LaThuile 2013

XVII Rencontres de Physique de La Vallée d'Aoste

Diboson studies at CMS

Senka Đurić (Ruđer Bošković Institute, Zagreb, Croatia)

On behalf of CMS collaboration

- Diboson measurements are an important **test of the Standard Model (SM)**
- Diboson processes are the backgrounds for New Physics and Higgs search measurements
- Vector boson self-interactions are fundamental prediction of SM resulting from non-Abelian nature of the SU(2)xU(1) gauge theory
- Measurement of anomalous triple and quartic gauge boson couplings (aTGC and aQGC) is an **indirect search for New Physics**

CMS diboson cross section measurements overview

	Int. lum	inosity	Cross section measurement phase space		
	@ 7TeV	@ 8TeV	Cross section measurement phase space		
$ZZ \rightarrow 2I2I'$ (I = e/ μ ;I' = e/ μ / τ)	5.0 fb ⁻¹	5.3 fb ⁻¹	60 <m(<math>Z_{1,2})<120 GeV pp→ZZ+X</m(<math>		
Wγ→Ivγ	5.0 fb ⁻¹	-	E _τ ^γ >15/60/90 GeV & ΔR(Ι,γ)>0.7	pp→Wγ→Ivγ+X	
Ζγ→ΙΙγ	5.0 fb ⁻¹	-	$E_{\tau}^{\gamma} > 15/60/90 \text{GeV} \& \Delta R(I,\gamma) > 0.7$ & M ^{II} > 50 GeV pp $\rightarrow Z\gamma \rightarrow II\gamma^{-1}$		
Ζγ→ννγ	5.0 fb ⁻¹	-	E _τ ^γ >145 GeV & $ η^{\gamma} < 1.4$ pp $\rightarrow Z\gamma \rightarrow \nu \nu \gamma +$		
W⁺W⁻→IvIv	4.9 fb ⁻¹	3.5 fb ⁻¹	full pp→W ⁺ W ⁻ +		
W⁺W⁻+WZ→Ivjj	5.0 fb ⁻¹	-	full pp→WW+WZ		
WZ→IvII	1.0 fb ⁻¹	-	full pp→WZ+X		
P ara kana kana			full	(*) • • + • • • (*)	
Exclusive γγ→W⁺W⁻	5.0 fb ⁻¹	-	$\begin{array}{c c} P_{\tau}(\mu,e) > 20 \text{GeV \& } \eta(\mu,e) < 2.4 \\ \& P_{\tau}(\mu e) > 100 \text{GeV} \end{array} \qquad \begin{array}{c} p p \rightarrow p^{(*)} W^{+} W^{-} p^{(*)} \\ \to p^{(*)} e \mu p^{(*)} \end{array}$		
			*	New! ³	

Dominant backgrounds

	Main background
$ZZ \rightarrow 2I2I'$ (I = e/µ;I' = e/µ/ τ)	WZ/Z+jets [jet is misidentified as a lepton \rightarrow fake lepton]
Ζγ→ννγ	jets events [one jet is misidentified as a photon + MET due to misidentified of jet energy] non-collision events containing [fake photons]
Ζγ→ΙΙγ	Z+jets events [jet is misidentified as a photon \rightarrow fake photon]
Wγ→Ivγ	W+jets events [jet is misidentified as a photon \rightarrow fake photon]
W⁺W⁻→IvIv	W+jets [jet is misidentified as a lepton \rightarrow fake lepton] top-quark events
W⁺W⁻+WZ→Ivjj	W+jets

Dominant backgrounds always derived from data, others with small contribution from the simulation.

CMS bkg from data determination methods

Fake rate method (often used for fake leptons, jets misidentified as

background dominated data control sample

bkg) Select data control sample dominated with background to measure the probability ("fake rate"=FR) for a loose lepton object (fake lepton) to pass the tight requirements used in the selection Use the FR to extrapolate the yield from a loose lepton sample (background enriched) to the fully selected leptons Template fit method (often used for fake photons, jets misidentified Vgamma (V+jet bkg) WW+WZ->212j as photons) (W+jets bkg) Perform a two component fit using the signal and background templates in discriminating observable Data/MC scale factor WW ($W\gamma^*$ bkg) Using the data control sample dominated with background to rescale the simulation Measurement of efficiency WW (tt bkg) • Measurement of the selection efficiency and applying it to

l lood for

8

leptons)

ZZ \rightarrow 2l2l' (l = e/ μ ; l' = e/ μ / τ) signature and selection

ZZ final state expected to have only small contribution from background processes • algorithms tuned to maximize the lepton-reconstruction efficiency

submitted to Phys. Lett. B [arXiv:1301.4698] [CERN-PH-EP-2012-376]

$Z\gamma \rightarrow vv\gamma$ production and signature

Visible signal is from ECAL only \Rightarrow non-collision background (beam halo, cosmic muons) is significant

 $\begin{array}{c} \textbf{Backgrounds} \\ jets \rightarrow ``\gamma``+MET (estimated from data: fake rate method) \\ W \rightarrow ev (estimated from data: measurement of efficiency) \\ \gamma+jet, \gamma\gamma, W\gamma (estimated from MC) \\ non-collision \\ (estimated from data: template method fit on photon timing) \end{array}$

