B_c physics at LHCb.

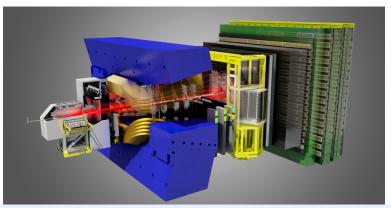
Lucio Anderlini on behalf of the LHCb collaboration.

La Thuile 2013

February 26, 2013

Version February 24, 2013

B_c physics at LHCb


Meson (sometime called quarkonium) with different heavy flavours \Rightarrow Unique in the SM.

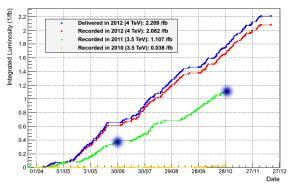
B_c production	B_c spectroscopy	B_c^+ decays
Rare at e^+e^- colliders	Potential model prediction:	.
At TeVatron and LHC: Production mechanism is	analogous to quarkonium states	$ar{b} ightarrow ar{c}$ transition $B_c^+ ightarrow J/\psi \ell^+ u_\ell$ $B_c^+ ightarrow J/\psi \pi^+$
mainly gg fusion	see Godfrey, PRD 70, 054017	$D_c \rightarrow J/\psi \pi^+$ $c \rightarrow s$ transition
CORRECT C	To date: only ground state (B_c^+) observed.	$\begin{array}{c} B_c^+ \to B_s^0 \pi^+ \\ B_c^+ \to B_s^0 \ell^+ \nu_\ell \end{array}$
	Its mass: Theory: $6.2 \div 6.4 \text{ GeV}/c^2$ [CERN-2005-005]	$car{b} ightarrow W^+$ transition $B_c^+ ightarrow ar{K}^{*0} K^+$ $B_c^+ ightarrow \phi K^+$
Theoretical α_s^4 -calculation: • $\sigma \sim 0.4 \mu b (\sqrt{s} = 7 \text{TeV})$	PDG'12: $6277 \pm 6 \text{ MeV}/c^2$ [CDF, PRL 100 182002]	$B_c^+ \to \tau^+ \nu_\tau$
• $\frac{\sigma(B_c^+)_{\text{LHC}}}{\sigma(B_c^+)_{\text{TeVatron}}} \sim \mathcal{O}(10)$	[D0, PRL 101 012001]	

Lucio Anderlini - B_C physics at LHCb

Introduction

B_c physics at LHCb

Already discussed by Zhenwei this afternoon!

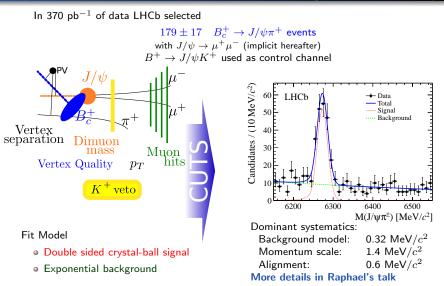

Unique geometrical acceptance: Excellent vertex locator: Tracking system: Muon system: $\begin{array}{l} 2 < \eta < 5 \text{ coverage} \\ \sigma_{PV,xy} \sim 10 \mu \text{m}, \ \sigma_{PV,z} \sim 60 \mu \text{m} \\ \Delta p/p : 0.35\% \div 0.55\% \\ \epsilon(\mu \rightarrow \mu) \sim 97\%, \ \text{MisID rate}(h \rightarrow \mu) \sim \mathcal{O}(1\%) \end{array}$

Lucio Anderlini – B_C physics at LHCb

Data taking

$1 + 2 \, \text{fb}^{-1}$

LHCb Integrated Luminosity pp collisions 2010-2012



Trigger

High efficiency trigger lines dedicated to single and dimuon.

Used to select J/ψ in B_c final states.

B_c^+ mass and production cross section

$$\begin{split} m(B_c^+) &= 6273.7 \pm 1.3(\mathsf{stat}) \pm 1.6(\mathsf{syst}) \ \mathrm{MeV}/c^2 \\ m(B_c^+) &- m(B^+) = 994.6 \pm 1.3(\mathsf{stat}) \pm 0.6(\mathsf{syst}) \ \mathrm{MeV}/c^2 \end{split}$$

PDG'12 value: $(6277 \pm 6) \mathrm{MeV}/c^2$

Lucio Anderlini - B_C physics at LHCb

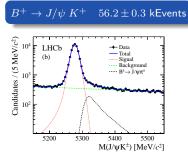
La Thuile 2013 - February 26, 2013

Based on $\sim 370 \mathrm{pb}^{-1}$ of 2011 data.

