the model Λj, P�Ω� is
the probability of observing the datasetΩ, and P�ΛjjΩ� is the
posterior probability of the model Λj. In the CSEP testing
phase, the prior probability may be equal across all models
for the first round of testing (if dealing with uncorrelated
forecasts; a different strategy for correlated forecasts is dis-
cussed in Accounting for Forecast Correlation). In a second
round of testing, the prior probability may be set to the pos-
terior obtained from the first round. One can update the prior
and posterior probabilities after any period of time, even at
irregular intervals such as after every earthquake.

Table 1
Interpretation of Jeffreys’ View
by Kass and Raftery (1995)

Bayes factor B21 Evidence against Model 1

1 to 3 Hardly worth mentioning
3 to 20 Positive

20 to 150 Strong
>150 Very strong
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Because the probability P�Ω� is constant across all mod-
els, it is not necessary to know its exact value when compar-
ing probabilities. Usually, it is very difficult to write down a
closed form of this distribution (e.g., Gelman et al., 1995);
therefore, we choose a normalizing P�Ω� such that the sum
of all posteriors for each testing round is unity, consistent with
our best model interpretation of the posterior probabilities.

In the Bayesian approach for comparing models, the
likelihood ratio of the classical frequentist approach is
replaced by the posterior odds (equation 3) and by the Bayes
factor (equation 4). The posterior odds are equal to the ratio
of the probability of two competing models to be the best one
in a set of models. In our specific case, the Bayes factor has
the same value of the likelihood ratio, but its interpretation
makes it easier to understand how much better one model is
relative to others, and it overcomes intrinsic difficulties of
interpreting the likelihood ratio in a classical statistical test-
ing framework. Notably, in the classical view the signifi-
cance level of the likelihood ratio can be obtained only for
nested models, that is, where one model is a conceptual
extension of another (see Goldstein, 2011, section 2.12). To
overcome this limitation, Schorlemmer et al. (2007) pro-
posed a method called the R-test to estimate the significance
level of the likelihood ratio for two non-nested models,
assuming that one of the two models is true. Such an assump-
tion is unrealistic if no model can be true. Moreover,
Rhoades et al. (2011) noted that it is unclear if the R-test
compares the performances of two models or if it is instead
a goodness-of-fit test.

Ensemble Forecasting

The CSEP experiments allow researchers to establish a
ranking of models according to out-of-sample predictive per-
formance (e.g., based on the likelihood of each model).
Nonetheless, it is not clear how to use these results in OEF
(Jordan et al., 2011), where the best model has to be used
(Marzocchi and Zechar, 2011). One possibility is to simply
adopt the model that has performed best so far and disregard
all others, but there is no guarantee that this model will be the
best in the future (e.g., Oreskes et al., 1994); in practice, we
never know which of the candidate models will be the best in
a long testing phase. We also note that the best candidate
model may capture one important part of the earthquake
generation process well, while others might suitably repre-
sent secondary, or at least more subtle, features. Model merg-
ing is a rational procedure to include these different aspects
of the earthquake generation process in a single model (Vere-
Jones, 1995). In general, model averaging is a proper way
to account for uncertainty among candidate models; one
familiar example is the logic tree approach to probabilistic
seismic hazard assessment (e.g., Budnitz et al., 1997). While
this type of ensemble forecasting is fairly common in meteo-
rology, climate studies, and hydrology, it has rarely been
applied in earthquake forecasting (see, however, Rhoades
and Gerstenberger, 2009; Marzocchi et al., 2012).

The most natural procedure to combine different models
is through a weighted average. The weight of each model
should account for two main issues: (1) the correlation be-
tween the forecasts of the different models and (2) past fore-
cast performance.

The assignment of model weights involves an unavoid-
able subjectivity. But we argue that an approach based on
forecast performances of each model is inherently superior
to simply assigning all models the same weight. There are
at least three desirable features for such a weighting scheme
(Garthwaite and Mubwandarikwa, 2010):

1. Models that are highly correlated with other models
should be given smaller weights than those that have low
correlation with other models (dilution property).