Signature 1 isolated photon + large MET

Selection

 $Z\gamma \rightarrow \nu\nu\gamma$ signature

- Isolated high P_{τ} photon (E_{τ}^{γ} >145 GeV due to on-line selection) in ECAL barrel
- Large missing transverse energy (MET>130 GeV)

Reduction of collision backgrounds (γ +jet, jets, W γ)

- Veto events containing significant charged track or hadronic activity (jet veto) Reduction of non-collision background (photon produced from cosmic muon or beam-halo)
 - Photon timing required to be consistent with beam crossing
 - Veto events with cosmic muon tracks

$Z\gamma \rightarrow vv\gamma$ results

Source	Estimate
Misidentified jets	11.2 ± 2.8
Beam-gas processes	11.1 ± 5.6
Misidentified electrons	3.5 ± 1.5
$\mathrm{W}\gamma$	3.3 ± 1.0
$\gamma\gamma$	0.6 ± 0.3
$\gamma + { m jet}$	0.5 ± 0.2
Total	30.2 ± 6.5
$Z\gamma \rightarrow \nu\nu\gamma \ (NLO)$	45.3 ± 6.9
data	73

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP12020

- Beam halo one of the main backgrounds
- Still large statistical uncertainty
- Main systematic from beam halo background estimation and jet and track veto efficiency
- Measured cross section in agreement with SM NLO calculations

 $σ(pp→Zγ→ννγ; E_τ^γ>145GeV |η^γ|<1.4) @ 7 TeV:$ 21.3 ± 4.2 (stat.) ± 4.3 (syst.) ± 0.5 (lumi.) fb Theory (BAUR): 21.9 ± 1.1 fb

$W\gamma \rightarrow I\nu\gamma$ and $Z\gamma \rightarrow II\gamma$ production and selection

Backgrounds (W γ / Z γ)

V+jets, tt+jets / Z/γ*+jets (estimated from data: template method fit) DY, multiboson (estimated from data: measurement of electron pixel seed track efficiency) Zγ, γ+jets, ttγ, multijet / multijet, tt̄, photon+jet, other diboson proceses (estimated from MC)

Selection

$W\gamma \rightarrow Iv\gamma$ (I=e/ μ) signature

- 1 isolated lepton ($P_{\tau}^{\ l}$ >35 GeV due to on-line selection)
- Isolated photon (E_{T}^{γ} >15 GeV)
- Large transverse mass of W (MTW>70 GeV due to online selection)
- Reduce jet/electron misidentified as photon background
 - Require tight selection for photon
- Reduce other diboson/DY backgrounds
 - Veto events with second lepton

$Z\gamma \rightarrow II\gamma$ (I=e/ μ) signature

- 2 isolated leptons (P⁻¹_T>20 GeV due to on-line selection)
- Isolated photon (E_{τ}^{γ} >15 GeV)
- M^{II} > 50 GeV

Reduce jet misidentified as photon background

Require tight selection for photon

$W\gamma \rightarrow I\nu\gamma$ results

 $\sqrt{s} = 7 \text{ TeV}$

MCFM (Inclusive)

W(ev)γ (Inclusive)

– W(μν)γ (Inclusive)

Combined (Inclusive)

(pb) Ε _τ (γ)>15GeV		E _τ (γ)>60GeV	Ε _⊤ (γ)>90GeV
W(lv)γ	37.0±0.8(stat)±4.0(syst)±0.8(lumi)	0.76±0.05(stat)±0.08(syst)±0.02(lumi)	0.200±0.025(stat)±0.038(syst)±0.004(lumi)
NLO(MCFM)	31.81±1.80(syst)	0.58±0.08(syst)	0.173±0.026(syst)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEWK11009

10²

10

CMS Preliminary, L = 5 fb⁻¹

- Measurement dominated by systematic uncertainty
- Dominant systematic uncertainty from W+jet background estimation (correlation of MET and fake photon cluster shape)
- Measured cross section for lower $E_{\tau}(\gamma)$ values 1 σ higher then expected from NLO calculation (MCFM) consistent between e/mu channels

RB		Zγ→IIγ results	CMS
		σ(pp→Zγ→llγ) @ 7 TeV	Theory (MCFM)
ΔR(I,γ)>0.7 &	E __ (γ)>15GeV	5.33 ± 0.08(stat) ± 0.25(syst) ± 0.12(lumi) pb	5.4 ± 0.2(syst) pb
	E _τ (γ)>60GeV	0.140 ± 0.011(stat) ± 0.013(syst) ± 0.003(lumi) pb	0.124 ± 0.009(syst) pb
M">50 GeV	E __ (γ)>90GeV	0.046 ± 0.007(stat) ± 0.009(syst) ± 0.001(lumi) pb	0.040 ± 0.004(syst) pb

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEWK11009

Signature 2 isolated oppositely charged leptons + large MET

Backgrounds

tt, tW (estimated from data: efficiency measurement) W+jets (estimated from data: fake rate method) multijet (estimated from data: fake rate method)
Wγ* (estimated from data: Data/MC scale factor)
DY (estimated from data: Data/MC scale factor)
dibosons (Wγ, WZ, ZZ) (estimated from MC)

Selection

 $W^+W^- \rightarrow l\nu l\nu$ (l=e/ μ) signature

- Two isolated high P_{T} leptons with opposite charge (P_{T}^{I} >20 GeV)
- Large missing transverse energy (MET tighter selection in same flavour final state) Reduce Z background
- Veto events in Z mass window for same flavour final state Reduce top-quark decay background
 - Veto events with high P_{τ} jets (P_{τ}^{jet} >30 GeV)
- Veto events with top-tagged jets Reduce other diboson backgrounds (WZ/ZZ)
 - Veto events with third lepton

Cross section measured at 7TeV and 8TeV using the same strategy.

