

Bundesministerium für Bildung und Forschung

Top Properties at the Tevatron

Oleg Brandt on behalf of the CDF and DØ collaborations

II. Physikalisches Institut, Georg-August-Universität Göttingen

LIGHT

- Compelling arguments that new physics can show up in the top sector:
 - Top is the heaviest quark discovered so far
 - Its Yukawa coupling is 0.996±0.006
 - Special role in EWSB?
 - Since 17 years, our measurements have been *consistent with SM predictions* in the top sector *within uncertainties*
 - D0 and CDF collected thousands of *tt* events, enabling precise studies of top properties
 - There are recent measurements displaying tension between Tevatron data and the SM predictions (A_{FB}, *R*-ratio)

A wealth of top properties

Top Properties at the Tevatron

A wealth of top properties

Top Properties at the Tevatron

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

More about the top birth place...

 Initial state for top-antitop pair-production rather different between Tevatron and LHC:

Tevatron	LHC	
pp̄ initial state → CP eigenstate	pp initial state	
centre-of-mass energy: 1.96 TeV	centre-of-mass energy: 7 (8) TeV	
Initial state: qq (~85%), gg (~15%)	Initial state: qq (~25%), gg (~75%)	

 Initial state for top-antitop pair-production rather different between Tevatron and LHC:

Tevatron	LHC	
pp̄ initial state → CP eigenstate	pp initial state	
centre-of-mass energy: 1.96 TeV	centre-of-mass energy: 7 (8) TeV	
Initial state: qq (~85%), gg (~15%)	Initial state: qq (~25%), gg (~75%)	

Dramatic differences for single top production:

Collider	s-channel: σ_{tb}	t-channel: σ_{tgb}	Wt-channel: σ_{tW}
Tevatron: pp̄ (1.96 TeV)	1.04 pb	2.26 pb	0.28 pb
LHC: pp (7 TeV)	4.6 pb	64.6 pb	15.7 pb

- Top mass in dilepton final states with, D0 (5.4 fb⁻¹)
 - Dilepton final states provide a clean signature
 - Measure m_{top} in this clean experimental environment
 - Transfer the in-situ JES calibration from I+jets channel
 - Properly account for event topology, run period dependence, etc.
 - Extract m_{top} using:
 - Neutrino-weighting technique
 - Matrix Element technique
 - Properly combine the two methods (60% statistical correlation) to maximise statistical sensitivity!
 - Final result:

$$m_t = 173.9 \pm 1.9 \, ({
m stat}) \pm 1.6 \, ({
m syst}) \, \, {
m GeV}$$

Most precise m_{top} measurement in II final states @ Tevatron!

Phys. Rev. D 86, 051103(R) (2012)

- Template method in lepton+jets final states, CDF (8.7 fb⁻¹)
 Reconstruct the event kinematics by minimising a χ²-like quantity depending on e.g.:
 - matching between reconstructed and fitted momenta
 - Wmass constraint for in-situ JES extraction
 - top quark mass constraint for m_{top} extraction
 - Consider jet-parton assignments consistent with b-tagging
 - Form templates from:
 - m_t^{reco} : best jet-parton assignment reco(2): accord boot
 - $m_t^{
 m reco(2)}$: second-best assignment

• Final result:

Phys. Rev. Lett. 109, 152003 (2012)

2/27/13 Top Properties at the Tevatron

Top mass at the Tevatron

Mass of the Top Quark

Phys. Rev. D 86, 092003 (2012)

Direct measurement of Γ_{top}, CDF (8.7 fb⁻¹):

- Ansatz:
 - reconstructed distribution in m_{top} is sensitive to Γ_{top} :

- Use same χ^2 -based reconstruction as for m_{top}

CDF Note 10936

• Final result:

$$\Gamma_t = \frac{\Gamma(t \to Wb)}{\mathcal{B}(t \to Wb)} \longleftarrow \Gamma(t \to Wb) = \sigma(t - \text{channel}) \frac{\Gamma(t \to Wb)_{\text{SM}}}{\sigma(t - \text{channel})_{\text{SM}}}$$

Assume:

2/27/13

Wtb coupling identical in production & decay

- Measurement of *R*-Ratio in I+jets, CDF (8.7fb⁻¹)
 - Defintion *R*-Ratio:

$$R = \frac{\mathscr{B}(t \to Wb)}{\mathscr{B}(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2}$$
- Ansatz:

• Use relative yields in different *b*-tagging bins

- Relative changes in b-tagging bins also affect the total *tt* cross section:
 - > simultaneously fit *R*-ratio and *tt* cross section!

