Round Table

"Which Accelerator for Higgs Physics?"

- SM Higgs and BSM
- What to measure and how well?
- A few words about a Muon Collider

Estia Eichten Fermilab

27th Les Rencontres de Physique Le Thuile, Aosta Vallee, Italy February 24 - March 2, 2013

- The SM Higgs:
 - All properties are determined for given mass.
 - Any deviations signal new physics.

m(H) = 126 GeV $\Gamma(H) = 4.21 \pm 0.16 \text{ MeV}$

branching fractions :

ractions :
$$b\bar{b} = 0.561$$
 (3.4%)
error(%) $\tau\bar{\tau} = 6.15 \times 10^{-2}$ (5.8%)
 $c\bar{c} = 2.83 \times 10^{-2}$ (12.2%)
 $\mu^{+}\mu^{-} = 2.14 \times 10^{-4}$ (5.8%)

Theory errors (LHC Higgs Cross Section WG) [arXiv:1107.5909v2]

$WW^* = 0.231$	(4.1%)
$ZZ^* = 2.89 \times 10^{-2}$	(4.1%)
$gg = 8.48 \times 10^{-2}$ (1	.0.0%)
$\gamma\gamma = 2.28 \times 10^{-3}$	(4.9%)
$Z^0 \gamma = 1.62 \times 10^{-3}$	(8.8%)

- Theoretical questions:
 - Couplings and width SM?
 - Scalar self-coupling SM?
 - Any additional scalars? EW doublets, triplets or singlets? (e.g. SUSY requires two Higgs doublets)
 - Any invisible decay modes?

The Standard Model Higgs ?

• To theorists :"When life gives you lemons, make lemonade"

The Standard Model Higgs ?

- Pseudoscalar versus Scalar
 - Light pseudoscalars often appear in dynamical EWSB models
 - However they don't couple to WW/ZZ in lowest order.
 - Assuming spin zero a pure pseudoscalar is experimentally disfavored.
- Measure couplings to distinguish SM Higgs from BSM scalars

CMS [arXiv:1212.6639]

- Within large present errors, ATLAS and CMS results consistent with SM Higgs couplings.

BSM?

- No evidence for new physics beyond the Standard Model (BSM) to date:
 - ATLAS limits

CMS limits

- TeV scales are already being probed at the LHC.

The SM Higgs and BSM

- The strong case for a Tev scale hadron collider rested on two arguments:
 - 1. Unitarity required that a mechanism for EWSB was manifest at or below the TeV scale.
 - 2. The SM is unnatural ('t Hooft conditions) and incomplete (dark matter, insufficient CP violation for the observed baryon excess, gauge unification, gravity and strings)
- If after the analysis of the 2012 CMS/ATLAS data, the 126 GeV state is found to be a 0+ state with couplings consistent with the SM Higgs, the first argument is satisfied.
 - The second argument remains strong. but is less strongly tied to the TeV scale.
 - Scales already probed at the LHC suggest that any new collider (of LHC level costs) should be able the probe the BSM physics in the multi-TeV range.

- Measurements for a Higgs factory
 - partial decay widths into WW* and ZZ*:
 - Establishes whether the Higgs is the sole agent of EWSB.
 - If additional contributors to EWSB are all SU_L(2) doublets then $\Gamma / \Gamma_{SM} < 1$
 - The relative couplings of the Higgs to WW and ZZ is fixed by EW symmetry.
 - mass, total width and self coupling λ :
 - < $\Phi^{\dagger}\Phi$ > = $v^{2}/2 = m_{h}^{2}/2\lambda$ [v = (G_F $\sqrt{2}$)^{-1/2} ≈ 247 GeV]
 - look for invisible decays associated with BSM particles
 - Branching fractions into fermions:
 - Establishes whether the Higgs is the sole agent of fermion masses.
 - N.B. The original technicolor model provided for EWSB but not fermion masses.
 - Measure coupling to (top, bottom, tau) 3rd gen. and (charm, muon) 2nd gen. (2HDM)
 - Branching fractions into gauge bosons (ZX, gg, XX)
 - Sensitive to BSM particles contributing in loops.

