Top Production at ATLAS

Pier-Olivier DeViveiros [NIKHEF]

on behalf of the ATLAS collaboration

Rencontres de Physique de la Vallée d'Aoste February 28th 2013

The Top Quark at the LHC

- Why study the top quark?
 - Precision test of the Standard Model (QCD) Can also be used to constrain our simulation/generator models
 - Many new physics models would predict enhancements in the top production rates
- The LHC era signals a *new paradigm* for top quarks
 - From its *discovery* at the Tevatron, the top quark is now becoming a SM '*candle*' for LHC physics
 - It is also a sizable background to many new physics searches! Crucial that we understand this process!

Over 25 papers and over 50 preliminary notes produced on top physics at ATLAS!

The Top Quark at 7 TeV - 2011 Run

A wealth of top quark measurements were performed with the 2011 dataset, many of which were finalized recently!

Will focus on the most recent results...

Almost I million top quark pair events produced in 2011 across all channels!

Top Quark Pair Cross-Section

Combination is driven by the high-precision channels with electrons and muons in the final state

Systematic uncertainties drive the precision of most measurements...

Cross-section in the τ_{had} + jets channel

ATLAS-CONF-2012-032 arXiv:1211.7205 (Submitted to EPJC)

- First measurement in this channel at the LHC!
- Difficult final state to reconstruct, with very large backgrounds!

 $\frac{\text{Event Selection}}{\text{Trigger on 4 jets } (p_T > 10 \text{ GeV}),}$ of which 2 are b-tagged *at trigger level*

5 jets with $p_T > 20$ GeV and $|\eta| < 2.5$, of which 2 are b-tagged Veto reconstructed electrons/muons $\tau_{had} p_T > 40$ GeV $E_T^{miss} / [0.5 \text{ sqrt}(\Sigma E_T)] > 8$ (E_T^{miss} significance)

<u>Methodology</u> Use a Template Fit: Number of tracks associated with tau candidate is ideal (very well modeled) Background templates are data-driven Signal template taken from simulation

First use of a dedicated b-jet trigger in an ATLAS measurement!

Cross-section in the τ_{had} + jets channel

ATLAS-CONF-2012-032 arXiv:1211.7205 (Accepted by EPJC)

 $\sigma_{t\bar{t}} = 194 \pm 18$ (stat.) ± 46 (sys.)

Source	Number of events	
tau/electron		
$\begin{array}{c c} t\bar{t} \ (\tau_{had}) \\ t\bar{t} \ (electrons) \\ Single \ top \\ W+jets \end{array}$	$ \begin{array}{r} 170 \pm 40 \\ 47 \pm 11 \\ 12 \pm 2 \\ 9 \pm 5 \end{array} $	
Total expected	240 ± 50	
Fit result	$270 \pm 24 \text{ (stat.)} \pm 11 \text{ (syst.)}$	
quark-jet		
$ \begin{array}{c c} t\bar{t} \text{ (jets)} \\ \text{Single top} \\ W+\text{jets} \end{array} $	540 ± 160 24 ± 4 21 ± 12	
Total expected	580 ± 160	
Fit result	$520 \pm 97 \text{ (stat.)} \pm 78 \text{ (syst.)}$	
gluon-jet		
Fit result	$960 \pm 77 \text{ (stat.)} \pm 74 \text{ (syst.)}$	

Uncertainties are dominated by the generator modeling of the signal acceptance, and the b-tagging efficiency

Top pair events 'only' high statistics SM source of high $p_T \tau_{had}$ ($p_T > 40 \text{ GeV}$) Possible future use for performance studies?

Cross-section in the lepton + jets ATLAS-CONF-2012-131 **channel with a semi-leptonic b-decay**

- Uncertainty on the performance of 'lifetime-based' b-taggers is typically a driving systematic for top-pair cross-section measurements
- Using a different method for identifying b-jets gives a measurement driven by a separate set of systematics

Cross-section in the lepton + jets ATLAS-CONF-2012-131 **channel with a semi-leptonic b-decay**

Main contribution to systematics from background normalizations, generator uncertainties, jet energy scale and lepton identification

See ATLAS-CONF-2012-097 for an in-situ measurement of the b-tagging efficiency using top-pair events

$$\sigma_{t\bar{t}} = 165 \pm 2 \text{ (stat.)} \pm 17 \text{ (sys.)} \pm 3 \text{ (lumi.)}$$

Resulting uncertainty due to the tagging efficiency is only at the ~ I-2% level! The uncertainty due to the b branching ratio is however at the 3% level...