- Study the V-A nature of the Wtb coupling
 - Deviations from SM would indicate new physics

- W helicity measurement in I+jets, CDF (8.7 fb⁻¹):
 - Use the matrix element technique
 - Include not only the $\cos\theta^*$ of the leptonic W decays, but also in the hadronic decays despite the sign ambiguity!
 - Extract the polarisation fractions by maximising the LH:

$$L(f_0, f_+, C_s) = \prod_{i=1}^{N} [C_s \frac{P_s(x; f_0, f_+)}{\langle A_s(x; f_0, f_+) \rangle} + (1 - C_s) \frac{P_b(x)}{\langle A_b(x) \rangle}]$$

- The clue:
 - Use the LO matrix-element

$$|M|^2=rac{g_s^4}{9}F_\ellar{F}_h(2-eta^2{
m sin}^2 heta_{qt})$$

- to express P_{sig}
- to introduce the dependence on the W boson polarisation! $F_{\ell} = \frac{2\pi g_W^4 m_{\bar{\ell}\nu}^2}{3m_t \Gamma_t} (2E_b^{*2} + 3E_b^* m_{\bar{\ell}\nu} + m_b^2) (\frac{3}{8}(1 + \cos\theta^*)^2 f_+$ $+rac{3}{4}(1-\cos^2 heta^*)f_0+rac{3}{8}(1-\cos heta^*)^2(1-f_0-f_+)).$

• Final result:

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Wtb AC from single top prod'n

• Most general, lowest-dim, *CP*-conserving *Wtb* vertex

$$\mathcal{L} = \frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} V_{tb} (f_V^L P_L + f_V^R P_R) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu} V_{tb}}{M_W} (f_T^L P_L + f_T^R P_R) t W_{\mu}^{-} + h.c.$$

$$\underbrace{ \begin{array}{c} \text{Underlined} \\ \text{couplings} \\ \text{are 0 in SM!} \end{array} }_{\text{are 0 in SM!}}$$

- Wtb AC from single top prod'n
- Most general, lowest-dim, CP-conserving Wtb vertex

$$\mathcal{L} = \frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} V_{tb} (f_V^L P_L + f_V^R P_R) t W_{\mu}^{-} \\ - \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu} V_{tb}}{M_W} (f_T^L P_L + f_T^R P_R) t W_{\mu}^{-} + h.c.$$

$$\underbrace{ \begin{array}{c} \text{Underlined} \\ \text{couplings} \\ \text{are 0 in SM} \end{array} }_{\text{are 0 in SM}}$$

- Extract Wtb AC from single top production using:
 - shapes of kinematic distributions
 - event rate (overall, *s*-channel vs *t*-channel)
- Few assumptions:

GÖTTINGEN

- Single top quarks produced exclusively via a W boson

$$|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$$

24

Obtained limits:

Phys. Lett. B 703, 21 (2012)

- Wtb AC will alter:
 - single top production (see previous slides)
 fractions of W bosons in the 3 helicity states

Wtb AC from single top + W helicity

- Wtb AC will alter:
 - single top production (see previous slides)
 fractions of W bosons in the 3 helicity states

• Assume:

- Single top production through *Wtb* vertex exclusively

$$|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$$

- Use the LH from Whelicity meas't as prior for single top
 - Compute LH over all possible analysis channels
 - **Remove overlap between selections**

Phys. Lett. B 713, 165 (2012)

Wtb AC from single top + W helicity

Combination of single top + W helicity

Phys. Lett. B 713, 165 (2012)

GEORG-AUGUST-GÖTTINGEN

Wtb AC from single top + W helicity

Combination of single top + W helicity

single top production ONLY

- Theoretical predictions (Tevatron-specific!):
 - At LO, completely symmetric
 - At higher orders, interference terms influence t and tbar production asymmetrically, e.g.:

Colour charge asymmetry @ CDF \rightarrow cf. talk by J. Wilson

- Theoretical predictions (Tevatron-specific!):
 - At LO, completely symmetric
 - At higher orders, interference terms influence t and tbar production asymmetrically, e.g.:

- New physics contributions to enhance asymmetry?
 - Massive axial vector gluons
 - Massive vector gluons
 - Z', W'
 - Technicolour
 - ?