Main systematic uncertainty

• Jet veto efficiency unc. 4.7% (higher order corrections contributions to the WW/Z efficiency ratio unc.)

 Uncertainty on the background estimations ~ 15% dominated by the top quark bkg (statistical uncertainty in the control sample, systematic uncertainties on top-tagging efficiency measurement) and W+jets backgrounds (FR efficiency unc.)

$W^+W^- \rightarrow I_V I_V$ results (7 and 8 TeV)

	CMS Preliminary $\sqrt{s} = 7 \text{ TeV}$, L = 4.92 fb ⁻¹							
Samala	Viald + stat + syst	L li	140		- Data		σ(pp→W⁺W⁻) @ 7 TeV:	
anple	$\pm 100 \pm 300$, ± 3950	even	120	-	WZ + ZZ	52	4 + 20 (stat) + 4 5 (syst) + 1 2 (lur	ni) nh
$gg \rightarrow W^+W^-$ $a\bar{a} \rightarrow W^+W^-$	$40.0 \pm 0.0 \pm 14.2$ $750.9 \pm 4.1 \pm 53.1$		120		Fakes	52.	Theory (MCEM): $47.0 + 2.0$ nb	iii.) po
$\frac{qq}{tt}$ +tW	$128.5 \pm 12.8 \pm 19.6$		100	F / iev	σ (stats.⊕ syst.)			
W+iets	$59.5 \pm 3.9 \pm 21.4$		80	-	T		CIVIS-PAS-SIVIP-12-005	
WZ+ZZ	$29.4 \pm 0.4 \pm 2.0$		CO					
Z/γ^*	$11.0 \pm 5.1 \pm 2.6$		60				Measured cross	
$W+\gamma$	$18.8 \pm 2.8 \pm 4.7$		40		-		section is higher then	
$Z/\gamma^* \to \tau \tau$	$0.0\pm1.0\pm0.1$		20				NI O expectation	
Total Background	$247.1 \pm 14.6 \pm 29.5$		0		+		NLO expectation.	
Signal + Background	$1044.0 \pm 15.2 \pm 62.4$	1	0			-		
Data	1134		Rati	⊨ F 1∔1	└─┴╇╷╇╷╇╽╇ [═]			
			1	- Manuska tski statu st	╘╪╪┶_╋╍╞┟╹┉ ╗╪┿┉ <u></u> ┋╪┉╸		Not accounted for in theory	
			0	_ ' ' ' 	T		calculation:	
			0	0 20 40 60 80 100	120 140 160 180 20 M ₁₁ (GeV)	00)		
					$8 \text{ TeV} = 3.5 \text{ fb}^{-1}$	-1	Contributions from new	106
		>	Г				boson (Higgs)	470
Channel	$2\ell' 2\nu$	Ge	E	Signal scaled to	- DATA			
W+W-	684 ± 50	5	┝	moscured viold	WW	-	Dimractive production	
tt and tW	132 ± 23	ts/	150		VV	-	Double parton scattering	10⁄⁄₀
W+jets	60 ± 22	ent	F		Z + jets		Double parton scattering	T \0
WZ and ZZ	27 ± 3	Ъ	ŀ	8 TeV	W + jets	1	QED exclusive production	
Σ/γ^{*} +jets	43 ± 12		100	-	top stat @ svst	<u>a</u>	~	
$W \gamma^{(*)}$	14 ± 5				Stat & Syst	-		
Total background	$\frac{1}{1}$ 275 ± 35		È				$\sigma(nn_{\lambda})M^{\dagger}(M^{\dagger}) \otimes R Te)/c$	
Signal + Dackgrou	$\frac{1111}{1111}$					60	$O(pp \rightarrow v v) = 0$ (opp $\rightarrow v v)$	ni) nh
Data	1111		50			09.	9 ± 2.6 (Stat.) ± 5.6 (Syst.) ± 5.1 (Iur	ur.) bo
							Theory (MCFM): 57.3 -2.6 pb	
			F			.]	submitted to Phys. Lett. B [arXiv:1301.4698]
			o [[CERN-PH-EP-2012-376]	15
			0	50 100	0 150 2	200		
	m _{//} [GeV]							

WW+WZ \rightarrow Ivjj production and signature

WRT leptonic decay mode:

- S/B is worse \rightarrow stronger cuts are applied + 6x larger BR \rightarrow access to higher boson P_T and diboson mass

Signature 1 isolated lepton + MET + 2 jets

Backgrounds W+jets, dibosons, tt, t, DY+jets, multijet (template fit from data)

Jet resolution doesn't allow to cleanly separate WW from WZ, so get admixture of the two.
Large background. The main thrust of the analysis is to model this well & control systematics.