Jet Multiplicity in Top Pair Events

 By measuring the cross-section as a function of the number of jets in an event, constraints can be placed on various ISR/FSR models, and generator configurations
 After unfolding

<u>Event Selection</u> 'Standard' lepton + jets selection

 $\frac{Strategy}{Count the number of jets produced in the events for 4 different thresholds:$ $p_T > 25, 40, 60, 80 GeV$

To be able to perform precise comparisons to Monte Carlo, the distributions are then 'unfolded' to truth 'particle-level'

Compare data to 4 different models ALPGEN+HERWIG MC@NLO+HERWIG ALPGEN+PYTHIA (with as variations) POWHEG+PYTHIA

ATLAS-CONF-2012-155

Proper understanding of the agreement between the various models and the data can lead to reduced uncertainties in future top measurements!

9

Differential Cross-Section

 Measuring the cross-section as a function of the properties of the top pair system is a stringent test on the Standard Model predictions

<u>Event Selection</u> 'Standard' lepton + jets selection

<u>Strategy</u>

Maximize a likelihood determinant based on the masses of the particles in the system, the probabilities for the given kinematics, and the b-tagging probability. This allows for a full kinematic reconstruction of the top pair topology.

Use migration matrices to 'unfold' the results to truth 'particle-level'

Cross-section is measured as a function of observables sensitive to QCD predictions: m, p_T, y of $t\bar{t}$ system

Uncertainties are driven by systematics on jet kinematics and generator uncertainties

11

Search for Top Pair Resonances

 Many BSM models predict the existence of new particles that decay primarily to top quark pairs

Perform a search for resonant production in m_{tt}

 Due to the high mass regime being probed, need a dedicated selection to increase acceptance in scenarios where top decay products are boosted

Event Selection 'Standard' lepton + jets selection except: Use a shrinking cone for isolation ('mini-isolation') to increase acceptance in due to boosted products

 $\frac{\text{Resolved Scenario}}{3 \text{ or 4 jets 'narrow' (anti-k_T D = 0.4) jet} (\text{if 3, one must have mass} > 60 GeV) \\ \frac{\text{Boosted Scenario}}{1 \text{ large jet (anti-k_T D = 1.0, } \sqrt{[k_{12}]} > 40 \text{ GeV})} \\ \text{and I 'narrow' jet}}$

Obtain m_{tt} by solving for mass constraints and taking the E_T^{miss} as the $p_{(x,y)}$ component of the neutrino

Categorize events in 'resolved' and 'boosted' scenarios

Leptophobic Z', KK gluon, etc.

ATLAS-CONF-2012-136

ATLAS-CONF-2012-136

Search for Top Pair Resonances

Same background estimation method as p.8Systematics are driven by JES and $t\bar{t}$ normalization

See also JHEPOI(2013)116 for a measurement with a similar philosophy in the all hadronic channel

Туре	Resolved selection	Boosted selection
tī	44000 ± 4700	950 ± 100
Single top	3250 ± 250	49 ± 4
Multi-jets <i>e</i> +jets	2500 ± 1500	12 ± 7
Multi-jets μ +jet	1010 ± 610	20 ± 12
W+jets	6940 ± 730	82 ± 15
Z+jets	840 ± 410	11 ± 5
Di-bosons	124 ± 43	0.88 ± 0.30
Total	58700 ± 5300	1120 ± 100
Data	61 954	1079

As we probe higher-x regimes in the future, we will encounter more boosted final states which cannot be resolved 'traditionally' Developing such 'boosted' techniques is crucial for future searches!

13

Measurement of the Charge Asymmetry

- Top quark pair production has a small asymmetry under charge conjugation predicted by the SM
- BSM physics could lead to an enhancement in this effect

Strategy

This particular analysis uses the dilepton channel a) Can measure A_{tt} directly, but this requires a strategy to resolve the momentum of the 2 neutrinos b) Can measure A_{ll} instead which is still sensitive to the same effects

 $\label{eq:product} \begin{array}{l} \frac{\text{Event Selection}}{2 \text{ opposite sign electrons/muons}} \\ \text{with } p_T > 25/20 \text{ GeV} \\ |m_{II} - m_Z| > 10 \text{ GeV (ee or } \mu\mu \text{ channel}) \\ \text{E}_T^{\text{miss}} > 60 \text{ GeV (ee or } \mu\mu \text{ channel}) \\ \Sigma[p_T^I \& \text{E}_T^i] > 130 \text{ GeV (e}\mu \text{ channel}) \\ \text{at least 2 jets with } p_T > 25 \text{ GeV and } |\eta| < 2.5 \\ \end{array}$

How to resolve the ttbar kinematics? 'Matrix-element' method is used Assuming the kinematics are the same as in the tree-level process, various solutions are found for the unconstrained kinematics Each solution is weighted to give a final value the chosen observable