Colour charge asymmetry @ CDF \rightarrow cf. talk by J. Wilson

- Theoretical predictions (Tevatron-specific!):
 - At LO, completely symmetric
 - At higher orders, interference terms influence t and tbar production asymmetrically, e.g.:

q

- New physics contributions to enhance asymmetry?
 - Massive axial vector gluons
 - Massive vector gluons
 - Z', W'
 - Technicolour
 - ?

2/27/13

Colour charge asymmetry @ CDF \rightarrow cf. talk by J. Wilson

ปเลยแนวภูเพล"com

 $\Delta y = y_t - y_{\bar{t}}$

р

• Form observable:

GÖTTINGEN

GEORG-AUGUST-UNIVERS

$$A_{fb} = \frac{N^{\Delta y > 0} - N^{\Delta y < 0}}{N^{\Delta y > 0} + N^{\Delta y < 0}}$$

- Use b-tagged events
- Use kinematic fitter for reco

Phys. Rev. D 84, 112005 (2011)

@ CDF \rightarrow cf. talk by J. Wilson

р

tt rest frame

GEORG-AUGUST-UNIVERS

GÖTTINGEN

Top Properties at the Tevatron

GEORG-AUGUST-UNIVERS

GÖTTINGEN

GEORG-AUGUST-UNIVERS

GÖTTINGEN

- Asymmetry would be enhanced:
 - For high m_{tt} for an *s*-channel resonance
 - For high $|\Delta y|$ for a *t*-channel anomaly

	$A_{\rm FB}$ (2	%)
Subsample	Data	MC@NLO
$m_{t\bar{t}} < 450 \mathrm{GeV}$	7.8 ± 4.8	1.3 ± 0.6
$m_{t\bar{t}} > 450 \mathrm{GeV}$	11.5 ± 6.0	4.3 ± 1.3
$ \Delta y < 1.0$	6.1 ± 4.1	1.4 ± 0.6
$ \Delta y > 1.0$	21.3 ± 9.7	6.3 ± 1.6

Phys. Rev. D 84, 112005 (2011)

2/27/13 Top Properties at the Tevatron

- Typically, A_{FB} at generator level will be diluted at reconstruction level due to
 - Limited detector acceptance
 - Limited resolution on $\Delta y \ (\approx 0.7)$
- \rightarrow Unfold Δy to generator level
 - Bin migrations particularly relevant close to $\Delta y = 0$
 - Use sufficiently fine binned, regularised unfolding
 - Correct for possible biases with ensemble tests
 - (Cross-check with coarse-binned unfolding consistent)

	$A_{\rm FB}$ (%)
	Reconstruction level	Production level
Data	9.2 ± 3.7	19.6 ± 6.5
MC@NLO	2.4 ± 0.7	5.0 ± 0.1

Phys. Rev. D 84, 112005 (2011)

2/27/13 Top Properties at the Tevatron

2/27/13

Migrations around ∆y=0 are tiny if lepton-based observables are used

- \rightarrow define forward, backward events via $q_{\ell}y_{\ell} < 0$, $q_{\ell}y_{\ell} > 0$

2/27/13

Migrations around ∆y=0 are tiny if lepton-based observables are used

- \rightarrow define forward, backward events via $q_{\ell}y_{\ell} < 0$, $q_{\ell}y_{\ell} > 0$

- Colour charge asymmetry in \mathcal{U} channel, D0 (5.4 fb⁻¹)
 - Use lepton-based observables:
 - Experimentally more robust
 - No full kinematic reconstruction of $t\bar{t}$ system necessary
 - "Classical" forward-backward asymmetry:

$$A_{\rm FB}^{\ell} = rac{N_{\ell}(Q \cdot \eta > 0) - N_{\ell}(Q \cdot \eta < 0)}{N_{\ell}(Q \cdot \eta > 0) + N_{\ell}(Q \cdot \eta < 0)}$$

Longitudinal asymmetry in spin orientation relative to proton beam direction:

$$A^{\ell}_{ ext{CP}} = rac{N_{\ell^+}(\eta>0) - N_{\ell^-}(\eta<0)}{N_{\ell^+}(\eta>0) + N_{\ell^-}(\eta<0)}$$

- Sensitive to *s*-channel exchanges of heavy non-scalar resonances with *CP*-violating couplings to quarks
- Not sensitive to possible *P* and *CP*-violating effects from an *s*-channel exchange of Higgs bosons

arXiv:1207.0364 [hep-ex] (2012)