$$B_c^+ \to J/\psi \ \pi^+ \quad 162 \pm 18$$
 Events

Use fully reconstructed

 $p_T > 4 \,\, {\rm GeV}/c$ $2.5 < \eta < 4.5$



Large control sample available:

$$B^+ \rightarrow J/\psi K^+$$

Measure

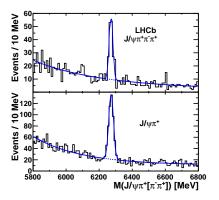
1

$$\mathcal{R}_{c/u} = \frac{\sigma(B_c^+) \times Br(B_c^+ \to J/\psi \ \pi^+)}{\sigma(B^+) \times Br(B^+ \to J/\psi K^+)} = \epsilon_{\rm rel} \times \frac{N(B_c^+)}{N(B^+)}$$

- Selection as similar as possible for B_c^+ and B^+ .
- ${\ensuremath{\, \circ }}$ The efficiency ratio ϵ_{rel} is estimated with MC.

 $\mathcal{R}_{c/u} = (0.68 \pm 0.10 (\text{stat}) \pm 0.03 (\text{syst}) \pm 0.05 (\text{lifetime})) \%$

 B_c^+ lifetime: 0.453 ± 0.041 ps


$1^{ m st}$ observation of $B_c^+ o J/\!\psi \pi^+ \pi^- \pi^+$

B_c^+ decays: $B_c^+ \to J/\psi \, \pi^+ \pi^- \pi^+$

[PRL 108 251802 (2012)]

Theory: $Br(B_c^+ \to J/\psi \pi^+\pi^-\pi^+)/Br(B_c^+ \to J/\psi \pi^+)$ predictions

Experiment: 2 more tracks \Rightarrow lower (geometrical) efficiency \Rightarrow never observed before.

Using \sim 800 pb $^{-1}$ data collected in 2011

LHCb performed the first observation of the $B_c^+ \to J/\psi \, \pi^+ \pi^- \pi^+$ decay.

Number of signal events: 135 ± 14

 $B_c^+ \to J/\psi \pi^+$ used as control channel

 414 ± 25 events.

After the efficiency correction, this leads to

$$\frac{Br(B_c^+ \to J/\psi \, \pi^+ \pi^- \pi^+)}{Br(B_c^+ \to J/\psi \, \pi^+)} =$$

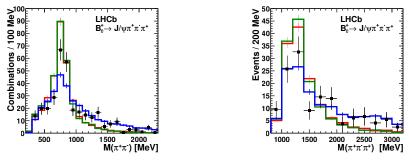
 $2.41 \pm 0.30 (\text{stat}) \pm 0.33 (\text{syst})$

Systematics: B_c^+ lifetime uncertainty, tracker and trigger MC efficiency, kaon veto.

Selection efficiency estimated with MC.

Ok, but with which model?

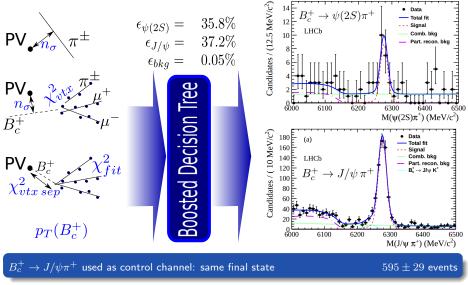
Available models:


Form-factor model by Berezhnoy, Likhoded and Luchinsky (BLL)

Based on amplitude factorization into hadronic and weak currents [PRD 81 014015]

Phase-space without polarization (PH) Implementing the $B_c^+ \rightarrow J/\psi W^{+*}$ with $W^{+*} \rightarrow \pi^+ \pi^- \pi^+$ without interference

Phase-space with polarization (PHPOL)


Helicity amplitudes: 0.46, 0.87 and 0.20 for +1, 0 and -1 J/ψ helicity [Rosner, PRD 42 3732]

BLL model better agrees (in particular in the tails) \Rightarrow chosen as central value, systematic uncertainty assigned using the others. Lucio Anderlini – B_c physics at LHCb La Thuile 2013 – February 26, 2013

First observation of $B_c^+ o \psi(2S) \pi^+$

 B_c^+ decays: $B_c^+ \to \psi(2S)\pi^+$

$$\mathcal{R}_{2S/1S} = \frac{Br(B_c^+ \to \psi(2S)\pi^+, \,\psi(2S) \to \mu^+\mu^-)}{Br(B_c^+ \to J/\psi\pi^+, \,J/\psi \to \mu^+\mu^-)} = \frac{\epsilon(B_c^+ \to J/\psi\pi^+)}{\epsilon(B_c^+ \to \psi(2S)\pi^+)} \cdot \frac{N(B_c^+ \to \psi(2S)\pi^+)}{N(B_c^+ \to J/\psi\pi^+)} \cdot \frac{N(B_c^+ \to \psi(2S)\pi^+)}{N(B_c^+ \to J/\psi\pi^+)} = \frac{1}{2} \cdot \frac{1}{2} \cdot$$

Efficiency ratio MC determination:

detector acceptance

- \times trigger efficiency
- imes reconstruction and selection efficiency.