- What can be done at the LHC?
 - New projections from ATLAS and CMS for European Strategy Studies

CMS Projection

(a)

- With 3 ab⁻¹ HL-LHC may well:
 - Observe H-> $\mu^+\mu^-$ to 6 σ . (ATLAS)
 - Measure the Higgs self-coupling to 30% (ATLAS)

8

(b)

• The Role for Lepton Colliders

- Only lepton collider can measure the h -> cc and h -> gg decays directly.
- Precise measurements of the h -> W⁺W⁻, Z⁰Z⁰ probe if the higgs is composite or if there is any other mechanism contributing to EWSB.
- Electron colliders (linear or circular) do detailed studies of Higgs decays using the associated production process: σ(e⁺e⁻ -> Zh -> l⁺l⁻ h) = 19.1 fb

Table 5: Summary of results obtained in the Higgs studies for $m_H = 120$ GeV. All analyses at centre-ofmass energies of 350 GeV and 500 GeV assume an integrated luminosity of 500 fb⁻¹, while the analyses at 1.4 TeV (3 TeV) assume 1.5 ab⁻¹(2 ab⁻¹).

Higgs studies for $m_H = 120 \text{ GeV}$							
\sqrt{s} (GeV)	Process	Decay mode	Measured quantity	Unit	Generator value	Stat. error	Comment
			σ	fb	4.9	4.9%	Mode1
350		$ZH \rightarrow \mu^+\mu^-X$	Mass	GeV	120	0.131	independent, using Z-recoil
	SM Higgs		$\sigma \times BR$	fb	34.4	1.6%	$ZH \rightarrow q\bar{q}q\bar{q}$
500 production	$ZH \rightarrow q\bar{q}q\bar{q}$	Mass	GeV	120	0.100	mass reconstruction	
500	•	ZH,Hvv	$\sigma \times BR$	fb	80.7	1.0%	Inclusive
500		$\rightarrow v \bar{v} q \bar{q}$	Mass	GeV	120	0.100	sample
1400	_	$H ightarrow au^+ au^-$			19.8	<3.7%	
	WW	$H \rightarrow b\bar{b}$	σ×BR	fb	285	0.22%	-
3000 fusion	fusion	$H \rightarrow c\bar{c}$			13	3.2%	
		$H \rightarrow \mu \cdot \mu$			0.12	13.1%	
1400 3000	WW fusion		tri-linear coupling			$\sim 20\%$ $\sim 20\%$	

• Lepton Colliders compared to LHC results for various decay channels

- Awaiting updates on LHC capabilities based on the 2012 run experience.
- Missing comparsions: A= μ [20%], Δ m(h) [100 MeV], Δ Γ (h) [5-10%] for both HL-LHC and ILC TeV
- The lepton collider results are limited by statistics.

- How well do these quantities need to be measured after the LHC?
 - Not a completely trivial question. For example, $\Delta m_h \approx 0.1$ MeV is possible at a muon collider higgs factory.
 - Decay rates have SM theoretical uncertainities. So independent methods to reduce the theory errors are required, if you want to push sensitivity to smaller BSM effects.
 - What level of sensitivity is associated with the (non) observation of the actual BSM particles at the LHC?
 - What level of sensitivity is associated with scales beyond the range of a 200 TeV hadron collider or a 10 TeV lepton collider?
 - Topics for discussion today and detailed studies before any decision about a new expensive accelerator is made.

