

COUPLINGS AND PROPERTIES OF THE HIGGS-LIKE PARTICLE AT CMS

Paolo Azzurri (INFN Pisa) on behalf of the CMS collaboration

Les Rencontres de Physique de la Vallée d'Aoste Friday, March 1, 2013

Outline

Introduction
Input analysis and data samples

unfortunately no update with full 2012 8TeV pp data samples

the signal mass
the signal strength
tests of SM couplings
spin/parity in ZZ→4I

Introduction

Observation of a narrow bosonic resonance around 125 GeV in the contest of the searches for the Higgs particle : July 4th 2012. The background only hypothesis is excluded at about 5 standard deviations by both CMS & ATLAS

Now collected a quite larger integrated luminosity at vs=8TeV

L(8TeV) = 20 fb⁻¹, L(7TeV)=5 fb⁻¹

Results from individual analyses presented by Nicolas yesterday

The interest now is on the boson properties

What is the precise mass and quantum numbers (spin and CP)?

- What are the coupling widths to individual particles ?
- how well is this signal compatible with a SM Higgs boson ?

Analysis channels

analyzed data samples luminosities (@7TeV + @8TeV)

	gg	VBF	VH	ttH
H→ZZ	4.9+12.1 fb ⁻¹			
н→үү	5.1+5.3 fb ⁻¹	5.1+5.3 fb ⁻¹		
H→WW	4.9+12.1 fb ⁻¹	4.9+12.1 fb ⁻¹	4.9+0.0 fb ⁻¹	
Η→ττ	4.9+12.1 fb ⁻¹	4.9+12.1 fb ⁻¹	5.0+12.0 fb ⁻¹	
H→bb			5.0+12.1 fb ⁻¹	5.0+0.0 fb ⁻¹

see yesterday's presentation by Nicolas Chanon

expected and observed CLs

minimal SM Higgs with 113<m_H<121 or 128<m_H<700 excluded @95%CL

Signal strength

background-only (in)-compatibility

Decay mode or combination	Expected (σ)	Observed (σ)
ZZ	5.0	4.4
$\gamma\gamma$	2.8	4.0
WW	4.3	3.0
bb	2.2	1.8
ττ	2.1	1.8
$\gamma\gamma + ZZ$	5.7	5.8
$\gamma\gamma + ZZ + WW + \tau\tau + bb$	7.8	6.9

Strengths in channels

combined σ/σ_{SM} =0.88±0.21 for m_H=125.8

signal couplings

coupling measurements

- LHC working group prescription (arXiv:1209.0040):
 - test the overall compatibility of the data with the SM
 - Assumptions: single resonance, zero-width, no modification of the tensor structure (0+)

Set of fit models mapping the measured rates to multipliers (κ) of the SM cross sections and BRs:

$$(\sigma \cdot BR)(ii \rightarrow H \rightarrow ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}} = \sigma_{SM} \cdot BR_{SM} \frac{\kappa_{i}^{2} \cdot \kappa_{f}^{2}}{\kappa_{H}^{2}}$$

Scaling for couplings through loops defined as additional free parameters
 or as function of scale factors for the fields in the loop (with NLO accuracy)

- Total width taken as the sum of the partial widths
 - In special case allow also for invisible contributions
- Need to limit the degrees of freedom with the current data

W/Z SU2 custodial symmetry

 $\lambda_{w_{z}} = \kappa_{w} / \kappa_{z}$

In the SM the tree-level W and Z masses relations are protected against large radiative corrections

 λ_{wz} is essentially given by the measured ratio of untagged WW and ZZ yields.

The 95% CL interval for λ_{wz} is [0.67,1.55]

further we assume $\lambda_{wz} = 1$

boson and fermion couplings

global minimum in (+,–) quadrant driven by the $\gamma \gamma$ excess: positive W-top loops interferences

I-dim 95% CL intervals \mathcal{K}_{V} [0.78,1.19] and \mathcal{K}_{F} [0.40,1.12] where the other parameter is fixed to unity

$\mathcal{K}_{F} / \mathcal{K}_{V}$ from individual channels

fermiophobic scenario excluded with >4 σ

$\mathcal{K}_{g}/\mathcal{K}_{\gamma}$: hidden loop contributions

best-fit value $(\mathcal{K}_{\gamma}, \mathcal{K}_{g}) = (1.43, 0.81)$

test of the presence of BSM particles in H gg & $\gamma \gamma$ production & decay loops

assuming Γ (BSM) = 0

I-dim 95% CL intervals \mathcal{K}_{γ} [0.98,1.92] and \mathcal{K}_{g} = [0.55,1.07] where the other parameter is fixed to unity

BSM invisible width

total width scales as $1/(1-BR_{inv})$

invisible BR(BSM) is in the interval [0.00,0.62] at 95% CL

$\kappa_{\rm u} / \kappa_{\rm d}$: up vs down couplings

test of the presence of additional Higgs fields (doublets)

κ_1 / κ_q : lepton vs quark couplings

Individual couplings

- Assess individual couplings assuming only custodial symmetry and without resolving the loops structure.
- No BSM decays
- Study 6 scale factors:
 - ightharpow K_V, K_t, K_b, K_τ, K_g, K_γ