2. If a new model that is identical to an existing model is
added to the set of candidate models, the weight of the
duplicated model should be split and shared with the new
model, and all other weights should remain as they were
(strong dilution property).

3. When a new model is added to the set of candidate mod-
els, none of the weights of the others should increase
(monotonicity property).

To our knowledge, no formal weighting scheme fully
satisfies all these criteria. Here, we adopt a scheme that
comes close to satisfying these points: the capped eigenvalue
(CE) method of Garthwaite and Mubwandarikwa (2010).

Accounting for Forecast Correlation

We use the term “correlation weight” to highlight the fact
that these weights are estimated before collecting any data and
simply account for the correlation between model forecasts.

The correlation matrix of the model forecasts is de-
fined as

C �
c11 c12 … c1J
c21 c22 … c2J
… … … …
cJ1 cJ2 … cJJ

2
664

3
775; (8)

where J is the number of models and each element of the
matrix is Pearson’s correlation:

clk �
Pn

i�1�λl
i − �λl��λki − �λk������������������������������������������������������������������Pn

i�1�λl
i − �λl�2 Pn

i�1�λki − �λk�2
q ; (9)

where �λl and �λk are the average of the model forecasts Λl and
Λk, respectively.

To account for forecast correlation, we employed the CE
weighting scheme suggested by Garthwaite andMubwandar-
ikwa (2010). The scheme is based on the spectral decomposi-
tion of the correlation matrix,

C � QAQT; (10)
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whereA is the diagonal eigenvalue matrix, the columns of the
matrix Q contain the normalized eigenvectors, and QT is the
transpose ofQ. Because the maximum value for each element
ofC is 1, each eigenvalue larger than 1 indicates that informa-
tion is duplicated in some way. The CE method consists of
transforming the matrix A to A� by capping all eigenvalues
at unity; if any eigenvalue inA is larger than 1, the correspond-
ing element inA� is set to 1, and all other elements remain the
same. From A�, we calculate a new correlation matrix

C� � QA�QT: (11)

The correlation weight δcorr of each model is then set to

δcorrj � C�
jjPJ

k�1 C
�
kk
; (12)

for j � 1;…; J.
Garthwaite and Mubwandarikwa (2010) show that the

CE method satisfies the dilution and monotonicity properties,
but not the strong dilution property. This means that, if an
identical model is added, the weights of all models may
be affected. This is undesirable, but such changes are usually
small, and as far as we know, no other method fully satisfies
all three properties.

A Tutorial Example of Correlation-Corrected
Weighting

Table 2 shows three forecasts produced by simple
models. The forecast rates of Models 1 and 3 are randomly
sampled from a Gaussian distribution with average 10 and
standard deviation of 1; the forecast rates of Model 2 are ran-
domly sampled from a Gaussian distribution with average 5
and standard deviation of 1. We imposed a strong correlation
between Models 1 and 2 by rank ordering the forecasts in the
same way. The correlation matrix is

C �
1 0:95 −0:54

0:95 1 −0:33
−0:54 −0:33 1

2
4

3
5: (13)

The high value ofC12 � C21 is explained by the imposed
correlation between the two models. The eigenvalues of this
correlationmatrixare2.25,0.72, and0.03.Thenewcorrelation
matrix derived from the CEs (1, 0.72, 0.03) is

C� �
0:47 0:45 −0:17
0:45 0:53 0:01
−0:17 0:01 0:75

2
4

3
5; (14)

and the final correlation weights for each model are 0.27 for
Model 1, 0.30 for Model 2, and 0.43 for Model 3.

