

Proudly Operated by Battelle Since 1965

PNNL-SA-93521

Bottomonium(-like) State Spectroscopy at B-Factories

GOCHA TATISHVILI

Pacific Northwest National Laboratory

Rencontres de Physique de la Vallee d'Aoste February 26, 2013

Introduction

- > The Υ system was discovered in 1977. These resonances were identified as bound states of bb quark pairs. The existence of these states was confirmed in the $e+e- \rightarrow \Upsilon$ process.
- In the e+e- → Y process, the entire collision energy of the initial e+e- turns into the rest mass of the Y state. The beam energy must be matched to the resonance mass. Annu. Rev. Nucl. Part. Sci., 43, 333 (1993)

Heavy quarkonium is an ideal tool to study the "meson" which carries spin & angular momentum and described by (mostly non-relativistic) QCD. Godfrey-Isgur, PRD32,169(1985)

Belle and BaBar Experiments

Proudly Operated by Battelle Since 1965

e+*e*- colliders produces a particularly clean environment for studies of the properties of the Υ

G.Tatishvili, QCD and Heavy Flavour

Puzzles of Y(5S) Decays

Anomalously large $\Upsilon(nS)\pi\pi$ transitions were observed at the $\Upsilon(5S)$ by Belle with 21 fb⁻¹. PRD82, 091106R(2010) PRL100, 112001(2008)

R_b and σ (Υ(nS) $\pi\pi$) shapes are different (2 σ).

	N N	
$\Upsilon(5S) \to \Upsilon(1S)\pi^+\pi^-$	$0.59 \pm 0.04 \pm 0.09$	
$\Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-$	$0.85 \pm 0.07 \pm 0.16$	
$\Upsilon(5S) \to \Upsilon(3S)\pi^+\pi^-$	$0.52^{+0.20}_{-0.17} \pm 0.10$	
$\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$	0.0060	
$\Upsilon(3S) \to \Upsilon(1S)\pi^+\pi^-$	0.0009	
$\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-$	0.0019	

 Γ (MeV)

- Rescattering Υ(5S)→ BBππ→Υ(nS)ππ JETP Lett 87, 147 (2008) PRD78, 034022 (2008)
- Exotic resonance Y_b near Υ(5S) analogue of Y(4260) resonance with Γ(J/ψ ππ)
 PRD74, 017504 (2006)
 PRL104, 162001 (2010)
- Tetraquarks Eur. Phys. J. C61, 411 (2009) Eur. Phys. J. C71, 1534 (2011)

 $\Upsilon(\text{5S})$ is very interesting and not yet understood.

 \geq

Evidence for the h_b(1P)

Evidence from BaBar: PRD 84, 091101(R) (2011) Using a sample of 122 x 10⁶ Υ (3S) events only weak signal of h_b(1P) – spin-singlet partner of the P-wave χ_{bJ} (1P) states was observed.

In the sequential decay:

 Υ (3S) $\rightarrow \pi^0 h_b$ (1P) $\rightarrow \gamma \eta_b$ (1S)

3.1 σ excess of events above background M = 9902 ± 4(stat.) ± 2(syst.) MeV/c²

B(Υ(3S) $\rightarrow \pi^{0}h_{b}$) x B($h_{b}\rightarrow\gamma\eta_{b}$) = = (4.3 ± 1.1 ± 0.9) x 10⁻⁴

h_b(1P, 2P) from Y(5S)

G.Tatishvili, QCD and Heavy Flavour

h_b Results

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

- > $h_b(nP)$ is the singlet partner of $\chi_{bJ}(nP)$. Hyperfine Splitting: M(singlet)-M(triplet).
 - $M_{swa}(\chi_{bJ}(nP)) = (M\chi_{b0} + 3M\chi_{b1} + 5M\chi_{b2}) / 9$
 - Deviations from Spin Weighted Average of X_{bJ} masses consistent with zero
 (PRL 109, 232002 (2012)).