Selection

- WW+WZ→lvjj signature
 - 1 and only 1 isolated high $\mathsf{P}_{_{T}}$ lepton ($\mathsf{P}_{_{T}}^{_{\mu(e)}}\!\!>\!\!25(30)$ GeV)
 - Exactly 2 high P_{T} jets (P_{T}^{jet} >35 GeV)
 - MET>25(30) GeV for μ(e)
 - MTW>30(50) GeV for μ(e)

Reduce top backgrounds

- Veto events containing b-tagged jet
- Additional jet selection to improve S/B $(\Delta \eta_{ij}, P_{\tau}(jj), ...)$

WW+WZ→lvjj results

150

		-				
			Process		Muon channel	Electron channel
 Signal and b 	ackgro	ound yields	Dibosor	I (WW+WZ)	1899 ± 373	783 ± 306
determined h	/ the u	nhinned maximum	W+jets		67384 ± 586	31644 ± 850
			tī		1662 ± 117	946 ± 67
likelihood fit on M(jj) distribution				pp	650 ± 33	308 ± 17
			Drell-Ya	in+jets	3609 ± 155	1408 ± 64
Process	Shape	Constraint on normalization	Multijet	(QCD)	296 ± 317	4195 ± 867
Diboson (WW+WZ)	sim.	Unconstrained	Fit χ^2/d	of (probability)	9.73/12 (0.64)	5.30/12 (0.95)
N+iets	sim	31314 pb + 5% (NLO) [24]	Total fro	om fit	75420	39371
Ŧ	cim.	$162 \text{ mb} \pm 7\%$ (NILO) [25]	Data		75419	39365
L Verslater	SIIII.	$105 \text{ pb} \pm 7\% (\text{NLO}) [25]$	Accepta	nce \times efficiency ($A\varepsilon$)	5.153×10^{-3}	2.633×10^{-3}
single top	sim.	85 pb ±5% (INNLO) [26–28]	Expecte	d WW+WZ yield from simulation	1697 ± 57	867 ± 29
Drell-Yan+jets	sim.	3.05 nb ±4.3% (NNLO) [29]				
Multijet	data	$E_{\rm T}^{\rm miss}$ fit in data (see text)				

W+jets: float factorization/renorm & ME-PS matching scales to get good modeling of data

 $\sigma(pp \rightarrow WW + WZ) @ 7 TeV:$ 68.9 ± 8.7 (stat.) ± 9.7 (syst.) ± 1.5 (lumi.) pb Theory (MCFM): 65.6 ± 2.2 pb

$pp \rightarrow p^{(*)}\gamma\gamma p^{(*)} \rightarrow p^{(*)}W^+W^-p^{(*)}$ cross section measurement

A search for exclusive or quasi-exclusive W⁺W⁻ production by two-photon exchange.

Selection

 $\gamma\gamma \rightarrow W^+W^-$ signature

- $e\mu$ vertex with no associated charged tracks
- P_T(eμ) > 30 GeV
- M(eµ) > 20 GeV

signal exp.	background exp.	data
2.2 ± 0.5	0.84 ± 0.13(stat.)	2

The significance of the signal is 1.1σ , with upper limit on the cross section of 8.4 fb at 95% CL (Theory: 3.8 ± 0.9 fb).

Signature 2 isolated leptons

Backgrounds inclusive/hard-scatter W⁺W⁻ W+jet (from data, fake rate) $\gamma\gamma \rightarrow \tau^{+}\tau^{-}$ (from data, MC/data norm) DY $\rightarrow \tau^{+}\tau^{-}$

• Efficiencies and theoretical predictions for the signal are checked using $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$ events • Backgrounds are constrained from data using control samples in the N(tracks) and $P_{\tau}(e\mu)$ distributions.

Exclusive $\sigma(pp \rightarrow p^{(*)}W^+W^-p^{(*)} \rightarrow p^{(*)}e\mu p^{(*)};$ $P_t^{e,\mu} > 20 \text{GeV } \& |\eta^{e,\mu}| < 2.4 \& P_\tau(e\mu) > 100 \text{GeV})$ @ 7 TeV: < 1.9 fb (95% CL)

CMS diboson xsection summary

Vector boson couplings: triple and quartic couplings

- SM gives exact values for vector boson couplings, but they are the least well measured quantities in EWK physics
- Anomalous TGC (aTGC) and QGC are the signature of New physics
- ${\scriptstyle \bullet}$ Anomalous couplings result in an increase of cross section at high boson ${\rm P}_{_{\rm T}}$

- Using the approach without form factor for aTGC and both with and without form factor for aQGC
- CLs and profile likelihood criteria were used to set the upper limit