This example shows the basic features of the procedure.
First, Models 1 and 2 have about three-quarters of the cor-
relation weight of the independent Model 3. This is easily
understood because Models 1 and 2 provide similar infor-
mation, while Model 3 is different. Second, the correlation
weights and the correlation matrix are insensitive to the num-
ber of earthquakes forecast by each model (Models 1 and 2
are highly correlated but have different averages). Third, if
we consider only two models, this approach will always as-
sign the same correlation weight (0.5) to each model.

Skill-Weighting of the Forecasts

After we have collected data from the testing phase of a
forecast experiment, we update the weight of the jth model:

Wj �
δcorrj SjPJ

k�1�δcorrk Sk�
; (15)

where Sj is a measure of the jth model’s forecasting perfor-
mance during the testing phase. One popular choice for Sj is
the posterior probability of the jth model given by equa-
tion (7), which is called Bayesian Model Averaging (BMA;
Hoeting et al., 1999). In our CSEP example, this weighting is
proportional to the cumulative likelihood Lj � L�ΩjΛj�:

SBMA
j � exp�Lj�: (16)

The log-likelihoods are negative numbers; if we order
them by decreasing value, so that jLjj ≤ jLkj if j < k, then
L1 is the log-likelihood of the best model, and the BMA
weights involve the Bayes factors relative to this best model:

WBMA
j ∝ δcorrj Bj1 � δcorrj exp�ΔLj�; (17)

where ΔLk � Lk − L1. Owing to the exponential form in
(17), BMA is a strong weighting scheme, and the ensemble
average can be dominated by the best model.

A second choice is a logarithmic scoring rule that sets Sj
equal to the inverse of the cumulative log-likelihoodmagnitude:

SSMA
j � 1

jLjj
: (18)

Table 2
Synthetic Model Forecasts

Forecast Rates

Model 1 11.84 7.74 10.86 10.32 8.69 9.57 10.34 13.58 12.77 8.65
Model 2 6.42 4.80 6.41 5.71 4.94 5.67 5.73 8.03 6.49 4.88
Model 3 8.79 10.72 11.63 10.49 11.03 10.73 9.70 10.29 9.21 10.89
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According to this scheme, which we call Score Model
Averaging (SMA; Good, 1952), the weights can be written as

WSMA
j ∝ δcorrj �1� jΔLj=L1j�−1: (19)

When the ratio in (19) is small compared with unity, SMA
implies weak weighting; that is, the ensemble average will
weight all models almost equally. In general, SMA weighting
can be interpreted as a scheme that accounts for both reliability,
scored by L1, and skill, scored by ΔLj. If the reliability is low
(L1 is very negative) and the skill is not very large, the relative
skill of the models is unimportant, and the SMAweighting will
be weak. This is sensible: because all models are unreliable,
none deserves a high weight. On the other hand, if the relia-
bility is high (jL1j ≤ 1) and ΔLj is large (jΔLjj >> 1), the
weights will approach jΔLjj−1 � −1= lnBj1, and the more
skillful models will dominate.

A more general version of (18), denoted generalized
SMA (gSMA), subtracts a constant value, jL0j < jL1j, from
cumulative log-likelihoods:

SgSMA
j � 1

jLj − L0j
� 1

jL1 − L0j � jΔLjj
; (20)

The gSMAweighting can be interpreted as a scheme that
can tune the role of reliability, scored byL1 − L0, with respect
to skill, scored byΔLj. AsL0 tends to zero, the gSMAweight-
ing approaches SMA; ifL0 tends toL1, it approaches jΔLjj−1,
and the importance of reliability becomes negligible. The
reliance of this scheme on the logarithm of the Bayes factor
is consistent with the evidence classes listed in the Bayesian
forecast evaluation section, which are also logarithmic.

For each of these ensemble-buildingmethods, theweight
assigned to eachmodel is a mixture of forecast correlation and
pastpredictiveskill.Theseweightscanbeupdatedasanexperi-
ment proceeds, and they represent a natural, rational way to
assemble the best model according to the data collected so
far (Vere-Jones, 1995).