•
$$\Delta M_{HF} = M(h_b(nP)) - M_{swa}(\chi_{bJ}(nP))$$

 $\Delta M_{\mu r}$ = (+0.8 ± 1.1) MeV/c² for 1P states

 $\Delta M_{HF} = (+0.5 \pm 1.2) \text{ MeV/c}^2 \text{ for 2P states}$

> The heavy quark spin flip is predicted to suppress the $\pi^+\pi^-h_b$ transition.

$$\mathsf{R} = \frac{\Gamma(\Upsilon(5S) \to h_b(nP)\pi^+\pi^-)}{\Gamma(\Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-)} = \begin{bmatrix} 0.46 \\ 0.46 \\ 0.77 \\ \pm 0.08 \\ -0.12 \\ 0.77 \\ \pm 0.08 \\ -0.17 \\ \text{for the } h_b(1P) \\ \hline 0.77 \\ \pm 0.08 \\ -0.17 \\ \text{for the } h_b(2P) \end{bmatrix}$$

> $\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$ decays seem exotic.

Observation of Z_b in h_b(1P, 2P)\pi^+\pi^- Final States

Belle has discovered two charged bottomonium-like resonances PRL 108, 122001 (2012)

- > MM($\pi^{+/-}$) to look at $h_b \pi^{-/+}$.
- Υ(5S)→h_b(1P)π⁺π⁻ is saturated with Z_{b1} and Z_{b2} (zero consistent non-resonant amplitude).
 Υ(5S)→h_b(2P)π⁺π⁻ has very limited phase space but consistent with Z_{b1} and Z_{b2}.

$\Upsilon(5S) \rightarrow \Upsilon(1S, 2S, 3S)\pi^+\pi^-$ Through Z_b

Region with large backgrounds from photon conversions were excluded

Signal amplitude parameterization: $\frac{S(s_1,s_2) = A(Z_{b_1}) + A(Z_{b_2}) + A(f_0(980)) + A(f_2(1275)) + A_{NR}}{A_{NR} = C_1 + C_2 \cdot m^2(\pi\pi)}$

Parameterization of the NR-amplitude: PRD74, 054022 (2006)

 Z_b amplitudes are parameterized by Breit-Wigner functions and symmetrized with respect to interchange of the two pions: $A(Z_b) = BW(s_1, M_Z, \Gamma_Z) + BW(s_2, M_Z, \Gamma_Z)$

 $A(f_o(980))$ - Flatte function

 $A(f_2(1275))$ - Breit-Wigner function

February 26, 2013

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Charged Z_b(10610) and Z_b(10650) Parameters

Proudly Operated by Battelle Since 1965

Belle analyses results: $\Upsilon(5S) \rightarrow h_b(mP)\pi^+\pi^-$, (m=1,2) $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$, (n=1, 2, 3)

PRL 108, 032001 (2012) PRL 108, 122001 (2012)

Final state	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$	$h_b(2P)\pi^+\pi^-$
$M[Z_b(10610)] ({\rm MeV}/c^2)$	$10611 \pm 4 \pm 3$	$10609 \pm 2 \pm 3$	$10608 \pm 2 \pm 3$	$10605\pm2^{+3}_{-1}$	10599^{+6+5}_{-3-4}
$\Gamma[Z_b(10610)]$ (MeV)	$22.3 \pm 7.7^{+3.0}_{-4.0}$	$24.2 \pm 3.1^{+2.0}_{-3.0}$	$17.6 \pm 3.0 \pm 3.0$	$11.4^{+4.5+2.1}_{-3.9-1.2}$	13^{+10+9}_{-8-7}
$M[Z_b(10650)] ({\rm MeV}/c^2)$	$10657\pm 6\pm 3$	$10651 \pm 2 \pm 3$	$10652\pm1\pm2$	$10654 \pm 3^{+1}_{-2}$	10651^{+2+3}_{-3-2}
$\Gamma[Z_b(10650)]$ (MeV)	$16.3 \pm 9.8^{+6.0}_{-2.0}$	$13.3 \pm 3.3^{+4.0}_{-3.0}$	$8.4 \pm 2.0 \pm 2.0$	$20.9^{+5.4+2.1}_{-4.7-5.7}$	$19 \pm 7^{+11}_{-7}$
Relative normalization	$0.57 \pm 0.21^{+0.19}_{-0.04}$	$0.86 \pm 0.11^{+0.04}_{-0.10}$	$0.96 \pm 0.14^{+0.08}_{-0.05}$	$1.39 \pm 0.37^{+0.05}_{-0.15}$	$1.6^{+0.6+0.4}_{-0.4-0.6}$
Relative phase (deg)	$58 \pm 43^{+4}_{-9}$	$-13 \pm 13^{+17}_{-8}$	$-9 \pm 19^{+11}_{-26}$	187^{+44+3}_{-57-12}	$181^{+65+74}_{-105-109}$