Fit individually each of those, while profiling the others

Individual couplings

Individual couplings

P. Azzurri - CMS Higgs properties

March 1, 2013 20

Summary of individual couplings

Model parameters	Assessed scaling factors			
_	(95% CL intervals)			
$\lambda_{\rm wz},\kappa_{\rm z}$	$\lambda_{ m wz}$	[0.57,1.65]		
$\lambda_{\mathrm{wz}}, \kappa_{\mathrm{z}}, \kappa_{\mathrm{f}}$	$\lambda_{ m wz}$	[0.67,1.55]		
κ _v	$\kappa_{ m v}$	[0.78,1.19]		
κ_{f}	κ_f	[0.40,1.12]		
$\kappa_{\gamma}, \kappa_{g}$	κ_{γ}	[0.98,1.92]		
	κ_g	[0.55,1.07]		
$\mathcal{B}(\mathrm{H} \rightarrow \mathrm{BSM}), \kappa_{\gamma}, \kappa_{g}$	$\mathcal{B}(H \to BSM)$	[0.00,0.62]		
$\lambda_{\rm du}, \kappa_{\rm v}, \kappa_{\rm u}$	$\lambda_{ m du}$	[0.45,1.66]		
$\lambda_{\ell q}, \kappa_{\rm v}, \kappa_{\rm q}$	$\lambda_{\ell ext{q}}$	[0.00,2.11]		
	$\kappa_{ m v}$	[0.58,1.41]		
	κ_b	not constrained		
$\kappa_v, \kappa_b, \kappa_\tau, \kappa_t, \kappa_g, \kappa_\gamma$	$\kappa_{ au}$	[0.00,1.80]		
	κ_t	not constrained		
	κ_g	[0.43,1.92]		
	κ_{γ} [0.81,2.27]			

spin-parity determination

spin-parity in $ZZ \rightarrow 4I$

spin-parity in $ZZ \rightarrow 4I$

build additional probability densities $D_{12}=P_1/(P_1+P_2)$ with two different spin-parity signal hypothesis : D_{PS} (pseudo-MELA) for 0-/0+ and D_{GS} (gravi-MELA) for 2+/0+

spin-parity in $ZZ \rightarrow 4I$

fit the data in the DSB vs D_{PS} or D_{GS} plane to obtain likelihoods of the two signal hypothesis compare the observed likelihood ratio with (50k) pseudo-experiments

Conclusions

The presence of a new bosonic state announced on July 4th 2012 is confirmed with the new 2012 data with larger significance (6.9σ).

- > The production yield is σ/σ_{SM} =0.88±0.21
- The mass is measured m_x=125.8 ±0.4 ± 0.4 GeV (in ZZ and γγ)
- The coupling structure is in good agreement with minimal SM predictions.
 - no stringent results yet
- > Pseudoscalar hypothesis excluded at 2.5σ level

need to wait here @Moriond for probable new combined results with full CMS 2012 20/fb@8TeV data samples ...

in the meanwhile ...

1

SM Higgs: theo σ & BR

Analyses			No. of	$m_{\rm H}$ range	$m_{\rm H}$	Lumi	(fb^{-1})
H decay	H prod	Exclusive final states	channels	(GeV)	resolution	7 TeV	8 TeV
0.0	untagged	$\gamma\gamma$ (4 diphoton classes)	4	110-150	1-2%	5.1	5.3
	VBF-tag	$\gamma \gamma + (jj)_{VBF}$ (low or high m_{jj} for 8 TeV)	1 or 2	110–150	1-2%	5.1	5.3
	VH-tag	($\nu\nu$, ee , $\mu\mu$, $e\nu$, $\mu\nu$ with 2 b-jets)× (low or high p_T^V or loose b-tag)	10 or 13	110–135	10%	5.0	12.1
bb	ttH-tag	(ℓ with 4,5, \geq 6 jets) × (3, \geq 4 b-tags); (ℓ with 6 jets with 2 b-tags): ($\ell\ell$ with 2 or >3 b-tagged jets)	9	110–140		5.0	-
	1-iet	$(e_{T_k}, u_{T_k}, e_u, u_u) \times (low or high p_T^T) and T_k T_k$	9	110-145	20%	4.9	12.1
	VBF-tag	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu, \tau_h\tau_h) + (ij)_{VBF}$	5	110–145	20%	4.9	12.1
$H \rightarrow \tau \tau$	ZH-tag	$(ee, \mu\mu) \times (\tau_h \tau_h, e\tau_h, \mu \tau_h, e\mu)$	8	110–160		5.0	-
	WH-tag	$\tau_h ee, \tau_h \mu \mu, \tau_h e \mu$	3	110–140		4.9	-
$WW \rightarrow \ell \nu q q$	untagged	$(e\nu, \mu\nu) \times ((jj)_W \text{ with 0 or 1 jets})$	4	170-600		5.0	12.1
$WW \rightarrow \ell \nu \ell \nu$	0/1-jets	(DF or SF dileptons) \times (0 or 1 jets)	4	110-600	20%	4.9	12.1
$WW \rightarrow \ell \nu \ell \nu$	VBF-tag	$\ell \nu \ell \nu + (jj)_{VBF}$ (DF or SF dileptons for 8 TeV)	1 or 2	110-600	20%	4.9	12.1
$WW \to \ell \nu \ell \nu$	WH-tag	$3\ell 3\nu$	1	110-200		4.9	5.1
$ZZ \rightarrow 4\ell$	inclusive	4e, 4µ, 2e2µ	3	110-1000	1-2%	5.0	12.2
$ZZ ightarrow 2\ell 2 au$	inclusive	$(ee, \mu\mu) \times (\tau_h \tau_h, e \tau_h, \mu \tau_h, e \mu)$	8	180-1000	10-15%	5.0	12.2