CMS vector boson coupling measurements

		•	•	
Exclusive γγ→W ⁺ W ⁻	5.0 fb ⁻¹	WWγγ	a_0^W/Λ^2 , a_c^W/Λ^2	Ρ _τ (eμ)
W⁺W⁻+WZ→Ivjj	5.0 fb ⁻¹	WWγ, WWZ	$λ^{ m Z}$, $\Delta \kappa^{ m Y}$	P _T (jj)
W⁺W⁻→IvIv	4.9 fb ⁻¹	WWγ, WWZ	$\lambda^{z}, \Delta \kappa^{\gamma}, \Delta g_{1}^{z}$	P _T (I)
Ζγ→ννγ	5.0 fb ⁻¹	ΖΖγ, Ζγγ	$h_{3}^{z}, h_{4}^{z}, h_{3}^{\gamma}, h_{4}^{\gamma}$	Ε _τ ^γ
Ζγ→ΙΙγ	5.0 fb ⁻¹	ΖΖγ, Ζγγ	$h_{3}^{z}, h_{4}^{z}, h_{3}^{\gamma}, h_{4}^{\gamma}$	E_{T}^{Y}
 ₩γ→Ινγ	5.0 fb ⁻¹	WWγ	$λ^{\gamma}$, Δ κ^{γ}	Ε _τ ^γ
ZZ→2l2l' (l = e/μ;l' = e/μ/τ)	5.0 fb ⁻¹	ZZZ, ZZγ	$f^{\rm Z}_{4},f^{\rm Z}_{5},f^{\gamma}_{4},f^{\gamma}_{5}$	M(2121)
	Int. Iuminosity @ 7 TeV	Vertex	Measured parameters	Variable for limit setting

New!

ZZ: $W\gamma \& Z\gamma$: $Z\gamma \rightarrow vv\gamma$: W^+W^- : $W^+W^-+WZ \rightarrow Ivjj$: $\gamma\gamma \rightarrow W^+W^-$: J. High Energy Phys. 1301 (2013) 063, [arXiv:1211.4890] [CERN-PH-EP-2012-336] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEWK11009 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP12020 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP12005 accepted by EPJC [arXiv:1210.7544] [CERN-PH-EP-2012-311] http://cms-physics.web.cern.ch/cms-physics/public/FSQ-12-010-pas.pdf