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Colour charge asymmetry, ${\cal U}$

• Final results:

Predictions at NLO in pQCD + EW corrections: Bernreuter and Si, Nucl. Phys. B **837**, 90 (2010)

	Raw	Unfolded	Predicted
$A_{ m FB}^\ell$	$3.1\pm4.3\pm0.8$	$5.8\pm5.1\pm1.3$	4.7 ± 0.1
$A_{\rm CP}^\ell$	$1.8\pm4.3\pm1.0$	$-1.8\pm5.1\pm1.6$	-0.3 ± 0.1

• Combine with the I+jets channel:

$$A_{
m FB}^\ell = (11.8 \pm 3.2)\%$$

 $A_{
m FB}^\ell$ (predicted) = $(4.7 \pm 0.1)\%$
Predictions in I+jets updated to include EW corrections

- Relative contributions: 64% / 36% for I+jets / dilepton
- Consistency: 68%
- Disagreement with prediction: 2.2 SD

arXiv:1207.0364 [hep-ex] (2012)

- Study of the longitudinal polarisation of top quark:
 - In the SM, top quarks unpolarised in $t\bar{t}$ events
 - Many BSM models with enhanced A_{FB} also predict non-vanishing longitudinal polarisation of the top

2/27/13

- The era of precision measurements in the top quark sector has begun!
- Many exciting new/updated analyses:
 - World's most precise m_{top} comes from the Tevatron
 - Competitive limits on anomalous *Wtb* couplings
 - The only measurements of top decay width
 - Further steps towards pinning down strong colour charge asymmetry A_{FB}
 - First study of top quark polarisation
- We are looking ahead to more exciting measurements from the Tevatron:
 - Final, most precise measurement of m_{top}
 - Detailed measurement of $t\bar{t}$ production in $p\bar{p}$ collisions

We are looking ahead to more exciting measurements from the Tevatron!

Your CDF Crew David F. Comor, Perm Tom Always for the P165 0 lagner) ANL No. B USU Folulua sic St Down Ha ward . CBF reports a confirmed PP event. Look for free bubble at 10.... lick haping more Osin V per pours have been stored, copped and a have been injected into the levelop a have been accelerated in the Rain Ri Curatha Ultadel Bester Alloni Brilly Port Kplat R. Videl! William lice Tries 4 Dimitvio A. Dimitvoy wind Cliqueli Pockefeller 7. Mit JOHN 新登 COOPER WAS HERE Tony Concel fon chaveres IF NOT IN PERSON 内 David A. TEDTO Wilt 斎

2008

Higgs Mass Exclusion

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

- Typically: we measure top properties in tt events
 - Dilepton channel: low backgrounds, but underconstrained kinematics and low rate
 - I+jets channel: good compromise between kinematic reconstr'n, high rate, and backgrounds
 - All-hadronic channel: highest branching ratio, very high backgrounds from QCD multijet production
 - + other orthogonal channels...

Single top: high backgrounds, moderate rate, direct access to some observables (e.g. V_{tb})

2/27/13

m_{top} with templates in II and I+jets

Template method in lepton+jets final states, CDF (8.7 fb⁻¹)

- Reconstruct the event kinematics by minimising:

R250

<u>ප</u>200

50

150

200

m^{reco} (GeV/c²

- Form templates from:

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

- $m_t^{\text{reco}(2)}$: second-best ass't $\tilde{\Delta}$ 100
- m_{jj} : dijet invariant mass

Phys. Rev. Lett. 109, 152003 (2012)

2/27/13

350

Bkgd only

250

300

- To extract |V_{tb}|, use again *t*-channel discriminant
- Form the LH as before but analyse
 - $|V_{tb}|^2 \mathcal{B}(t \to Wb) \sigma(t-\text{channel})_{SM,|V_{tb}|=1}$
- Form Bayesian posterior density:

 $|V_{tb}| > 0.81$ at 95% C.L.