 $\frac{\epsilon_{B_c^+ \to \psi(2S)\pi^+}}{\epsilon_{B_c^+ \to J/\psi\pi^+}} = 1.040 \pm 0.009$

BDT systematic uncertainty assessment

Different cuts on the BDT response \Rightarrow slightly different $\mathcal{R}_{2S/1S}$.

The average of several tests differs from the nominal value by 4.5%.

Signal Model: double sided Crystal Ball.

Background Model:

- Combinatorial bkg (exponential)
- + partial reconstructed bkg

(resolved Argus function)

Component	Value
BDT selection	4.5 %
Signal shape	1.7 %
Background shape	2.9 %
Total	5.7%

 $c\bar{c} \rightarrow \mu\mu$ branching fraction:

$$\frac{Br(\psi(2S) \to \mu^+ \mu^-)}{Br(J/\psi \to \mu^+ \mu^-)} = \frac{(0.773 \pm 0.017)\%}{(5.94 \pm 0.06)\%}$$

 $\frac{Br(B_c^+ \to \psi(2S)\pi^+)}{Br(B_c^+ \to J/\psi\pi^+)} = 0.250 \pm 0.068(\text{stat}) \pm 0.014(\text{syst}) \pm 0.006(Br)$

Lucio Anderlini - B_C physics at LHCb

Prospects and Conclusion

Prospects

- Today, I have presented 2011 data analyses only. In 2012 we collected twice the luminosity
- Many $\bar{b} \rightarrow \bar{c}$ channels wait to be discovered,
- $\bullet \ c \to s$ transition are Cabibbo favored, but not yet observed,
- $\bar{b}c \rightarrow W^*$ transition physics have never been explored,
- $\bullet \ B_c$ excited states have not yet been observed

• ...

Specific topics:

B_c^+ Lifetime w/ hadronic decays

Based on MC studies [CERN-LHCb-2008-077]:

- $B_c^+ \to J/\psi \pi^+$
- Statistical uncertainty below 30 fs with 1 fb $^{-1}$
- Will use data-based acceptance deterimination

Lucio Anderlini – B c physics at LHCb

B_c^+ Lifetime w/ semileptonic decays

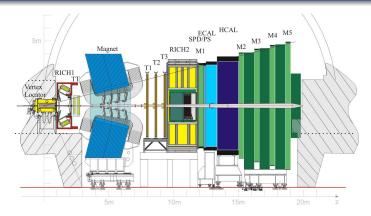
$$B_c^+ \to J/\psi \mu(\nu)$$
 compared to $B_c^+ \to J/\psi \pi^+$ Pro:

- Higher branching fraction: larger statistics;
- Very clean signature: 3μ
 ⇒ No detachment cuts.

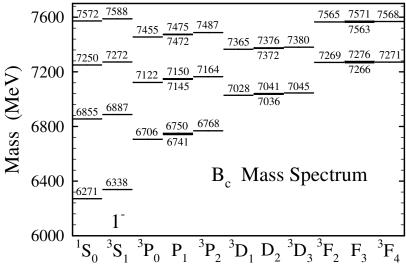
Cons:

- Neutrino missing energy: no mass peak
- Need excellent $h \to \mu$ misID control.
- ${\ensuremath{\, \rm o}}$ Need MC to boost from the 3μ to the B_c rest frame

Conclusion


- The LHCb detector offers a great opportunity of studying B_c physics
 - Mass and cross-section measurement of B_c^+ using $B_c^+ \to J/\psi \pi^+$ decays with 2011 data;
 - First observation of $B_c^+ \to J/\psi \pi^+ \pi^- \pi^+$ decays and \mathcal{B} measurement;
 - First observation of $B_c^+ \to \psi(2S)\pi^+$ decays and \mathcal{B} measurement;
- With these two new decay modes, the number of known B_c modes is doubled!
- During the Long Technical Stop
 - Lifetime measurement
 - Studies on high yield semileptonic decays
 - Many more decay channels

Many things we can do about B_c : Your suggestions on the most important points are always welcome!


Thank you!

Backup slides

B_c physics at LHCb

From Godfrey, PRD 70, 054017