Summary of analyses included in the CMS combinations

individual channels expected 95%CL limits

with 5.1/fb @7TeV + 12.2/fb @8TeV the combined CMS analysis expect to exclude the full ______I10-700 GeV SM Higgs mass range

March 1, 2013 32

Signal strength vs m_H and ggH+ttH vs VBF+VH

Production modes

Detectable decay modes

Undetectable decay modes

$$\frac{\sigma_{ggH}}{\sigma_{ggH}^{SM}} = \begin{cases} \kappa_{g}^{2}(\kappa_{b}, \kappa_{t}, m_{H}) \\ \kappa_{g}^{2}(\kappa_{b}, \kappa_{t}, m_{H}) \\ \kappa_{g}^{2}(\kappa_{b}, \kappa_{t}, m_{H}) \\ \sigma_{VBF}^{SM} = \kappa_{V}^{2} \\ \sigma_{VBF}^{SM} = \kappa_{V}^{2} \\ \sigma_{VBF}^{SM} = \kappa_{V}^{2} \\ \sigma_{VBF}^{SM} = \kappa_{V}^{2} \\ \sigma_{ZH}^{SM} = \kappa_{Z}^{2} \\ \sigma_{\overline{ttH}}^{5M} = \kappa_{t}^{2} \\ \sigma_{\overline{ttH}}^{SM} = \kappa_{t}^{SM} \\ \sigma_{\overline{ttH}}^{SM} \\ \sigma_{\overline{ttH}}^{SM} = \kappa_{t}^{SM} \\ \sigma_{\overline{ttH}$$

- In the case of coupling via loops scale factors are functions of the other scale factors
- Example: the gluon fusion cross section scaling:

$$\kappa_g^2(\kappa_t,\kappa_b,M_H) = \frac{\kappa_t^2 \cdot \sigma_{ggH}^{tt} + \kappa_b^2 \cdot \sigma_{ggH}^{bb} + \kappa_t \kappa_b \cdot \sigma_{ggH}^{tb}}{\sigma_{ggH}^{tt} + \sigma_{ggH}^{bb} + \sigma_{ggH}^{tb}}$$

- ▶ Where $\sigma_{ggH}^{tt,bb}$ is the square of the top and bottom contributions and σ_{ggH}^{tb} is the square of the interference terms
 - Interference term is negative for M_H<200 GeV</p>
- Similar expressions implemented for other loops (γγ, Ζγ)
 - \blacktriangleright VBF is also expressed as combination of κ_w and κ_z
- Alternatively the dependency on other scale factors can be discarded and treat the loop scale factor as additional free parameter

Scaling of the VBF cross section

$$\kappa_{\mathrm{VBF}}^2(\kappa_{\mathrm{W}},\kappa_{\mathrm{Z}},m_{\mathrm{H}}) = rac{\kappa_{\mathrm{W}}^2 \cdot \sigma_{\mathrm{WF}}(m_{\mathrm{H}}) + \kappa_{\mathrm{Z}}^2 \cdot \sigma_{\mathrm{ZF}}(m_{\mathrm{H}})}{\sigma_{\mathrm{WF}}(m_{\mathrm{H}}) + \sigma_{\mathrm{ZF}}(m_{\mathrm{H}})}$$

Scaling of the gluon fusion cross section and of the $H \rightarrow gg$ decay vertex

$$\kappa_{\rm g}^2(\kappa_{\rm b},\kappa_{\rm t},m_{\rm H}) = \frac{\kappa_{\rm t}^2 \cdot \sigma_{\rm ggH}^{\rm tt}(m_{\rm H}) + \kappa_{\rm b}^2 \cdot \sigma_{\rm ggH}^{\rm bb}(m_{\rm H}) + \kappa_{\rm t}\kappa_{\rm b} \cdot \sigma_{\rm ggH}^{\rm tb}(m_{\rm H})}{\sigma_{\rm ggH}^{\rm tt}(m_{\rm H}) + \sigma_{\rm ggH}^{\rm bb}(m_{\rm H}) + \sigma_{\rm ggH}^{\rm tb}(m_{\rm H})}$$

$$\frac{\Gamma_{\rm gg}}{\Gamma_{\rm gg}^{\rm SM}(m_{\rm H})} = \frac{\kappa_{\rm t}^2 \cdot \Gamma_{\rm gg}^{\rm tt}(m_{\rm H}) + \kappa_{\rm b}^2 \cdot \Gamma_{\rm gg}^{\rm bb}(m_{\rm H}) + \kappa_{\rm t}\kappa_{\rm b} \cdot \Gamma_{\rm gg}^{\rm tb}(m_{\rm H})}{\Gamma_{\rm gg}^{\rm tt}(m_{\rm H}) + \Gamma_{\rm gg}^{\rm bb}(m_{\rm H}) + \Gamma_{\rm gg}^{\rm tb}(m_{\rm H})}$$

Scaling of the $H \rightarrow \gamma \gamma \gamma$ partial decay width

 $\kappa_{\gamma}^{2}(\kappa_{\mathrm{b}},\kappa_{\mathrm{t}},\kappa_{\mathrm{\tau}},\kappa_{\mathrm{W}},m_{\mathrm{H}}) = rac{\sum_{i,j}\kappa_{i}\kappa_{j}\cdot\Gamma_{\gamma\gamma}^{ij}(m_{\mathrm{H}})}{\sum_{i,j}\Gamma_{\gamma\gamma}^{ij}(m_{\mathrm{H}})}$