No assumption that $t \rightarrow Wb$ exclusively or on relative *t* to *s* channel rates

Phys. Rev. D 85, 091104 (2012)

W Helicity

Dilepton & I+jets comb'd

Define channel-dependent templates in $\cos\theta^*$ (leptonic W) and $|\cos\theta^*|$ (hadronic W) + LH fit

Tevatron combination:

2/27/13

2/27/13

Wtb AC from single top + W helicity

Combination of single top + W helicity

Scenario	only	only	combination
	W helicity	single top	Sti Sti
$ f_V^R ^2$	0.62	0.89	0.30 Jill Jen
$ f_T^L ^2$	0.14	0.07	0.05 Sign
$ f_T^R ^2$	0.18	0.18	0.12

• Study the V-A nature of the Wtb coupling

- Deviations from SM would indicate new physics

2/27/13

Colour Charge Asymmetry (A_{FB})

Forward-Backward Top Asymmetry, %

There is a new measurement of A_{FB} by CDF (arXiv:1211.1003, 9.3 fb⁻¹) \rightarrow comparison plots are not available yet

2/27/13

- Invariance under Lorentz transformation is a fundamental property of the SM
 - Thoroughly tested in the leptonic sector and for first generation, some tests for second generation, b-system
 - Quantify Lorentz invariance violation (LIV) in the top sector using in the SM Extension formalism:

 $|\mathcal{M}|_{\rm SME}^2 = PF\bar{F} + (\delta P)F\bar{F} + P(\delta F)\bar{F} + PF(\delta\bar{F})$

 $P @ prod'n vertex F @ decay vertex \delta$ Dependence on SM extension coefficiencts

[D. Colladay and V.A. Kostelecky, Phys. Rev. D 58, 116002 (1998)]
[V.A. Kostelecky, Phys. Rev. D 69, 105009 (2004)]

• Parametrise LIV $f_{\rm SME}(t)$ in terms of coefficients $C_{\mu\nu}$:

 $f_{\rm SME}(t) = C_{\mu\nu} R^{\mu}_{\alpha}(t) R^{\nu}_{\beta}(t) A^{\alpha\beta}$

- Non-zero $C_{\mu\nu}$ will result in time dependent *tt* production due to the rotation of the Earth!

arXiv:1203.6106 [hep-ex], PRL acc'd

Top Properties at the Tevatron

2/27/13

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

2/27/13

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Wtb AC from single top prod'n

Recent top physics results from DØ

• Obtained limits:

Using events orthogonal to W helicity meas't ONLY

[arXiv:1110.4592]

2/27/13

Recent top physics results from DØ

Wtb AC from single top + W helicity

- Wtb AC will alter:
 - single top production (see previous slides)
 fractions of W bosons in the 3 helicity states

2/27/13

- Single top production through *Wtb* vertex exclusively

$$|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$$

- D0, 5.4 fb⁻¹ Best-fit value SM value 68% C L 95% C L 0.8 0.6 f^R≠0 0.4 0.2 -0.2**±** -0.2 0.2 0.6 0.8 1.2 f₊
- Use the LH from W helicity meas't as prior for single top

combinet

- Compute LH over all possible analysis channels
- Remove overlap between selections

arXiv:1204.2332 [hep-ex], PLB acc'd

Lorentz invariance violation

- The period is 1 or 1/2 siderial day
 - 1 Solar day
 ≈ 0.997 siderial day
 - Use time stamp to check perodicity!

TABLE III: Limits on SME coefficients at the 95% TABLE IV: Limits on SME coefficients at the 95% C.L., assuming $(c_U)_{\mu\nu} \equiv 0$. C.L., assuming $(c_Q)_{\mu\nu} \equiv 0$.

Coefficient	$\mathrm{Value}\pm\mathrm{Stat.}\pm\mathrm{Sys.}$	95% C.L. Interval	Coefficient	$Value \pm Stat. \pm Sys.$	95% C.L. Interval
$(c_Q)_{XX33}$	$-0.12 \pm 0.11 \pm 0.02$	[-0.34, +0.11]	$(c_U)_{XX33}$	$0.10 \pm 0.09 \pm 0.02$	[-0.08, +0.27]
$(c_Q)_{YY33}$	$0.12 \pm 0.11 \pm 0.02$	[-0.11, +0.34]	$(c_U)_{YY33}$	$-0.10 \pm 0.09 \pm 0.02$	[-0.27, +0.08]
$(c_Q)_{XY33}$	$-0.04 \pm 0.11 \pm 0.01$	[-0.26, +0.18]	$(c_U)_{XY33}$	$0.04 \pm 0.09 \pm 0.01$	[-0.14, +0.22]
$(c_Q)_{XZ33}$	$0.15 \pm 0.08 \pm 0.02$	[-0.01, +0.31]	$(c_U)_{XZ33}$	$-0.14 \pm 0.07 \pm 0.02$	[-0.28, +0.01]
$(c_Q)_{YZ33}$	$-0.03 \pm 0.08 \ \pm 0.01$	[-0.19, +0.12]	$(c_U)_{YZ33}$	$0.01 \pm 0.07 \ \pm < 0.01$	[-0.13, +0.14]