Illustration of Bayesian Comparison and the
Ensemble Model with RELM Forecasts

To illustrate our approach with actual forecasts and
data, we considered the five-year Regional Earthquake Like-

lihoodModels (RELM) experiment in California (Field, 2007;
Schorlemmer et al., 2010). (Ⓔ The codes and data used for
this illustration are available in the electronic supplement to
this paper.)

Of the dozen models aimed at forecasting the distribu-
tion of M 4:95� mainshocks during the RELM experiment
(1 January 2006 to 31 December 2010, inclusive), only four
provided a forecast that covered the entire California testing
region (Schorlemmer and Gerstenberger, 2007). These were
the models developed by Ebel et al. (2007), Helmstetter et al.
(2007), Holliday et al. (2007), andWiemer and Schorlemmer
(2007). We also included two forecasts based on the TripleS
model of Zechar and Jordan (2010) that were not part of the
RELM experiment. The TripleS forecasts were generated in
a manner that guaranteed they would be highly correlated,
specifically to illustrate the CE decorrelation technique de-
scribed in the Accounting for Forecast Correlation section
(Ⓔ see code available in the supplement). For simplicity, we
hereafter refer to all forecasts by the last name of the lead
author, that is, Ebel, Helmstetter, Holliday, Wiemer, and
Zechar.1 and Zechar.2 for the two TripleS forecasts. Each
forecast specified the number of expected target earthquakes
in bins of latitude–longitude–magnitude, and one could mask
the forecast in each bin, indicating that the bin should be
ignored in the final evaluation. Although the Holliday fore-
cast masked more than 90% of the bins (Schorlemmer et al.,
2010), for the purposes of illustration we disregard that
masking and consider all bins. We emphasize that the results
we show here are therefore not indicative of the true perfor-
mance of the Holliday model (or any other model) in the
RELM experiment.

During the 5 years of the RELM experiment, 20
mainshock target earthquakes occurred. Zechar et al.
(2012) considered the outcome of this experiment in terms
of the likelihood-based metrics that conformed to the RELM
standard tests and concluded that Helmstetter was superior:
it passed all the tests and fared best in the information gain of
pairwise comparisons suggested by Harte and Vere-Jones
(2005) and Rhoades et al. (2011). In Table 3 we report the
Bayes factors for each pairwise comparison of the candidate
models; those values marked in bold indicate very strong
evidence against the column model (Model 1). This simple

Table 3
Bayes Factors

Model 2 Model 1

– Ebel Helmstetter Holliday Wiemer Zechar.1 Zechar.2

Ebel – 6 × 10−46 2 × 10−41 9 × 10−39 8 × 10−41 4 × 10−40

Helmstetter 2 × 1045* – 4 × 104 2 × 107 105 7 × 105

Holliday 4 × 1040 2 × 10−5 – 400 3 20
Wiemer 1038 7 × 10−8 3 × 10−3 – 9 × 10−3 0.05
Zechar.1 1040 8 × 10−6 0.3 100 – 6
Zechar.2 2 × 1039 10−6 0.06 20 0.2 –

*Values marked in bold indicate very strong evidence against Model 1.
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Bayes-factor comparison indicates that Helmstetter is super-
ior to the other models.

To compare the effect of having onemodel that is superior
to all others with amore balanced population of the ensemble,
we consider all following analyses twice: once with all fore-
casts and once without Helmstetter.

We computed the correlation weights (the initial priors)
following the method described in the Accounting for
Forecast Correlation section. In Tables 4 and 5 we report the
correlation matrix C and the transformed correlation matrix
C�, respectively, for the six forecasts. For Ebel, Helmstetter,
Holliday, Wiemer, Zechar.1, and Zechar.2, the resulting cor-
relation weights are δcorri � 18:6%, 17.8%, 18.9%, 20.4%,
11.8%, and 12.3%, demonstrating that the highly correlated
Zechar.1 and Zechar.2 have been downweighted. In Table 6,
we present C� without Helmstetter (the corresponding C is
just Table 4 without the Helmstetter entries). For the reduced
set Ebel, Holliday, Wiemer, Zechar.1, and Zechar.2, the re-
sulting correlation weights are δcorri � 21:2%, 21.7%, 29.3%,
13.7%, and 14.1%.