Backup: custodial λ_{wz}

Probing custodial symmetry assuming no invisible or undetectable widths							
Free parameters: κ_Z , $\lambda_{WZ} (= \kappa_W / \kappa_Z)$, $\kappa_f (= \kappa_t = \kappa_b = \kappa_\tau)$.							
	$\mathrm{H} \to \gamma\gamma$	$H \rightarrow ZZ^{(*)}$	$H \rightarrow WW^{(*)}$	$H \rightarrow b\overline{b}$ $H \rightarrow \tau^{-}\tau^{+}$			
ggH	$\kappa_{\rm f}^2 {\cdot} \kappa_{\gamma}^2 (\kappa_{\rm f}, \kappa_{\rm f}, \kappa_{\rm f}, \kappa_{\rm Z} \lambda_{\rm WZ})$	$\kappa_f^2 \cdot \kappa_Z^2$	$\kappa_f^2 \cdot (\kappa_Z \lambda_{WZ})^2$	$\kappa_f^2 \cdot \kappa_f^2$			
$t\bar{t}H$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$			
VBF	$\kappa_{\rm VBF}^2(\kappa_{\rm Z}, \kappa_{\rm Z} \lambda_{\rm WZ}) \cdot \kappa_{\gamma}^2(\kappa_{\rm f}, \kappa_{\rm f}, \kappa_{\rm f}, \kappa_{\rm Z} \lambda_{\rm WZ})$	$\kappa_{\rm VBF}^2(\kappa_{\rm Z}, \kappa_{\rm Z}\lambda_{\rm WZ})\cdot\kappa_{\rm Z}^2$	$\frac{\kappa_{\rm VBF}^2(\kappa_{\rm Z}, \kappa_{\rm Z}\lambda_{\rm WZ}) \cdot (\kappa_{\rm Z}\lambda_{\rm WZ})^2}{\kappa_{\rm Z}^2 (\kappa_{\rm Z}, \kappa_{\rm Z}\lambda_{\rm WZ})^2}$	$\frac{\kappa_{VBF}^2(\kappa_Z,\kappa_Z\lambda_{WZ})\cdot\kappa_f^2}{\kappa_{VBF}^2}$			
	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$				
WH	$\frac{(\kappa_{\rm Z}\lambda_{\rm WZ})^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})}{2 \cdot \kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})}$	$\frac{(\kappa_Z \lambda_{WZ})^2 \cdot \kappa_Z^2}{\omega^2 (\omega)}$	$\frac{(\kappa_Z \lambda_{WZ})^2 \cdot (\kappa_Z \lambda_{WZ})^2}{m^2 (m)}$	$\frac{(\kappa_Z \lambda_{WZ})^2 \cdot \kappa_f^2}{m^2 (m)}$			
	$\kappa_{\rm H}(\kappa_i)$	$\kappa_{\tilde{H}}(\kappa_i)$	$\kappa_{\rm H}(\kappa_i)$	$\kappa_{\rm H}(\kappa_i)$			
ZH	$\frac{\mathbf{k}_{\mathbf{Z}}^{2}\cdot\mathbf{k}_{\mathbf{Y}}^{2}\left(\mathbf{k}_{\mathbf{f}},\mathbf{k}_{\mathbf{f}},\mathbf{k}_{\mathbf{f}},\mathbf{k}_{\mathbf{Z}}\mathbf{A}_{\mathbf{W}\mathbf{Z}}\right)}{\mathbf{k}_{\mathbf{Z}}^{2}\left(\mathbf{k}_{\mathbf{f}}\right)}$	$\frac{\mathbf{k}_{\mathbf{Z}} \cdot \mathbf{k}_{\mathbf{Z}}}{\mathbf{u}^{2} \cdot \mathbf{u}}$	$\frac{\mathbf{k}_{\mathbf{Z}}^{2} \cdot (\mathbf{k}_{\mathbf{Z}} \wedge \mathbf{W}_{\mathbf{Z}})^{2}}{\mathbf{w}_{\mathbf{Z}}^{2} \cdot (\mathbf{w}_{\mathbf{Z}})}$	$\frac{\kappa_Z \cdot \kappa_f}{\pi^2 \cdot (\kappa_f)}$			
	$\kappa_{\rm H}(\kappa_i)$	κ _H (κ _i)					
Probi	ng custodial symmetry without assumptions o	on the total width					
Free par	rameters: $\kappa_{ZZ} (= \kappa_{Z} \cdot \kappa_{Z} / \kappa_{H}), \lambda_{WZ} (= \kappa_{W} / \kappa_{Z}), \lambda_{FZ} (= \kappa_{W} / \kappa_{Z})$	$\kappa_{\rm f}/\kappa_{\rm Z}$).					
	$\mathrm{H}\to\gamma\gamma$	$H \rightarrow ZZ^{(*)}$	$H \rightarrow WW^{(*)}$	$H \rightarrow b\overline{b}$ $H \rightarrow \tau^{-}\tau^{+}$			
ggH	$x^2 + x^2 $	x ² 2 ²	x ² 2 ² 2 ²	2 22 22			
$t\bar{t}H$	$\kappa_{ZZ}\kappa_{FZ}$, κ_{γ} (κ_{FZ} , κ_{FZ} , κ_{FZ} , κ_{WZ})	^K ZZ [∧] FZ	KZZ ^A FZ · ^A WZ	KZZ ^A FZ·AFZ			
VBF	$\kappa_{\mathrm{ZZ}}^2\kappa_{\mathrm{VBF}}^2(1,\lambda_{\mathrm{WZ}}^2)\cdot\kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa_{\mathrm{ZZ}}^2 \kappa_{\mathrm{VBF}}^2 (1, \lambda_{\mathrm{WZ}}^2)$	$\kappa^2_{\mathrm{ZZ}}\kappa^2_{\mathrm{VBF}}(1,\lambda^2_{\mathrm{WZ}})\cdot\lambda^2_{\mathrm{WZ}}$	$\kappa^2_{\mathrm{ZZ}}\kappa^2_{\mathrm{VBF}}(1,\lambda^2_{\mathrm{WZ}})\cdot\lambda^2_{FZ}$			
WH	$\frac{\kappa_{ZZ}^2 \lambda_{WZ}^2 \cdot \kappa_{\gamma}^2 (\lambda_{FZ}, \lambda_{FZ}, \lambda_{FZ}, \lambda_{WZ})}{\kappa_{ZZ}^2 \cdot \lambda_{WZ}^2} \frac{\kappa_{ZZ}^2 \lambda_{WZ}^2 \cdot \lambda_{WZ}^2}{\kappa_{ZZ}^2 \lambda_{WZ}^2 \cdot \lambda_{FZ}^2}$						
ZH	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\kappa_i^2 = \Gamma_{ii} / \Gamma_{ii}^{SM}$							