 $\frac{(2\pi)^4}{\varepsilon_1\varepsilon_2s}d\varepsilon_1d\varepsilon_2f_{PDF}(\varepsilon_1)f_{PDF}(\varepsilon_2)|\mathcal{M}(y)|^2W(x,y)d\Phi_n$

$$A_{\mathrm{C}}^{t\bar{t}} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)},$$
$$A_{\mathrm{C}}^{\ell\ell} = \frac{N(\Delta|\eta| > 0) - N(\Delta|\eta| < 0)}{N(\Delta|\mu| > 0) + N(\Delta|\mu| < 0)},$$

Measurement of the Charge Asymmetry

ATLAS-CONF-2012-057

see Eur. Phys. J. C (2012) 72:2039 for leptons+jets channel

 $A_{||} = 0.023 \pm 0.012 \text{ (stat.)} \pm 0.008 \text{ (sys.)}$ SM: $A_{||} = 0.004 \pm 0.001$

ATLAS Combination with lepton + jets channel: $A_{t\bar{t}} = 0.029 \pm 0.018$ (stat.) ± 0.014 (sys.)

 $A_{t\bar{t}} = 0.057 \pm 0.024 \text{ (stat.)} \pm 0.015 \text{ (sys.)}$ SM: $A_{t\bar{t}} = 0.006 \pm 0.002$

Measurements are statistics limited, but this will be improved with 2012 data

Single Top Cross-Section

Production of single top occurs in 3 channels

ATLAS has: Observation in t-channel Evidence in Wt-channel Upper Limits in s-channel

Single-Top Cross-Section Ratio

- Two processes contribute to the t-channel single-top cross-section: top and anti-top production (*u* or *d* quark in the initial state)
- Measuring their relative cross-section ratio leads to direct experimental constraints on PDFs! (Regime is ~ 0.02 < x < 0.5)

Event Selection

2 or 3 jets with $p_T > 25$ GeV and $|\eta| < 4.5$ (> 50 GeV if in the endcap), I b-tag exactly I isolated electron or muon with $p_T > 25$ GeV and $|\eta| < 2.5$ $E_T^{miss} > 30$ GeV $m_T > 30$ GeV

Strategy Use a Neural Network discriminant trained with the 15 to 19 most-sensitive variables – Use simulated templates to fit the contributions from signal and background, using constraints based on their expected normalizations

ATLAS-CONF-2012-056

Single-Top Cross-Section Ratio

$\sigma_{t-channel} = 82.7 \pm 2.3 \text{ (stat.)} \pm 17.9 \text{ (sys.)}$

Constraints are 'soft' at the moment, but with more statistics and a better understanding of the systematics, can strongly constrain existing PDF sets!

ATLAS-CONF-2012-056

The Top Quark at 8 TeV - 2012 Run

The 2012 dataset is still been studied and many more results will soon be forthcoming!

A quick look at the first available measurements!

Over 5 million top quark pair events produced in 2012 across all channels!

Cross-section in the lepton + jets channel

- Same method as for the last public 7 TeV results...
- Template fit, using a likelihood discriminant based on the product of the PDF for 2 variables, taken from simulations of the signal (tt) and background (W+jets)

Systematics dominated by the modeling of the $t\overline{t}$ acceptance in simulation

 $\sigma_{t\bar{t}} = 241 \pm 2 \text{ (stat.)} \pm 31 \text{ (sys.)} \pm 9 \text{ (lumi.)}$

ATLAS-CONF-2012-149

ATLAS-CONF-2012-132

Single-Top Cross-Section

Signal extracted using the same method as for the crosssection ratio

	Signal region	
	2 jets	3 jets
<i>t</i> -channel	5210 ± 210	1959 ± 78
s-channel	343 ± 14	100 ± 4
Wt	1570 ± 110	1363 ± 95
tī	11700 ± 1200	15300 ± 1500
W+light flavour	5500 ± 1700	1160 ± 350
W+heavy flavour	12000 ± 6000	3900 ± 2000
Z+jets, diboson	1200 ± 720	410 ± 240
QCD multijet	3000 ± 1500	1650 ± 830
Total Expectation	41600 ± 6600	25800 ± 2700
Data	40663	23687

Systematic uncertainties dominated by the JES, b-tagging efficiency and $t\bar{t}$ normalization

 $\sigma_{single-t} = 82.7 \pm 2.3 \text{ (stat.)} \pm 17.9 \text{ (sys.)}$

Conclusions / Outlook

- Only a quick overview of the recent top results from ATLAS!
- The various properties of the top quark are measured with increasing precision, providing a stringent test of the Standard Model
- But also, various methods have been developed (and are still being developed!), forging the path for future analyses
- Many more results are available! Please visit:

http://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

 Approximately 20 fb⁻¹ of data collected in 2012, being analyzed at the moment - Expect more exciting results soon!

Thanks for your time!