With 20 observed target earthquakes, there are 21 testing
phases: each target earthquake signals the end of the preceding
testing phase and the beginning of a new phase; the end of the
experiment signals the end of the final testing phase, which by
definitionhasno target earthquakes. Foreach testingphase,we
computed for each forecast the posterior probability, which is
normalized such that the sumof theposteriors isunity.Because
the considered forecasts are time-invariant, we treated each
testing phase as a forecast experiment with one observation:
one target earthquake for each testing phase save the final
one, which has no target earthquakes. We scaled the forecast
rates to the duration of the testing phase (the time since the
previous target earthquake, or, for the first testing phase, the
time since the beginning of the experiment) and computed
the likelihood according to equation (6).We report likelihoods
for each forecast for each testing phase inⒺTables S1 and S2
(available in the supplement).

The normalized posteriors can be interpreted as the
probability of each model to be the best among the models
considered, and we show these posteriors as the experiment
progresses in Figure 1. The posterior probabilities shown in
Figure 1a support the indication from the Bayes factor com-
parison that Helmstetter is superior: after only a few testing
phases, Helmstetter’s posterior approaches unity and remains
at this level for the rest of the experiment. In Figure 1b, with-
out Helmstetter, the relative ranking of forecasts changes
throughout the experiment. In the early stages, Wiemer has
the highest posterior probability, but Zechar.1 has the highest
posterior throughout most of the middle three years, until
Holliday prevails near the end of the experiment. In other
words, there is no obviously best model.

We considered the same set of forecasts and observations
in constructing ensemble forecasts following the BMA, SMA,
and gSMA procedures described in the Skill-Weighting of the
Forecasts section. For gSMA, we arbitrarily set L1 − L0 � 1,
in order to illustrate the weighting implied if we reduce the
importance of the models’ reliability. We anticipate that more
objective strategies to select L0 that maximize the past fore-
casting performances may be established; a full investigation
of the role of L0 in terms of forecasting capabilities should be
conducted in future analyses.

In the first testing phase, the correlation weights are used
in a weighted average of all forecasts to construct an ensem-
ble model (i.e., Sj � 1 for all models), and therefore there is
no difference between BMA, SMA, and gSMA. In the second
testing phase, the weights take into account the results from
the first testing phase; in the third testing phase, the weights
depend on the first two testing phases, and so on until the end
of the experiment.

In Figure 2, we show the composition of the BMA,
gSMA, and SMA ensemble models for each testing phase.
After only a few testing phases, the BMA forecast is almost
identical to Helmstetter, because the posterior for Helm-
stetter is nearly unity (Fig. 2a). The logarithmic scaling of
the gSMA forecast favors Helmstetter, but not nearly as
strongly as the linear scaling of BMA (Fig. 2b). The SMA

Table 4
Forecast Correlation Matrix C

Ebel Helmstetter Holliday Wiemer Zechar.1 Zechar.2

Ebel 1.00 0.34 0.43 0.25 0.58 0.57
Helmstetter – 1.00 0.34 0.68 0.46 0.43
Holliday – – 1.00 0.20 0.57 0.56
Wiemer – – – 1.00 0.30 0.28
Zechar.1 – – – – 1.00 0.99
Zechar.2 – – – – – 1.00

Table 5
Transformed Forecast Correlation Matrix C

Ebel Helmstetter Holliday Wiemer Zechar.1 Zechar.2

Ebel 0.64 0.01 0.07 0.00 0.11 0.11
Helmstetter – 0.61 0.02 0.34 0.04 0.02
Holliday – – 0.65 −0:04 0.11 0.11
Wiemer – – – 0.70 −0:02 −0:03
Zechar.1 – – – – 0.41 0.40
Zechar.2 – – – – – 0.42

Values marked in bold indicate non-normalized correlation weights.