Table 5: A benchmark parametrization where custodial symmetry is probed through the λ_{WZ} parameter.

Backup: $\mathcal{K}_V / \mathcal{K}_F$

Boson and fermion scaling assuming no invisible or undetectable widths							
Free parameters: $\kappa_V (= \kappa_W = \kappa_Z)$, $\kappa_f (= \kappa_t = \kappa_b = \kappa_\tau)$.							
	$H \rightarrow \gamma \gamma \qquad \qquad H \rightarrow ZZ^{(*)} H \rightarrow WW^{(*)} H \rightarrow b\overline{b} H \rightarrow \tau^{-}\tau^{+}$						
ggH	$\kappa_f^2 \cdot \kappa_\gamma^2(\kappa_f, \kappa_f, \kappa_f, \kappa_V)$	$\kappa_f^2 \cdot \kappa_V^2$	$\kappa_f^2 \cdot \kappa_f^2$				
$t\bar{t}H$	$\kappa_{\rm H}^2(\kappa_i)$	$\overline{\kappa_{\rm H}^2(\kappa_i)}$ $\overline{\kappa_{\rm H}^2(\kappa_i)}$					
VBF	x ² x ² (x, x, x, x, x)	x ² .x ²	v ² .v ²				
WH	$\frac{\kappa_V \cdot \kappa_Y (\kappa_f, \kappa_f, \kappa_f, \kappa_V)}{\kappa_{-}^2 (\kappa_c)}$	$\frac{\mathbf{k}_{\mathbf{V}} \cdot \mathbf{k}_{\mathbf{V}}}{\mathbf{k}_{\mathbf{v}}^2(\mathbf{k}_{\mathbf{v}})}$	$\frac{\kappa_V \kappa_f}{\kappa_r^2 (\kappa_f)}$				
ZH	"H(")	"H(")	"H("t)				
Boson and fermion scaling without assumptions on the total width							
Free par	rameters: $\kappa_{\rm VV} (= \kappa_{\rm V} \cdot \kappa_{\rm V} / \kappa_{\rm H}), \lambda_{\rm fV} (= \kappa_{\rm f}$	/κ _V).					
	$\mathrm{H} \to \gamma \gamma \qquad \qquad \mathrm{H} \to \mathrm{ZZ}^{(*)} \mathrm{H} \to \mathrm{WW}^{(*)} \mathrm{H} \to \mathrm{b} \overline{\mathrm{b}} \mathrm{H} \to \tau^- \tau^+$						
ggH	r^2 , λ^2 , $r^2(\lambda \alpha_1, \lambda \alpha_2, \lambda \alpha_1, 1)$	r^2 λ^2	x^2 , λ^2 , λ^2				
$t\bar{t}H$	$\mathbf{I} \begin{bmatrix} \mathbf{\kappa}_{VV} \cdot \mathbf{\kappa}_{fV} \cdot \mathbf{\kappa}_{\gamma} (\mathbf{\kappa}_{fV}, \mathbf{\kappa}_{fV}, \mathbf{\kappa}_{fV}, 1) \\ \mathbf{\kappa}_{VV} \cdot \mathbf{\kappa}_{fV} \end{bmatrix} \begin{bmatrix} \mathbf{\kappa}_{VV} \cdot \mathbf{\kappa}_{fV} \\ \mathbf{\kappa}_{VV} \cdot \mathbf{\kappa}_{fV} \end{bmatrix}$						
VBF							
WH	$\kappa_{ m VV}^2 \cdot \kappa_{\gamma}^2(\lambda_{ m fV},\lambda_{ m fV},\lambda_{ m fV},1)$	κ_{VV}^2	$\kappa_{ m VV}^2\cdot\lambda_{ m fV}^2$				
ZH							
$\kappa_i^2 = \Gamma_{ii} / \Gamma_{ii}^{SM}$							

Table 4: A benchmark parametrization where custodial symmetry is assumed and vector boson couplings are scaled together (κ_V) and fermions are assumed to scale with a single parameter (κ_f).