[arXiv:1203.6106]

2/27/13 Recent top physics results from DØ

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Strong charge asymmetry (D0)

Strong Colour charge asymmetry (D0, 5.4 fb⁻¹)

2/27/13

	$l+\geq 4$ jets	$e+\geq 4$ jets	$\mu + \geq 4$ jets	l+4 jets	$l+\geq 5$ jets
Raw $N_{\rm F}$	849	455	394	717	132
Raw $N_{\rm B}$	732	397	335	597	135
$N_{t\bar{t}}$	1126 ± 39	622 ± 28	502 ± 28	902 ± 36	218 ± 16
N_{W+jets}	376 ± 39	173 ± 28	219 ± 27	346 ± 36	35 ± 16
$N_{\rm MJ}$	79 ± 5	56 ± 3	8 ± 2	66 ± 4	13 ± 2
$A_{\rm FB}(\%)$	9.2 ± 3.7	8.9 ± 5.0	9.1 ± 5.8	12.2 ± 4.3	-3.0 ± 7.9
mc@nlo $A_{\rm FB}$ (%)	2.4 ± 0.7	2.4 ± 0.7	2.5 ± 0.9	3.9 ± 0.8	-2.9 ± 1.1

	$l+\geq 4$ jets	$e+\geq 4$ jets	$\mu + \geq 4$ jets	l+4 jets	$l+\geq 5$ jets
Raw $N_{\mathbf{F}}^{l}$	867	485	382	730	137
Raw $N_{\rm B}^l$	665	367	298	546	119
$N_{t\bar{t}}$	1096 ± 39	622 ± 28	474 ± 27	881 ± 36	211 ± 16
N_{W+jets}	356 ± 39	173 ± 28	198 ± 27	323 ± 36	31 ± 16
$N_{\rm MJ}$	79 ± 5	56 ± 3	8 ± 2	66 ± 4	14 ± 2
$A_{\rm FB}^l$ (%)	14.2 ± 3.8	16.5 ± 4.9	9.8 ± 5.9	15.9 ± 4.3	7.0 ± 8.0
mc@nlo $A_{\rm FB}^l$ (%)	0.8 ± 0.6	0.7 ± 0.6	1.0 ± 0.8	2.1 ± 0.6	-3.8 ± 1.2

- Template method, 4.7 fb⁻¹ (DØ):
 - m_{top} free parameter → dilepton events are kinematically underconstrained
 - Use the so-called neutrino-weighting algorithm:
 - Postulate eta-distributions of neutrinos from MC
 - Calculate weight distribution vs. m_{top}
 - Use 1st and 2nd moment of this distribution to form templates
 - Apply in-situ JES calibration from I+jets channel:

 $1.013\pm0.008(\mathrm{stat})$

• Caveat:

k_{JES} can be final state-dependent, so we derive a dedicated response correction

- Final result:

 $m_t = 174.0 \pm 2.4(\text{stat}) \pm 1.4(\text{syst}) \text{ GeV}$

arXiv:1201.5172 [hep-ex] (2011)

Best Tevatron dilepton result!

Tevatron Combination

Mass of the Top Quark

2/27/13

Tevatron Combination

Top-antitop spin correlations

• $\tau_t = (3.3^{+1.3}_{-0.9}) \times 10^{-25} \text{ s}^{<}$ hadronisation time - Decay products carry into about spin of tt system

Spin correlations w. matrix element

How can we adopt the superior matrix element* (ME) technique for the spin correlation measurement?
 Melnikov and Schulze (PLB 700, 17 (2011)):

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

2/27/13

* I will discuss the ME technique in detail in the context of m_{top} meas't Here: it gives probability P(x,H) that a given event came from the process described by the ME, given observed kinematics x and hypothesis H

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Spin correlations w. matrix element

Take ME from Mahlon & Parke (PLB 411, 173 (1997)):

$$\sum |(M)|^{2} = \frac{1+H}{2} \frac{g_{s}^{4}}{9} F \overline{F} (2-\beta^{2} s_{qt}^{2}) - H \frac{g_{s}^{4}}{9} F \overline{F} \Delta$$