Table 6
Transformed Forecast Correlation Matrix C

Ebel Holliday Wiemer Zechar.1 Zechar.2

Ebel 0.63 0.07 0.04 0.11 0.11
Holliday – 0.65 −0:01 0.12 0.11
Wiemer – – 0.87 0.03 0.01
Zechar.1 – – – 0.41 0.40
Zechar.2 – – – – 0.42

Values marked in bold indicate non-normalized correlation
weights.
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forecast is a nearly even mixture of all models (Fig. 2c), as
expected from equation (19). We show the results of the
same experiment without Helmstetter in Figure 2d–f. The
weights shown in Figure 2d directly reflect the evolution of
posteriors from Figure 1b.

In the standard approach currently applied in CSEP test-
ing, one would choose the best model, the one that obtained
the highest likelihood to date, at the end of the testing phase
for OEF or some other application. We can compare the
performance of this best model with the BMA, SMA, and

gSMA forecasts. Figure 3 shows the log-likelihood (open
symbols) for each testing phase and the cumulative log-
likelihood (filled symbols). We begin with the second testing
period, because it is the first time that the BMA, SMA, and
gSMA forecasts are based on observations.

In Figure 3a,b we see that the ensemble forecasts perform
about the same as, or slightly better than, the single bestmodel.
This is unsurprising for the BMA forecast, because it is nearly
identical toHelmstetter (the bestmodel throughout the experi-
ment). The cumulative log-likelihood of Helmstetter alone

Figure 1. (a) The posterior probability for each forecast throughout the experiment; posteriors were updated whenever a new target earth-
quake occurred. After mid-2008, posteriors for Ebel, Holliday, Wiemer, and Zechar.2 are not visible because they fall directly below Zechar.1.
(b) Same as (a), but without Helmstetter.

Figure 2. (a) Contribution of each forecast to the BMA forecast during each testing phase. After the first testing phase, Ebel’s contribution
cannot be seen because it is so close to zero; after the fifth testing phase, the ensemble is essentially identical to Helmstetter. The final column
is the composition of the BMA forecast for future testing phases. (b) Same as (a) but for gSMA forecast with L0=L1 � 1. (c) Same as (a) but
for SMA forecast. (d–f) Same as (a–c), but without Helmstetter.

Bayesian Forecast Evaluation and Ensemble Earthquake Forecasting 2581



(−217:8) is slightly better than the BMA forecast (−218:6),
though nearly identical to that of the SMA forecast (−217:8)
andnot quite as goodas thegSMAforecast (−217:6). (Wenote
that these cumulative log-likelihoods do not include the re-
sults from the first round of testing because, by definition,
we cannot identify one best model before any earthquakes
have occurred.) That BMA is not better than Helmstetter is
a simple demonstration that ensemble models are not always
superior to the best candidate model evaluated a posteriori,
especially when the performance of one model overwhelms
the performances of the others. For example, in the extreme
case that the data-generating model is included in the set of
candidate models, the BMA ensemble would be the average
of the data-generating model and noise.

On the other hand, Figure 3c,d (without Helmstetter)
demonstrates that using an ensemble forecast can indeed be
better than using the best model from previous rounds of test-
ing.With this reduced set of forecasts, BMAgives a cumulative
log-likelihood of −228:5, whereas using the best model from

preceding rounds gives −237:6; gSMA (−222:3) and SMA
(−218:4) are considerably better. In this example, the SMA
andgSMAensemble forecasts are superior to theBMAensem-
ble forecast and the best model. This result is particularly
noteworthy because BMA is widely used.