Backup: $\lambda_{du} = \kappa_d / \kappa_u$

Probing up-type and down-type fermion symmetry assuming no invisible or undetectable widths						
Free parameters: $\kappa_{\rm V} (= \kappa_{\rm Z} = \kappa_{\rm W}), \lambda_{\rm du} (= \kappa_{\rm d} / \kappa_{\rm u}), \kappa_{\rm u} (= \kappa_{\rm t}).$						
	$\mathrm{H}\to\gamma\gamma$	$H \rightarrow ZZ^{(*)}$	$H \rightarrow WW^{(*)}$	${\rm H} \rightarrow {\rm b} \overline{\rm b}$	$H\to\tau^-\tau^+$	
ggH	$\frac{\kappa_{\rm g}^2(\kappa_{\rm u}\lambda_{\rm du},\kappa_{\rm u})\cdot\kappa_{\gamma}^2(\kappa_{\rm u}\lambda_{\rm du},\kappa_{\rm u},\kappa_{\rm u}\lambda_{\rm du},\kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_{\rm i})}$	$\frac{\kappa_{\rm g}^2(\kappa_{\rm u}\lambda_{\rm du},\kappa_{\rm u})\cdot\kappa_{\rm V}^2}{\kappa_{\rm H}^2(\kappa_i)}$		$\frac{\kappa_{\rm g}^2(\kappa_{\rm u}\lambda_{\rm du},\!\kappa_{\rm u})\cdot(\kappa_{\rm u}\lambda_{\rm du})^2}{\kappa_{\rm H}^2(\kappa_i)}$		
$t\bar{t}H$	$\frac{\kappa_{\mathrm{u}}^2 \cdot \kappa_{\mathrm{\gamma}}^2 (\kappa_{\mathrm{u}} \lambda_{\mathrm{du}}, \kappa_{\mathrm{u}}, \kappa_{\mathrm{u}} \lambda_{\mathrm{du}}, \kappa_{\mathrm{V}})}{\kappa_{\mathrm{H}}^2 (\kappa_i)}$	$\frac{\kappa_u^2 \cdot \kappa_V^2}{\kappa_H^2(\kappa_i)}$		$\frac{\kappa_{\rm u}^2 \cdot (\kappa_{\rm u} \lambda_{\rm du})^2}{\kappa_{\rm H}^2 (\kappa_i)}$		
VBF	$x^2 \cdot x^2 (x_1 \lambda \cdots x_n x_n \lambda \cdots x_n)$	2.0	2	×2.	$(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})^2$	
WH	$\frac{\kappa_V \kappa_{\gamma} (\kappa_1, \kappa_1, \kappa_1, \kappa_1, \kappa_2, \kappa_1)}{\kappa_{\gamma}^2 (\kappa_{\gamma})}$	x2	(k ₁)	$\frac{\kappa_{V} \cdot (\kappa_{u} \Lambda_{du})^{-}}{\kappa_{V}^{2} (\kappa_{u})}$		
ZH	"H(")		1(~1)		H(m)	
Probi	ng up-type and down-type fermion s	ymmetry with	out assumption	s on the tot	al width	
Probin Free par	ng up-type and down-type fermion symplectic rameters: $\kappa_{uu} (= \kappa_u \cdot \kappa_u / \kappa_H), \lambda_{du} (= \kappa_d / \kappa_u),$	ymmetry with $\lambda_{Vu} (= \kappa_V / \kappa_u).$	out assumption	s on the tot	al width	
Probin Free par	ng up-type and down-type fermion synameters: $\kappa_{uu} (= \kappa_u \cdot \kappa_u / \kappa_H), \lambda_{du} (= \kappa_d / \kappa_u), H \rightarrow \gamma\gamma$	ymmetry with $\lambda_{Vu} (= \kappa_V / \kappa_u).$ $H \rightarrow ZZ^{(*)}$	H \rightarrow WW ^(*)	Is on the tot $H \rightarrow b\overline{b}$	al width $H \rightarrow \tau^- \tau^+$	
Probin Free par ggH	$\begin{array}{c} \textbf{ng up-type and down-type fermion symptom}\\ \textbf{rameters: } \kappa_{uu}(=\kappa_{u}\cdot\kappa_{u}/\kappa_{H}), \lambda_{du}(=\kappa_{d}/\kappa_{u}),\\ H \rightarrow \gamma\gamma\\ \kappa_{uu}^{2}\kappa_{g}^{2}(\lambda_{du},1)\cdot\kappa_{\gamma}^{2}(\lambda_{du},1,\lambda_{du},\lambda_{Vu}) \end{array}$	ymmetry with $\lambda_{Vu} (= \kappa_V / \kappa_u).$ $H \rightarrow ZZ^{(*)}$ $\kappa_{uu}^2 \kappa_g^2 (\lambda_c)$	hout assumption $H \rightarrow WW^{(*)}$ $_{1u}, 1) \cdot \lambda_{Vu}^2$	$H \rightarrow bb$ $\kappa_{uu}^2 \kappa_g^2 (z)$	tal width $\begin{array}{c} \mathrm{H} \rightarrow \tau^{-}\tau^{+}\\ \lambda_{\mathrm{du}}, 1) \cdot \lambda_{\mathrm{du}}^{2} \end{array}$	