Charged TGC results

Charged TGC at LHC, LEP, Tevatron

Feb 2013			
			ATLAS Limits HI CMS Limits HI D0 Limit HO LEP Limit HO
Δr —		— Wγ	-0.410 - 0.460 4.6 fb ⁻¹
Ϫϗϥ		Wγ	-0.380 - 0.290 5.0 fb ⁻¹
	 	WW	-0.210 - 0.220 4.9 fb ⁻¹
	 	WV	-0.110 - 0.140 5.0 fb ⁻¹
	⊢	D0 Combination	-0.158 - 0.255 8.6 fb ⁻¹
	⊢●	LEP Combination	n -0.099 - 0.066 0.7 fb ⁻¹
2	 ⊢I	Wγ	-0.065 - 0.061 4.6 fb ⁻¹
λ_{γ}	н	Wγ	-0.050 - 0.037 5.0 fb ⁻¹
	⊢	ww	-0.048 - 0.048 4.9 fb ⁻¹
	н	WV	-0.038 - 0.030 5.0 fb ⁻¹
	ю	D0 Combination	-0.036 - 0.044 8.6 fb ⁻¹
	Heri	LEP Combination	-0.059 - 0.017 0.7 fb ⁻¹
-0.5	0	0.5 1	1.5
			CMS Limits D0 Limit LEP Limit
٨٢	H	WW	-0.043 - 0.043 4.6 fb ⁻¹
$\Delta \kappa_{Z}$	ΠI	WW WV	CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹
$\Delta \kappa_{\rm Z}$	I I I	WW WV LEP Combination	-0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ n -0.074 - 0.051 0.7 fb ⁻¹
Δ κ_z		WW WV LEP Combination WW	-0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.074 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹
$\Delta \kappa_z$ λ_z		WW WV <u>LEP Combination</u> WW WW	$\begin{array}{c} \text{CMS Limits} \\ \text{D0 Limit} \\ \text{LEP Limit} \\ \hline -0.043 - 0.043 & 4.6 \text{ fb}^{-1} \\ -0.043 - 0.033 & 5.0 \text{ fb}^{-1} \\ -0.043 - 0.051 & 0.7 \text{ fb}^{-1} \\ \hline -0.062 - 0.059 & 4.6 \text{ fb}^{-1} \\ -0.048 - 0.048 & 4.9 \text{ fb}^{-1} \\ -0.048 - 0.048 & 4.9 \text{ fb}^{-1} \\ \hline -0.048 & 4.9 \text{ fb}^{-1} \\ \hline -0.048 & 4$
$\Delta \kappa_Z$ λ_Z	III II.	WW WV LEP Combination WW WW WZ	$\begin{array}{c} \text{CMS Limits} \\ \text{D0 Limit} \\ \text{LEP Limit} \\ \hline \\ -0.043 - 0.043 & 4.6 \text{ fb}^{-1} \\ -0.043 - 0.033 & 5.0 \text{ fb}^{-1} \\ -0.043 - 0.051 & 0.7 \text{ fb}^{-1} \\ \hline \\ -0.062 - 0.059 & 4.6 \text{ fb}^{-1} \\ -0.048 - 0.048 & 4.9 \text{ fb}^{-1} \\ -0.046 - 0.047 & 4.6 \text{ fb}^{-1} \\ -0.028 & 0.020 & 5.0 \text{ fb}^{-1} \end{array}$
$\Delta \kappa_{z}$ λ_{z}	III III 3	WW WV LEP Combination WW WW WZ WV D0 Combination	$\begin{array}{c} \text{CMS Limits} \\ \text{D0 Limit} \\ \text{LEP Limit} \\ \hline -0.043 - 0.043 & 4.6 \text{ fb}^{-1} \\ -0.043 - 0.033 & 5.0 \text{ fb}^{-1} \\ -0.043 - 0.051 & 0.7 \text{ fb}^{-1} \\ \hline -0.062 - 0.059 & 4.6 \text{ fb}^{-1} \\ -0.048 - 0.048 & 4.9 \text{ fb}^{-1} \\ -0.048 - 0.048 & 4.9 \text{ fb}^{-1} \\ -0.038 - 0.030 & 5.0 \text{ fb}^{-1} \\ -0.036 - 0.044 & 8.6 \text{ fb}^{-1} \\ \end{array}$
$\Delta \kappa_z$ λ_z	₹ ₹ I I I] I I	WW WV LEP Combination WW WW WZ WV D0 Combination	$\begin{array}{c} \text{CMS Limits} \\ \text{D0 Limit} \\ \text{LEP Limit} \\ \hline \\ -0.043 - 0.043 & 4.6 \text{ fb}^{-1} \\ -0.043 - 0.033 & 5.0 \text{ fb}^{-1} \\ -0.043 - 0.051 & 0.7 \text{ fb}^{-1} \\ \hline \\ -0.062 - 0.059 & 4.6 \text{ fb}^{-1} \\ -0.048 - 0.048 & 4.9 \text{ fb}^{-1} \\ -0.046 - 0.047 & 4.6 \text{ fb}^{-1} \\ -0.038 - 0.030 & 5.0 \text{ fb}^{-1} \\ -0.036 - 0.044 & 8.6 \text{ fb}^{-1} \\ \hline \\ -0.059 - 0.017 & 0.7 \text{ fb}^{-1} \\ \hline \end{array}$
$\Delta \kappa_z$ λ_z	IITIIT	WW WV LEP Combination WW WW WZ WV D0 Combination LEP Combination WW	$\begin{array}{c} \text{CMS Limits} \\ \text{D0 Limit} \\ \text{LEP Limit} \\ \hline \\ -0.043 - 0.043 & 4.6 \text{ fb}^{-1} \\ -0.043 - 0.033 & 5.0 \text{ fb}^{-1} \\ -0.043 - 0.051 & 0.7 \text{ fb}^{-1} \\ \hline \\ -0.062 - 0.059 & 4.6 \text{ fb}^{-1} \\ -0.048 - 0.048 & 4.9 \text{ fb}^{-1} \\ -0.046 - 0.047 & 4.6 \text{ fb}^{-1} \\ -0.038 - 0.030 & 5.0 \text{ fb}^{-1} \\ -0.036 - 0.044 & 8.6 \text{ fb}^{-1} \\ \hline \\ n & -0.059 - 0.017 & 0.7 \text{ fb}^{-1} \\ \hline \\ -0.039 - 0.052 & 4.6 \text{ fb}^{-1} \\ \hline \end{array}$
$\Delta \kappa_{z}$ λ_{z} Δg_{1}^{z}	II ₹ ₹ I I I ₹ I I	WW WV LEP Combination WW WW WZ WV D0 Combination LEP Combination WW	Albebra CMS Limits D0 Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.036 - 0.044 8.6 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹
