CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

HIGGS STUDIES WITH THE CMS UPGRADE

Les Rencontres de la Vallee d'Aoste, LaThuile February 28, 2013

Projections for the next Decade

LHC: 10-Year Plan

From Mike Lamont, CMS Upgrade Workshop, January 17, 2013

2013-2022: 300-400/fb by 2022

Slide 3

 \succ

2023-2033: HL-LHC Upgrade with leveling at ~5x10³⁴ cm⁻²s⁻¹?

From LHC 14 to HL-LHC

Upgrade CMS Studies w/ the

Higgs

Landsberg

- These projections were made as part of the ESPG report, CMS Note 2012-006
- They are based on extrapolation of the existing analyses to the conditions expected up to the HL-LHC operation period
- These studies are being repeated with more realistic

Files Linkbacks						
CMS Note						
CMS-NOTE-2012-006 ; CERN-CMS-NOTE-2012-006						
CMS at the High-Energy Frontier. Contribution to the Update of the European Strategy for Particle Physics						
CERN. Geneva						
CMS Collaboration						
24 Oct 2012 18 p.						
Detectors and Experimental Techniques						
CERN LHC ; CMS						
Physics						
We present a study of the physics potential of the upgraded CMS detector in Higg physics, searches for new physics, top, and electroweak physics in three scenarios the LHC (300 fb ⁻¹ at 14 TeV), HLLHC (3000 fb ⁻¹ at 14 TeV), and HELHC (300 fb ⁻¹ at 33 TeV). We also discuss the potential to reduce the PDF uncertainties, which at the moment the limiting systematics for many of these studies. This document has been submitted to the European Strategy Planning Group.						

Record created 2012-11-19, last modified 2012-11-29

Similar records

detector simulation and will be updated ~ next Fall

Couplings: Where are we Now?

- 2012: couplings consistent with the SM within 1σ
- Typical uncertainty: 25% (κ_v) 50% (κ_F)
- Crucial to improve this precision to ~5% level or better
 - Many BSM Higgs scenarios predict coupling modification at that level

LaThuile'13

Upgrade

ഗ S ≥ S

ĸ_v

Expectation for 2013

Signal Strength

Couplings @ LHC 14

- Projections up to ~300/fb (~2022) are reasonably straightforward
 - Two scenarios:

<u>a Thuil</u>

Upgrad

CMS

the

- Scenario 1: same systematics as in 2012 pessimistic
- Scenario 2: theory systematics are halved; the rest scale as $1/\sqrt{L}$ – somewhat optimistic
- Couplings to muons have not been studied recently in CMS, but ~25% precision should be achievable

Projections further out are subject of large uncertainties

CMS Upgrade

Higgs Studies w/ the

Landsberg

- The exact detector configuration & even technology are not quite known yet
- The running conditions have not been defined completely yet
- □ Theoretical progress in the next decade is hard to gauge
- Still, in the more realistic "Scenario 2" the HL-LHC would allow to do precision Higgs physics with individual couplings measured up to 1-3% precision
- Searches for exotic/invisible Higgs decay as a window on new physics

	Uncertainty (%)							
Coupling	$300 { m ~fb^{-1}}$			3000 fb^{-1}				
	Scenario 1	Sc	enaric) 2	Scenario 1	Sc	enario	02
κ_{γ}	6.5		5.1		5.4		1.5	
κ_V	5.7		2.7		4.5		1.0	
κ_g	11		5.7		7.5		2.7	
κ_b	15		6.9		11		2.7	
κ_t	14		8.7		8.0		3.9	
$\kappa_{ au}$	8.5		5.1		5.4		2.0	

CMS Note 2012-006

Upgrade

ഗ

S ≥ S

Studies w/ the

Higgs (

Landsberg

Strong Case for HL-LHC

There are other unique measurements, which require to go far beyond 300/fb:

- Establishing H(μμ) decay at >5σ significance and measurement of the Hμμ coupling to ~10% level
- Measurement of the Higgs self-coupling (cross section for HH production is 33fb @ 14 TeV)
- Observing how VV scattering amplitudes unitarize in the presence of H(125)
 - Are there other s-channel resonances involved?

- Higgs is not the only case for the HL-LHC
 - Answering the major question if we have entered the "desert" and there are no new weakly or strongly interacting states below a few TeV
 - Finding massive new physics or ruling out broad class of "natural" new physics model and demonstrating that SM is fine tuned
 - Probing higher energy scales via precision measurements

Just a Couple of Examples

Upgrade CMS Studies w/ the Higgs (Landsberg If we find new physics (e.g., SUSY at the LHC-14, we will need to measure masses and decays precisely to shed light on:

- Gaugino mass unification
- Squark/slepton unification
- SUSY flavor and CP violation
- Baryogenesis
- Neutrinos and leptogenesis
 - String compactifications

- If SUSY is not found at LHC 14, how far should we push?
 - Important to test naturalness to a limit
 - Certainly to ~1 TeV on the sbottom/stop
 - $\square \quad \text{But also on } \chi_2^0 \text{ and } \chi^{\pm}$

	<u>300 fb-1</u>	<u>3000 fb-1</u>
m(sq)=m(gl)	2600 GeV	3000 GeV
stop (b C1)	650 GeV	850 GeV
stop (t N1)	780 GeV	920 GeV
C1 N2	250 GeV	800 GeV

The latter is impossible at any foreseen e⁺e⁻ collider

How Reliable are They?

- "Prediction is very difficult, especially about the future" Niels Bohr
- Yet, we have learned a lot about high-pileup running last year and we adjusted our requirements to the upgraded detectors to match current performance
- When challenged by real data, experimenters tend to work much harder than when making projections
- Greg Landsberg

CMS Upgrad

Studies w/

ggs

 \succ

- Do not understand our theory friends there has been tremendous progress on the precision calculations over the past decade
- So, let's look at the past...

huile'13

ത

98-99 projections were bang-on with the 2012 results, despite a lot of early criticism that they are overoptimistic!

ത

CMS Upgrade Phases

LS1 Projects:

- Completes muon coverage (ME4)
- Improve muon trigger (ME1), DT electronics
- •Replace HCAL photo-detectors in Forward (new PMTs) and Outer (HPD \rightarrow SiPM)

Main Phase I Upgrade Components

Phase 2 CMS Upgrade Goals

- CMS Upgrad Higgs Studies w/ the <u>-andsberg</u>
- Aiming to operate at 5x design luminosity of the LHC with ~125 pileup interactions per bunch crossing
 - Adding fast L1 track trigger
 - Replacement of the entire silicon tracker
 - Replacement of endcap and forward calorimeters (designed to take ~500/fb)
 - New forward calorimetery and tracking with the focus on VBF physics (VV scattering, VBF production of Higgs and new physics)
 - Possibly ultra-fast timing for pileup mitigation