Probin Free par ggH ttH	$\begin{array}{c} \textbf{ng up-type and down-type fermion symptom} \\ \textbf{rameters: } \kappa_{uu}(=\kappa_{u}\cdot\kappa_{u}/\kappa_{H}), \lambda_{du}(=\kappa_{d}/\kappa_{u}), \\ H \rightarrow \gamma\gamma \\ \kappa_{uu}^{2}\kappa_{g}^{2}(\lambda_{du}, 1)\cdot\kappa_{\gamma}^{2}(\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu}) \\ \kappa_{uu}^{2}\cdot\kappa_{\gamma}^{2}(\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu}) \end{array}$	ymmetry with $\lambda_{Vu} (= \kappa_V / \kappa_u).$ $H \rightarrow ZZ^{(*)}$ $\kappa_{uu}^2 \kappa_g^2 (\lambda_c - \kappa_{uu}^2)$	$\begin{array}{l} \text{but assumption}\\ \text{H} \rightarrow \text{WW}^{(*)}\\ \text{H}_{u}, 1) \cdot \lambda_{\text{Vu}}^{2}\\ \cdot \lambda_{\text{Vu}}^{2} \end{array}$	$H \rightarrow b\overline{b}$ $\kappa_{uu}^2 \kappa_g^2 (\lambda \kappa_u^2)$	tal width $H \rightarrow \tau^{-}\tau^{+}$ $\lambda_{du}, 1) \cdot \lambda_{du}^{2}$ $I_{u} \cdot \lambda_{du}^{2}$	
Probin Free par ggH ttH VBF	ng up-type and down-type fermion s rameters: $\kappa_{uu} (= \kappa_u \cdot \kappa_u / \kappa_H), \lambda_{du} (= \kappa_d / \kappa_u), H \rightarrow \gamma\gamma$ $\kappa_{uu}^2 \kappa_g^2 (\lambda_{du}, 1) \cdot \kappa_\gamma^2 (\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$ $\kappa_{uu}^2 \cdot \kappa_\gamma^2 (\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$	$\begin{array}{c} \textbf{ymmetry with} \\ \lambda_{Vu}(=\kappa_V/\kappa_u). \\ H \rightarrow ZZ^{(*)} \\ \kappa_{uu}^2 \kappa_g^2(\lambda_c \\ \kappa_{uu}^2 \end{array}$	$\begin{array}{l} \text{hout assumption} \\ \text{H} \rightarrow \text{WW}^{(*)} \\ \\ \text{du}, 1) \cdot \lambda_{\text{Vu}}^2 \\ \\ \cdot \lambda_{\text{Vu}}^2 \end{array}$	H → bb	tal width $H \rightarrow \tau^{-}\tau^{+}$ $\lambda_{du}, 1) \cdot \lambda_{du}^{2}$ λ_{du}^{2}	
Probin Free par ggH ttH VBF WH	ng up-type and down-type fermion synameters: $\kappa_{uu} (= \kappa_u \cdot \kappa_u / \kappa_H), \lambda_{du} (= \kappa_d / \kappa_u), H \rightarrow \gamma\gamma$ $\kappa_{uu}^2 \kappa_g^2 (\lambda_{du}, 1) \cdot \kappa_\gamma^2 (\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$ $\kappa_{uu}^2 \cdot \kappa_\gamma^2 (\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$ $\kappa_{uu}^2 \lambda_{Vu}^2 \cdot \kappa_\gamma^2 (\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$	ymmetry with $\lambda_{Vu} (= \kappa_V / \kappa_u).$ $H \rightarrow ZZ^{(*)}$ $\kappa_{uu}^2 \kappa_g^2 (\lambda_c \kappa_{uu}^2)$ $\kappa_{uu}^2 \kappa_u^2 \kappa_u^2$	hout assumption $H \rightarrow WW^{(*)}$ $h_{u}, 1) \cdot \lambda_{Vu}^{2}$ $\cdot \lambda_{Vu}^{2}$ $\cdot \lambda_{Vu}^{2}$	H → bb $\kappa_{uu}^2 \kappa_g^2 (r_u^2 - \kappa_u^2)$ $\kappa_{uu}^2 (r_u^2 - \kappa_u^2)$	tal width $H \rightarrow \tau^{-}\tau^{+}$ $\lambda_{du}, 1) \cdot \lambda_{du}^{2}$ $\lambda_{Vu}^{2} \cdot \lambda_{du}^{2}$	
Probin Free par ggH ttH VBF WH ZH	ng up-type and down-type fermion synameters: $\kappa_{uu} (= \kappa_u \cdot \kappa_u / \kappa_H), \lambda_{du} (= \kappa_d / \kappa_u), H \rightarrow \gamma\gamma$ $\kappa_{uu}^2 \kappa_g^2 (\lambda_{du}, 1) \cdot \kappa_{\gamma}^2 (\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$ $\kappa_{uu}^2 \cdot \kappa_{\gamma}^2 (\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$ $\kappa_{uu}^2 \lambda_{Vu}^2 \cdot \kappa_{\gamma}^2 (\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$	ymmetry with $\lambda_{Vu} (= \kappa_V / \kappa_u).$ $H \rightarrow ZZ^{(*)}$ $\kappa_{uu}^2 \kappa_g^2 (\lambda_c - \kappa_{uu}^2)$ $\kappa_{uu}^2 \lambda_V^2$	$\begin{array}{l} \text{out assumption} \\ H \rightarrow WW^{(*)} \\ _{1u}, 1) \cdot \lambda_{Vu}^{2} \\ \cdot \lambda_{Vu}^{2} \\ \end{array}$	H → bb	tal width $H \rightarrow \tau^{-}\tau^{+}$ $\lambda_{du}, 1) \cdot \lambda_{du}^{2}$ $\lambda_{u}^{2} \cdot \lambda_{du}^{2}$ $\lambda_{Vu}^{2} \cdot \lambda_{du}^{2}$	

Table 6: A benchmark parametrization where the up-type and down-type symmetry of fermions is probed through the λ_{du} parameter.