Beyond their intrinsic appeal of being based on out-of-
sample predictive performance, we conclude that BMA,
SMA, and gSMA are all superior to a standard average of
the models. Consider a simple example: if we add 10 models
that perform terribly (log-likelihood close to minus infinity),
BMA, SMA, and gSMA would assign them zero weight,
while a simple average would consider these models just as
reliable as much better models.

Final Remarks

The CSEP experiment is a unique attempt to quantita-
tively evaluate the performance of earthquake forecast mod-
els. Here, we provide new tools to measure performance and

Figure 3. (a) Log-likelihood at each testing phase (after the first) for the forecast that performed best through the previous round (circles),
the BMA forecast (stars), the SMA forecast (triangles), and the gSMA forecast (squares). (b) Cumulative log-likelihood ratio of each ensemble
forecast to the best model. Symbols falling below the horizontal line indicate that the best model is better than the ensemble, and those above
the line favor the ensemble. Shaded regions indicate the strength of the difference between the models following the Bayes factor classifica-
tions mentioned in the text. (c–d) Same as (a–b), but without Helmstetter.
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construct ensemble models that may eventually be useful for
operational purposes. In particular, we suggest a Bayesian
approach to the testing phase of forecast experiments, which
has some advantageous features compared with the currently
implemented approach (Schorlemmer et al., 2007). The
fundamental difference is that no models are rejected, but
each one is instead assigned a relative performance probabil-
ity based on the observations. This means that models that
currently produce forecasts that appear by chance to be
wrong will not be abandoned for future experiments.

Earthquake forecast evaluation should involve checks of
absolute consistency (e.g., checking if the number of earth-
quakes predicted by the model is consistent with the obser-
vation) and relative comparison. The Bayesian approach
emphasizes the latter and does not directly evaluate goodness
of fit. For example, our approach would not give an obvious
indication of a problem if all considered models were terri-
ble. Therefore, we note that the approaches suggested here
are not meant to replace, but rather to complement, the exist-
ing CSEP consistency tests (Zechar, Gerstenberger, and
Rhoades, 2010). Moreover, this strategy facilitates the contin-
uous updating of a model’s posterior probability depending on
new observations. In practice, we can retrieve an updated as-
sessment about model performance according to results of the
previous rounds of tests and the data observed in the current
testing phase.

In addition to differences in the testing phase, and
perhaps more importantly, we describe some straightforward
and quantitatively justified methods to generate ensemble
earthquake model forecasts. We put forward three different
weighting schemes to generate an ensemble model: (1) the
first model is based on the widely used BMA, (2) the second
model is based on the inverse of the cumulative likelihood
score (SMA), and (3) the third model allows a tuning be-
tween reliability and skill (gSMA). The results show that
the forecasting performances of the ensemble models built
using SMA and gSMA are superior to the performances of
the best model. On the contrary, the widely used BMA
performs well when one model is superior, but the BMA
ensembles do not perform better than those from SMA or
gSMA.

We note that the procedures outlined in this article could
be applied separately to each forecast dimension (space,
magnitude, overall rate, and other dimensions), so one might
construct an ensemble forecast that emphasizes the best ele-
ments of each forecast. Such multidimensional ensembles
might provide better forecasts than any single ensemble com-
bination, an important consideration for operational fore-
casting. Moreover, this approach can be generalized and
modified to incorporate other elements of Bayesian data
analysis and forecast optimization. For instance, instead of
emphasizing the posterior probabilities or the log-likelihood
of each participating model, one might generate a multitude
of weighted ensemble forecasts and compute the posterior of
each ensemble (e.g., Monteith et al., 2011). Echoing the view
of Vere-Jones (1995), we believe that future research efforts

should emphasize effective model combination more than
model selection. This is likely to be of paramount importance
for OEF and other practical applications.

Data and Resources

In the electronic supplement to this article, we provide
all codes and data that were used in this study.
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