- Parameters consistent between all five studied final states.
- Masses just above BB^{*} and B^{*}B^{*} thresholds.
- Relative phases are swapped for Υ(~0°) and h_b (~180°) final states (expectation from a 'molecular' model)

Evidence for a $Z_b^0(10610)$ in $\Upsilon(5S) \rightarrow \Upsilon(1S, 2S)\pi^0\pi^0$ Decaysic Northwest

Observation of charged Z_b^{\pm} states motivated search for a neutral partner of these states in the resonant substructure of $\Upsilon(5S) \rightarrow \Upsilon(nS) \pi^0 \pi^0$.

Belle reported evidence for the $Z_b^0(10610)$ state (arXiv: 1207.4345). In a Dalitz plot analysis of $\Upsilon(5S) \rightarrow \Upsilon(2S)\pi^0\pi^0$ decays 4.9 σ evidence of $Z_b^0(10610)$ signal was found.

Observation of η_b(1S) State

BaBar observed the bottomonium ground state $\eta_b(1S)$ in radiative transitions from $\Upsilon(3S)$.

Y(3S) sample – 109 x 10⁶

 10σ signal of η_b(1S) at Eγ=921 ^{+2.1}/_{-2.8} ± 2.4 MeV corresponds M(η_b(1S))=9388.9 ^{+3.1}/_{-2.3} ± 2.7 MeV/c²

→ B[Υ (3S) → η_b (1S) γ] = (4.8±0.5±1.2) x 10⁻⁴

⁶ Υ(**3S**) PRD 81, 031104(R) (2010)

- Y(3S) sample 6 x 10⁶
- > $M(\eta_b(1S))=9391.8 \pm 6.6 \pm 2.0 \text{ MeV/c}^2$
- $hightarrow \Delta M_{HF} = 68.5 \pm 6.6 \pm 2.0 \text{ MeV/c}^2$

→ B[Υ (3S) → η_b (1S) γ] = (7.1±1.8±1.3) x 10⁻⁴

$h_b(1P, 2P) \rightarrow \gamma \eta_b(1S, 2S)$

h_b(1P, 2P) are predicted to have large BF for radiative decays to η_b(1S, 2S) (PRD 66, 014062 (2002)).

- $h_b(1P) \rightarrow \gamma \eta_b(1S) = 41\%$
- $h_b(2P) \rightarrow \gamma \eta_b(1S) = 13\%$
- $h_b(2P) \rightarrow \gamma \eta_b(2S) = 19\%$
- Belle observed (50 ± 7.8 $^{+4.5}_{-1.9}$) x 10³ h_b(1P) and (84 ± 6.8 $^{+30}_{-10}$) x 10³ h_b(2P).
- Large samples of h_b(1P, 2P) allowed Belle to provide a search for η_b(1S, 2S) states.

Decay Chain:

 $\Upsilon(5S) \rightarrow Z^+_b \pi^- \xleftarrow{} Reconstructed$ $\rightarrow h_b(nP) \pi^+ \checkmark \gamma$ $\rightarrow \eta_b(mS) \gamma$

Observation of h_b(1P, 2P) $\rightarrow \gamma \eta_b$ (1S, 2S)

Missing mass technique was used to identify signals: $\Delta M_{miss}(\pi^{+}\pi^{-}\gamma) \equiv M_{miss}(\pi^{+}\pi^{-}\gamma) - M_{miss}(\pi^{+}\pi^{-}) + M[h_{b}]$

PRL 109, 232002 (2012)

- \blacktriangleright M(η_b (1S))=9402.4 ± 1.5± 1.8 MeV/c²
- > $\Delta M_{HF} = 57.9 \pm 2.3 \text{ MeV/c}^2$ for 1S
- > $M(\eta_b(2S))=9999.0 \pm 3.5 +2.8 -1.9 MeV/c^2$
- $\rightarrow \Delta M_{HF} = 24.3 + 2.8 + 2.8 1.9 MeV/c^2$ for 2S

Observation of $\Upsilon(1D)$

Observation of $\Upsilon(5S) \rightarrow \Upsilon(1D)\pi^+\pi^-$

Belle Preliminary: Product B = $(2.0 \pm 0.4 \pm 0.3) \times 10^{-4}$

Observation of χ_b (**3P**) **States**

ATLAS. PRL 108, 152001 (2012)

 χ_b quarkonium states were reconstructed with the ATLAS detector. pp collisions @ s^{1/2} = 7.0 TeV. The data used corresponds to 4.4 fb⁻¹ of integrated luminosity.