CMS

Backup: $\lambda_{lq} = \kappa_l / \kappa_q$

Probing quark and lepton fermion symmetry assuming no invisible or undetectable widths							
Free parameters: $\kappa_{\rm V}(=\kappa_{\rm Z}=\kappa_{\rm W}), \lambda_{\rm lq}(=\kappa_{\rm l}/\kappa_{\rm q}), \kappa_{\rm q}(=\kappa_{\rm t}=\kappa_{\rm b}).$							
	$\mathrm{H}\to\gamma\gamma$	$H \rightarrow ZZ^{(*)}$	$H \rightarrow WW^{(*)}$	${\rm H} \rightarrow {\rm b} \overline{\rm b}$	$H\to\tau^-\tau^+$		
ggH	$\kappa_{q}^{2} \cdot \kappa_{\gamma}^{2}(\kappa_{q},\!\kappa_{q},\!\kappa_{q}\lambda_{\mathrm{lq}},\!\kappa_{\mathrm{V}})$	$\kappa_q^2 \cdot \kappa_V^2$		$\kappa_q^2 \cdot \kappa_q^2$	$\kappa_{\rm q}^2 \cdot (\kappa_{\rm q} \lambda_{\rm lq})^2$		
$t\bar{t}H$	$\kappa_{\rm H}^2(\kappa_i)$	$\overline{\kappa_{ m H}^2(\kappa_i)}$		$\kappa_{\mathrm{H}}^{2}(\kappa_{i})$	$\kappa_{\mathrm{H}}^{2}(\kappa_{i})$		
VBF	$x^2 \cdot x^2 (x - x - x_1) + x_2)$	-2	2	×2 ×2	$x^{2}(x, y, y^{2})^{2}$		
WH	$\frac{\kappa_{V} \kappa_{\gamma} (\kappa_{q}, \kappa_{q}, \kappa_{q}, \kappa_{q}, \kappa_{V})}{\kappa^{2} (\kappa_{v})}$	$\frac{\kappa_V \cdot \kappa_V}{\kappa_V^2 (\kappa_V)}$		$\frac{\kappa_V \cdot \kappa_q}{\kappa_r^2 (\kappa_r)}$	$\frac{\kappa_V \cdot (\kappa_q \Lambda_{lq})^-}{\kappa_V^2 (\kappa_s)}$		
ZH	"H("I)	~F	I(mi)	$H(\kappa_i)$	$\mathbf{K}_{\mathrm{H}}(\mathbf{K}_{i})$		
Probing quark and lepton fermion symmetry without assumptions on the total width							
Free par	rameters: $\kappa_{qq} (= \kappa_q \cdot \kappa_q / \kappa_H), \lambda_{lq} (=$	$=\kappa_l/\kappa_q), \lambda_{Vq}(=$	κ_V/κ_q).				
	$\label{eq:Hamiltonian} H \to \gamma\gamma \qquad \qquad H \to ZZ^{(*)} H \to WW^{(*)} H \to b\overline{b} \qquad \qquad H \to \tau^-\tau^+$						
$ggH t\bar{t}H$	$\kappa_{\rm qq}^2\cdot\kappa_{\gamma}^2(1,1,\lambda_{\rm lq},\lambda_{\rm Vq})$	$\kappa_{\mathrm{qq}}^2 \cdot \lambda_{\mathrm{Vq}}^2$ $\kappa_{\mathrm{qq}}^2 \cdot \lambda_{\mathrm{Vq}}^2$ $\kappa_{\mathrm{qq}}^2 \cdot \lambda_{\mathrm{lq}}^2$					
VBF							
WH	$\kappa_{qq}^2 \lambda_{Vq}^2 \cdot \kappa_{\gamma}^2(1, 1, \lambda_{lq}, \lambda_{Vq})$	$\kappa_{qq}^2 \lambda_{Vq}^2 \cdot \lambda_{Vq}^2$		$\kappa_{qq}^2 \cdot \lambda_{Vq}^2$	$\kappa_{qq}^2 \lambda_{Vq}^2 \cdot \lambda_{lq}^2$		
ZH	ZH I I I I I I I I I I I I I I I I I I I						
$\kappa_i^2 = \Gamma_{ii}/\Gamma_{ii}^{ m SM}, \kappa_{ m l} = \kappa_{ m au}$							

Table 7: A benchmark parametrization where the quark and lepton symmetry of fermions is probed through the λ_{lq} parameter.

Backup: invisible BSM decays

Table 8: A benchmark parametrization where effective vertex couplings are allowed to float through the κ_g and κ_{γ} parameters. Instead of absorbing κ_H , explicit allowance is made for a contribution from invisible or undetectable widths via the BR_{inv.,undet}. parameter.

- ,

- ,