- µ⁺µ⁻ Collider:
 - Center of Mass energy: 1.5-6 TeV (3 Tev)
 - Luminosity > 10³⁴ cm⁻² sec⁻¹ (350 fb⁻¹/yr)
 - Compact facility
 - 3 TeV ring circumference 3.8 km
 - 2 Detectors
 - Superb Energy Resolution

0.20

0.15

0.10

0.05

0.00

2920

Luminosity density L/L_a per GeV

- MC: 95% luminosity in dE/E $\sim 0.1\%$
- CLIC: 35% luminosity in dE/E $\sim 1\%$

3 TeV CLIC

Beamstrahlung in

any e+e- collider

2940

2960

2980

 $\delta E/E \propto \gamma^2$

3 TeV Muon Collider

27th Les Rencontres de Physique @ Le Thuile, Aosta Valley, Italy

- Provides a flexible staging scenerio with physics at each stage.
 - Neutrino Factory
 - Higgs Factory
- But muons decay: ($\tau = 2.2 \times 10^{-6}$ sec)
 - The muon beams must be accelerated and cooled in phase space (factor ≈ 10⁶) rapidly
 -> ionization cooling
 - requires a complex cooling scheme
 - The decay products (µ⁻ -> v_µv_e e⁻) have high energies.
 - Detector background issues
 - Serious neutrino beam issue for Ecm ≥ 4 TeV

Emit trans

27th Les Rencontres de Physique @ Le Thuile, Aosta Valley, Italy

Higgs Factory

13

 (μm)

- For √s < 500 GeV
 - SM thresholds: Z⁰h ,W⁺W⁻, top pairs
 - Higgs factory (Js≈ 126 GeV) ✓
- For √s > 500 GeV
 - Sensitive to possible Beyond SM physics.
 - High luminosity required. 🗸
 - Cross sections for central ($|\theta| > 10^{\circ}$) pair production ~ R × 86.8 fb/s(in TeV²) (R ≈ 1)
 - At $\int s = 3$ TeV for 100 fb⁻¹ ~ 1000 events/(unit of R)
- For √s > 1 TeV
 - Fusion processes important at multi-TeV MC

$$\sigma(s) = C \ln(\frac{s}{M_{\rm x}^2}) +$$

An Electroweak Boson Collider

- Requires precise energy resolution: ΔE/E ~ few x 10⁻⁵
 Can such a resolution be achieved?
 What error on the Higgs width would be possible?
 Integrated luminosity?
 Beam energy stability store-to-store?
 What branching ratios could be measured?
 W⁺W⁻, ZZ (very small backgrounds)
 bb (S/B ~ 1), Δ(BR(μ⁻μ⁺)×BR(WW)) [2%]
 Detector backgrounds from muon decays in beams
 S/B studies?
 - $\Delta E = 2 \text{ MeV}$ and $\mathcal{L} > 10^{31} \text{ cm}^{-2} \text{sec}^{-1}$

• List of issues for MC Higgs Factory

- Can use nearby Z pole to tune machine.
- Use spin precession to measure beam energy.
- Given the LHC discovery, it is imperative that a feasibility study be done for the Higgs factory option within a staged MC scenerio.

 $\sqrt{s} = 126 \text{ GeV } (10^0 \text{ cut})$ Background Cross Sections (fb) : $\mu^- + \mu^+ \rightarrow e^- + e^+ = 9,705$ $\rightarrow j + \bar{j} = 73,020 \quad (j = u, d, s, c)$ $\rightarrow b + \bar{b} = 17,950$ $\rightarrow \gamma + \gamma = 36,680$ $\rightarrow \gamma + Z = 60,410$ $\rightarrow u + \bar{u} + g = 3,130$ $\rightarrow \tau^- + \bar{\nu}_{\tau} + W^+ = 2.56$ $\rightarrow \bar{u} + d + W^+ = 0.260$

Collider parameter	Small \deltaE 125 GeV Collider
Energy/beam	62.5 GeV
Luminosity	10 ³¹
Proton Energy, Power	8GeV, 4MW
N _p /bunch, frequency	5×10 ¹³ , 60 Hz
N _µ / bunch	1.5×10 ¹²
eL, eT	0.002, 0.0005m
β*	0.1m
σ _R	0.3mm
Collider circumference C	350m
δΕ	2 MeV
Obunch	10cm
ôv _{beam-beam}	0.0003