Decay modes: $\chi_b(nP) \rightarrow \gamma \Upsilon(1S,2S) \rightarrow \mu + \mu -$

Photon was identified from oppositely charged tracks intersecting at a conversion vertex.

 $\chi_b(3P)$ state was observed @ 10.530 \pm 0.005(stat.) \pm 0.009(syst.) GeV/c² for converted photon and @ 10.541 \pm 0.011(stat.) \pm 0.030(syst.) GeV/c² for unconverted photon.

Experiment D0. PRD 86 031103(R) (2012)

 $\Upsilon(1S)$ was detected by its decay into $\mu+\mu-.$

 $\chi_b(3P)$ state (65 \pm 11 events) was observed @ 10.551 \pm 0.014(stat.) \pm 0.017(syst.) GeV/c²

η Transitions: $\Upsilon(nS) \rightarrow \Upsilon(mS)$ η

arXiv: hep-ph/0601044v2

QCD multipole expansion model predicts suppression transitions between bottomonia via η meson with respect to di-pion (η – transition requires a spin flip).

CLEO observed $\Upsilon(2S) \rightarrow \Upsilon(1S)\eta$ with a branching fraction B=(2.1 $^{+0.7}_{-0.6} \pm 0.3$) x 10⁻⁴ PRL 101, 192001 (2008)

η – transitions were observed by BaBar experiment.
 PRD 84, 092003 (2011), PRD 78, 112002 (2008)

BaBar: B ($\Upsilon(2S) \rightarrow \Upsilon(1S)\eta$) = (2.39 ±0.31 ±0.14) x 10⁻⁴ BaBar: B ($\Upsilon(3S) \rightarrow \Upsilon(1S)\eta$) < 1 x 10⁻⁴

BaBar: B ($\Upsilon(4S) \rightarrow \Upsilon(1S)\eta$) = (1.96 ±0.06 ±0.09) x 10⁻⁴ BaBar: B ($\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^{+}\pi^{-}$) = (0.80 ±0.064 ±0.027) x 10⁻⁴

The branching fraction for the $\Upsilon(4S) \rightarrow \Upsilon(1S)\eta$ decay is larger than the branching fraction for $\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^+\pi^-$, which is unexpected when compared to all other known charmonium and bottomonium transitions.

Transitions of $\Upsilon(2S) \rightarrow \Upsilon(1S) \eta, \pi^0$

Belle measured a transition $\Upsilon(2S) \rightarrow \Upsilon(1S) \eta, \pi^0$

PRD 87, 011104(R) (2013)

η Transitions: $\Upsilon(5S) \rightarrow \Upsilon(1S, 2S)$ η

Proudly Operated by Battelle Since 1965

0.5

0.6

0.7

0.8

M(γγ), GeV

- Y(1S, 2S)[μ⁺μ⁻] η[π⁺π⁻π⁰]
- Υ(2S)[Υ(1S)π⁺π⁻] η[γγ]

B(Υ(5S)→ Υ(1S)η) = (7.3±1.6±0.8) x10⁻⁴

=0.25 x B($\Upsilon(5S) \rightarrow \Upsilon(1S)\pi\pi$)

B(Υ (5S)→ Υ (2S) η) = (38 ± 4 ± 5) x10⁻⁴

$$= B(\Upsilon(5S) \rightarrow \Upsilon(2S)\pi\pi)$$

0.4

4

2 0

0.3

- > h_b and η_b missing pieces of bottomonia family were found.
- Above BB threshold charged and neutral bottomonium-like resonances Z_b(10610) and Z_b(10650) were observed.
- \succ η transitions will help understanding the nature of states above threshold.