- H=1: correlated spins
- H=0: uncorrelated spins
- Perform measurement:
 - Dilepton channel
 - mc@nlo generator
 - dataset as 2 slides ago
- Use binned LH fit with nuisance parameters
- We obtain:
 - f = 0.74 ± 0.41 (stat+syst)
 - f > 0.14 @ 95% CL
 - f=0 excluded at 97.7% CL (99.6% exp.)
 - 30% more sensitivity!
 - But still statistically dominated (0.27)

- Straight forward to extend the lepton+jets channel:
 - Same ME, mc@nlo as generator
 - Split in 4 and 4+ jet bins
 - Require two b-tags to reduce combinatorics (+ purity 90%)
 - Regard the other two hightes \textbf{p}_{T} jets as light jets
 - \rightarrow four permutations
- Combine with dilepton result:
 - f = 0.85 ± 0.29 (stat+syst)
 - f < 0.34 @ 95% CL
 - f < 0.05 @ 99.7% CL
 - f = 0 @ 3.1 SD !!!
 - First evidence for non-vanishing spin correlations!

W

Use colour-connections as selection tool

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

2/27/13

- $H \rightarrow b\overline{b}$: colour singlet, $g \rightarrow b\overline{b}$: colour octet
- tt events provide clean samples of bosons (colour-singlet) and b-jets (colour-octet)

Measurements of Top Quark Properties at the Tevatron

The CDF and D0 detectors

	CDF	DØ
EM calorimeter	14%/√E + 1%	22%/√E + 4%
Hadronic calorimeter	70%/√E + 5%	68%/√E + 5%

Measurements of Top Quark Properties at the Tevatron

24 Feb. 1995:

- Simultaneous **PRL** submission by CDF and DØ
- CDF (67 pb⁻¹) :
 - σ**=6.8**^{+3.6}_{-2.4} pb,
 - observed 19 events, expected 6.9 bkg
 - bkg-only hypothesis rejected at 4.8σ
 - m_{top}=176±13 GeV
- D0 (50 pb⁻¹):

2/27/13

- σ**=6.4±2.2 pb**,
- observed 17 events, expected 3.8 bkg
 - \rightarrow bkg-only hypothesis rejected at 4.6 σ
- m_{top}=199±30 GeV

2/27/13

The birth weight

- 24 Feb. 1995:
 - Simultaneous
 PRL submission
 by CDF and DØ
- CDF (67 pb⁻¹):
 - σ**=6.8**^{+3.6}_{-2.4} pb,
 - observed 19 events, expected 6.9 bkg
 - bkg-only hypothesis rejected at 4.8 σ
 - m_{top}=176±13 GeV
- D0 (50 pb⁻¹):
 - σ**=6.4±2.2 pb**,
 - observed 17 events, expected 3.8 bkg
 - \rightarrow bkg-only hypothesis rejected at 4.6 σ
 - m_{top}=199±30 GeV

78

- Tevatron has shown a great performance in FY 2010!
- We keep enlarging our calibration samples
 - Better handles on experimental uncertainties:
 - e.g. Jet Energy Scale (JES), Jet Energy Resolution, etc.

e,µ

e,μ

Dilepton

(BR~5%, low bckg)

b-le

- In the SM:
 - $|V_{tb}| = 0.9990 0.9992$ @ 95% C.L. assuming **3 CKM** generations
- Characterise tt final states by top decays!

Top Mass Measurements at the Tevatropleg Brandt, Göttingen/FNAL

Dilepton	Lepton+jets	All-hadronic
2 high-p _T leptons	1 high-p _⊤ lepton (>20 GeV)	No leptons
Missing E_{T}	Missing E_T (>40 GeV)	No missing E_{T}
2 jets	4 jets (> 20GeV)	6 jets
≥ 0 b-tags	≥ 1 b-tag	≥ 1 b-tag
S/B:		

Experimental Challenges

• We are interested in parton-level quantities for our top measurements

- Map the energies of reco-level jets particle jets (D0) / partons (CDF)
- This is referred to as a Energy Scale (JES) corr'n
- With the current size of samples:
 - s(JES)/JES ~ 1.5% (D0)
 - s(JES)/JES ~ 3% (CDF)
- And many more:

27 February

2013

Lepton ID, p_T scale