D. Neuffer, 15th Advanced Accelerator Concepts Workshop, Austin, TX (June 10-15, 2012)

- A muon collider can directly produce the Higgs as an s-channel resonance.
 - Higgs couples to mass so rate enhanced by $\left[\frac{m_{\mu}}{m_{e}}\right]^{2} = 4.28 \times 10^{4}$ so the cross section is $\sigma(\mu^{+}\mu^{-} \rightarrow h) = 49.2$ pb ($\Delta = \Gamma$)
 - The excellent energy resolution Δ of a muon collider makes the process observable.

Tao Han and Zhen Liu [arXiv:1210.7803]

$$\begin{split} \sigma(\mu^+\mu^- \to h \to X) &= \frac{4\pi\Gamma_h^2 \mathrm{Br}(h \to \mu^+\mu^-)\mathrm{Br}(h \to X)}{(\hat{s} - m_h^2)^2 + \Gamma_h^2 m_h^2}.\\ \sigma_{\mathrm{eff}}(s) &= \int d\sqrt{\hat{s}} \; \frac{dL(\sqrt{s})}{d\sqrt{\hat{s}}} \sigma(\mu^+\mu^- \to h \to X)\\ &\propto \begin{cases} \Gamma_h^2 B/[(s - m_h^2)^2 + \Gamma_h^2 m_h^2] & (\Delta \ll \Gamma_h),\\ B\exp[\frac{-(m_h - \sqrt{s})^2}{2\Delta^2}](\frac{\Gamma_h}{\Delta})/m_h^2 & (\Delta \gg \Gamma_h). \end{cases} \end{split}$$

$\Gamma_h = 4.21 \ {\rm MeV}$	L_{step} (fb ⁻¹)	$\delta\Gamma_h$ (MeV)	δB	$\delta m_h (MeV)$
Case A	0.005	1.5	13%	0.51
R = 0.01%	0.025	0.85	6.1%	0.32
	0.2	0.34	2.2%	0.13
Case B	0.01	0.61	8.3%	0.40
R = 0.003%	0.05	0.30	3.8%	0.13
	0.2	0.17	2.0%	0.10

FIG. 2: Number of events of the Higgs signal plus backgrounds and statistical errors expected for Cases A and B as a function of the collider energy \sqrt{s} in $b\bar{b}$ and WW^* final states with a SM Higgs $m_h = 126$ GeV and $\Gamma_h = 4.21$ MeV.

- To obtain the same sensitivity to Higgs decay modes in a electron collider via Zh process as s-channel production at a MC requires more than 100 times the integrated luminosity.

20 steps

- Two Higgs doublets expected in MSSM
 - Five scalar particles: h^0 , H^0 , A^0 , H^{\pm}
 - The LHC may have difficulty observing the H, A especially for masses > 500 GeV. Even at $\int s = 14$ TeV and 300 fb⁻¹
 - Pair produced easily at a multi-TeV lepton collider.
- Decoupling limit $m_A^0 \gg m_Z^0$:
 - h⁰ couplings close to SM values
 - H^0 , H^{\pm} and A^0 nearly degenerate in mass
- Good energy resolution is needed for H⁰ and A⁰ studies:
- At a μC the states can be separated for m_A < 900 GeV

Dittmaier and Kaiser

[hep-ph/0203120]

Which Accelerator for Higgs Physics?

- 1. The LHC is the Higgs Accelerator Continue -> HL-LHC
- 2. Continue research and development of lepton colliders. In particular the muon collider needs a convincing proof of 6D cooling.
- 3. Push neutrino physics Lepton sector
- 4. After 300 fb⁻¹ of ~14 TeV running OR the discovery of BSM physics, chose the next accelerator for Higgs physics.