$\Delta \kappa_z$ λ_z Δg_1^z	III⊈ ₹ III]	WW WV LEP Combination WW WZ WV D0 Combination LEP Combination WW WW	$\begin{array}{c} \text{CMS Limits} \\ \text{D0 Limit} \\ \text{LEP Limit} \\ \hline \\ -0.043 - 0.043 & 4.6 \text{ fb}^{-1} \\ -0.043 - 0.033 & 5.0 \text{ fb}^{-1} \\ -0.043 - 0.051 & 0.7 \text{ fb}^{-1} \\ \hline \\ -0.062 - 0.059 & 4.6 \text{ fb}^{-1} \\ -0.048 - 0.048 & 4.9 \text{ fb}^{-1} \\ -0.046 - 0.047 & 4.6 \text{ fb}^{-1} \\ -0.038 - 0.030 & 5.0 \text{ fb}^{-1} \\ -0.036 - 0.044 & 8.6 \text{ fb}^{-1} \\ -0.039 - 0.052 & 4.6 \text{ fb}^{-1} \\ -0.095 - 0.095 & 4.9 \text{ fb}^{-1} \\ -0.057 - 0.093 & 4.6 \text{ fb}^{-1} \end{array}$
$\Delta \kappa_{z}$ λ_{z} Δg_{1}^{z}	I I I I I I I I I I I	WW WV LEP Combination WW WW WZ WV D0 Combination LEP Combination WW WW WZ D0 Combination	$\begin{array}{c} \text{CMS Limits} \\ \text{D0 Limit} \\ \text{LEP Limit} \\ \hline \\ -0.043 - 0.043 & 4.6 \text{ fb}^{-1} \\ -0.043 - 0.033 & 5.0 \text{ fb}^{-1} \\ -0.043 - 0.051 & 0.7 \text{ fb}^{-1} \\ \hline \\ -0.062 - 0.059 & 4.6 \text{ fb}^{-1} \\ -0.048 - 0.048 & 4.9 \text{ fb}^{-1} \\ -0.046 - 0.047 & 4.6 \text{ fb}^{-1} \\ -0.038 - 0.030 & 5.0 \text{ fb}^{-1} \\ -0.036 - 0.044 & 8.6 \text{ fb}^{-1} \\ -0.039 - 0.052 & 4.6 \text{ fb}^{-1} \\ -0.095 - 0.095 & 4.9 \text{ fb}^{-1} \\ -0.057 - 0.093 & 4.6 \text{ fb}^{-1} \\ -0.034 - 0.084 & 8.6 \text{ fb}^{-1} \end{array}$
$\Delta \kappa_Z$ λ_Z Δg_1^Z	ĨIIĨIĕĭIII III	WW WV LEP Combination WW WW WZ WV D0 Combination LEP Combination WW WZ D0 Combination LEP Combination	$\begin{array}{c} \text{CMS Limits} \\ \text{D0 Limit} \\ \text{LEP Limit} \\ \hline \\ -0.043 - 0.043 & 4.6 \text{ fb}^{-1} \\ -0.043 - 0.033 & 5.0 \text{ fb}^{-1} \\ -0.043 - 0.051 & 0.7 \text{ fb}^{-1} \\ \hline \\ -0.062 - 0.059 & 4.6 \text{ fb}^{-1} \\ -0.048 - 0.048 & 4.9 \text{ fb}^{-1} \\ -0.048 - 0.048 & 4.9 \text{ fb}^{-1} \\ -0.046 - 0.047 & 4.6 \text{ fb}^{-1} \\ -0.038 - 0.030 & 5.0 \text{ fb}^{-1} \\ -0.036 - 0.044 & 8.6 \text{ fb}^{-1} \\ -0.039 - 0.052 & 4.6 \text{ fb}^{-1} \\ -0.095 - 0.095 & 4.9 \text{ fb}^{-1} \\ -0.057 - 0.093 & 4.6 \text{ fb}^{-1} \\ -0.034 - 0.084 & 8.6 \text{ fb}^{-1} \\ -0.034 - 0.084 & 8.6 \text{ fb}^{-1} \\ -0.054 - 0.021 & 0.7 \text{ fb}^{-1} \end{array}$
$\Delta \kappa_z$ λ_z Δg_1^z	IIIIIIIIII Z	WW WV LEP Combination WW WZ WV D0 Combination LEP Combination WW WZ D0 Combination LEP Combination	$\begin{array}{c} \text{CMS Limits} \\ \text{D0 Limit} \\ \text{LEP Limit} \\ \hline \\ -0.043 - 0.043 & 4.6 \text{ fb}^{-1} \\ -0.043 - 0.033 & 5.0 \text{ fb}^{-1} \\ -0.043 - 0.051 & 0.7 \text{ fb}^{-1} \\ \hline \\ -0.062 - 0.059 & 4.6 \text{ fb}^{-1} \\ -0.048 - 0.048 & 4.9 \text{ fb}^{-1} \\ -0.046 - 0.047 & 4.6 \text{ fb}^{-1} \\ -0.038 - 0.030 & 5.0 \text{ fb}^{-1} \\ -0.036 - 0.044 & 8.6 \text{ fb}^{-1} \\ -0.039 - 0.052 & 4.6 \text{ fb}^{-1} \\ -0.095 - 0.095 & 4.9 \text{ fb}^{-1} \\ -0.057 - 0.093 & 4.6 \text{ fb}^{-1} \\ -0.034 - 0.084 & 8.6 \text{ fb}^{-1} \\ -0.034 - 0.084 & 8.6 \text{ fb}^{-1} \\ -0.034 - 0.084 & 8.6 \text{ fb}^{-1} \\ -0.054 - 0.021 & 0.7 \text{ fb}^{-1} \\ \hline \end{array}$
$\Delta \kappa_z$ λ_z Δg_1^z -0.5		WW WV LEP Combination WW WW WZ D0 Combination LEP Combination WW WZ D0 Combination LEP Combination LEP Combination	$\begin{array}{c} \text{CMS Limits} \\ \text{D0 Limit} \\ \text{LEP Limit} \\ \hline -0.043 - 0.043 & 4.6 \text{ fb}^{-1} \\ -0.043 - 0.033 & 5.0 \text{ fb}^{-1} \\ -0.043 - 0.051 & 0.7 \text{ fb}^{-1} \\ \hline -0.062 - 0.059 & 4.6 \text{ fb}^{-1} \\ -0.048 - 0.048 & 4.9 \text{ fb}^{-1} \\ -0.046 - 0.047 & 4.6 \text{ fb}^{-1} \\ -0.038 - 0.030 & 5.0 \text{ fb}^{-1} \\ -0.036 - 0.044 & 8.6 \text{ fb}^{-1} \\ -0.039 - 0.052 & 4.6 \text{ fb}^{-1} \\ -0.095 - 0.095 & 4.9 \text{ fb}^{-1} \\ -0.037 - 0.093 & 4.6 \text{ fb}^{-1} \\ -0.034 - 0.084 & 8.6 \text{ fb}^{-1} \\ -0.034 - 0.084 & 8.6 \text{ fb}^{-1} \\ -0.034 - 0.084 & 8.6 \text{ fb}^{-1} \\ -0.054 - 0.021 & 0.7 \text{ fb}^{-1} \\ \hline 1.5 \\ \hline \end{array}$

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

23

Z_γTGC results

- Results are in the agreement with SM (no aTGC signal)
- Setting upper limits on aTGC parameters

LHC sensitivity exceeds LEP experiments.

X	×10 ⁻³	h ^z ₃	h ^z ₄	h ^γ ₃	h ^γ ₄
Ζγ→ΙΙγ		[-8.6, 8.4]	[-0.080, 0.079]	[-10, 10]	[-0.088, 0.088]
Ζγ→ννγ		[-3.1, 3.1]	[-0.014, 0.014]	[-3.2, 3.2]	[-0.016, 0.016]
Ζγ→ννγ,ΙΙγ		[-2.7, 2.7]	[-0.013, 0.013]	[-2.9, 2.9]	[-0.014, 0.015]

ZZ TGC results

Results are in the agreement with SM (no aTGC signal)
Setting upper limits on aTGC parameters

LHC sensitivity exceeds LEP experiments.

	f_{4}^{Z}	f_{5}^{z}	$f^{\gamma}_{_4}$	f^{γ}_{5}
ZZ→2I2I'	[-0.011, 0.012]	[-0.012, 0.012]	[-0.013, 0.015]	[-0.014, 0.014]

Neutral TGC at LHC, Tevatron

_		
	\mathbf{x}	

			ATLAS Limits	
εŶ		ZZ	-0.015 - 0.015 4.6 f	b ⁻¹
1 ₄	 	ZZ	-0.013 - 0.015 5.0 f	b ⁻¹
£ 7		ZZ	-0.013 - 0.013 4.6 f	b ⁻¹
r_4^-	 	ZZ	-0.011 - 0.012 5.0 f	b ⁻¹
cŶ		ZZ	-0.016 - 0.015 4.6 f	b ⁻¹
t ₅	⊢−−−−	ZZ	-0.014 - 0.014 5.0 f	b ⁻¹
•7		ZZ	-0.013 - 0.013 4.6 f	b ⁻¹
f_5^2	 	ZZ	-0.012 - 0.012 5.0 f	b ⁻¹
-0.5	0	0.5	1 1.5 x	10
			ATLAS Limits CMS Limits CDF Limit	
μ ^γ		Zγ	-0.015 - 0.016 4.6 f	o ⁻¹
n ₃	н	Zγ	-0.003 - 0.003 5.0 f	o ⁻¹
	HI	Zγ	-0.022 - 0.020 5.1 f	o ⁻¹
h_3^Z	⊢−−−−−I	Zγ	-0.013 - 0.014 4.6 f	o ⁻¹
	н	Ζγ	-0.003 - 0.003 5.0 f	o ⁻¹
	⊢−−−−	Ζγ	-0.020 - 0.021 5.1 f	o ⁻¹
$h_4^{\gamma}x100$	⊢−−− 1	Ζγ	-0.009 - 0.009 4.6 f	o ⁻¹
	Н	Zγ	-0.001 - 0.001 5.0 f	o ⁻¹
$h_4^Z x 100$	⊢1	Zγ	-0.009 - 0.009 4.6 f	o ⁻¹
	Н	Ζγ	-0.001 - 0.001 5.0 f	o ⁻¹
1	1	1		

Parameter	LEP
f_4^γ	[-0.17, 0.19]
f_4^Z	[-0.28, 0.32]
f_5^γ	[-0.35, 0.32]
f_5^Z	[-0.34, 0.35]

Parameter	LEP
h_1^γ	[-0.05, 0.05]
h_2^γ	[-0.04, 0.02]
h_3^γ	[-0.05, -0.00]
h_4^γ	$[0.01, \ 0.05]$
h_1^Z	[-0.12, 0.11]
h_2^Z	[-0.07, 0.07]
h_3^Z	[-0.19, 0.06]
h_4^Z	[-0.04, 0.13]

$pp \rightarrow p^{(*)}\gamma\gamma p^{(*)} \rightarrow p^{(*)}W^+W^-p^{(*)}$ QGC results

http://cms-physics.web.cern.ch/cms-physics/public/FSQ-12-010-pas.pdf

CMS performed measurements of many diboson production processes with full 2011 dataset (7 TeV) and several measurements with 5fb⁻¹ of 2012 dataset (8 TeV)

• All measurements are in agreement with NLO expectations

aTGC search measurements performed in most channels

- No aTGC signal is observed
- Upper limits on aTGC parameters are set

Performed first hadron collider measurement of QGC with WW exclusive production

• Upper limits on aQGC parameters are set

Backup

