Search for physics beyond the Standard Model at ATLAS

Les Rencontres de Physique de la Vallée d'Aoste

Helenka Przysiezniak – LAPP-Université de Savoie-IN2P3-CNRS – On behalf of the ATLAS collaboration

What's up in searches – SUSY and Exotics – at the LHC

LHC-ATLAS

2010-11 $\sqrt{s} = 7 \text{ TeV}$ 4.7 fb-1 2012 $\sqrt{s} = 8 \text{ TeV}$ 21 fb-1

Although a new boson has been discovered at the LHC "it" can't explain "everything" e.g.

- o Hierarchy issues $M_{weak} \rightarrow M_{planck}$?
- o Dark matter/energy
- o Gauge Coupling Unification

etc.

Exotics and SUSY searches excluding more and more phase space.

Signature and model based searches Sometimes cross-over with SM/Exotics/SUSY/Top/Higgs searches

@√s=8TeV unless otherwise mentioned all exclusions @ 95% C.L.

If m~125 GeV boson is MSSM Higgs then in a "Natural spectrum" Light stop-sbottom and charginos should be fairly light (<~ 500 GeV) m(gluinos) <~1500 GeV [arxiv 1302.2146v1, 1110.6670] → Hence emphasize search for

 \rightarrow gluino mediated and direct production of stops or sbottoms

ightarrow direct production of charginos and neutralinos (see Stewart Martin-Haugh's talk) $_4$

Searching for SUSY and Exotics (non SUSY) – Experimental issues

Signal and background separation ; exploit :

o High-mass/high-MET/Signal-Background mass gap

- o More than one signal region
- o Jet, lepton multiplicities; high ET photons
- o Variables : MET , M_{eff} , m_{CT} , etc.

Background estimation

o Using control regions (CRs) in data or MC

and apply to signal region (SR) using transfer factors

o Reducible backgrounds directly from data :

fake leptons/b-jets, charge flip, etc.

- o Irreducible backgrounds using MC
- o Fitting functional form to data (resonances)

Mains systematics

o Theoretical uncertainties : scale, PDFs, parton showering

- o JES/JER, Lepton/Photon id, b-tagging, luminosity, MC statistics, etc.
- o Background extrapolations

Limit setting : 95% Confidence Level (C.L.)

N.B. The following are a selection of recent SUSY and Exotics (non SUSY) analyses performed and clearly NOT A SUMMARY OF ALL ANALYSES !!! Many upcoming updates.

Inclusive searches : (lepton+) jets + MET

Gluino pair production : 3 b-jets + MET

General gauge mediation : photon + b-jets + MET

√s= 7 TeV

Signal higgsino-like neutralino $\rightarrow \gamma/h/Z$

Backgrounds

QCD multijet, W+jets, top \rightarrow from data Variables e.g. MET

bino/wino/higgsino-like neutralino $\rightarrow \gamma/Z/h + gravitino$

LSP = light gravitino

NSLP=neutralino

Exclude – for m_{neutralino} > 220 GeV m(gluino) < 900 GeV and m(squark) < 1020 GeV

arXiv:1211.1167

Direct sbottom production : two b-jets + MET

ATLAS-CONF-2012-165

Direct medium/heavy stop production : two b-jets + MET

Reinterpretation of previous analysis

stop1 \rightarrow b χ_1^+ with $\chi_1^+ \rightarrow W^{(*)}\chi_1^0$

ATLAS-CONF-2013-001

Direct stop exclusion limits summary

arxiv1208.1447 ; 1208.2590 ; 1209.4186 ; ATLAS-CONF-2012-166 ; 1208.4305 ; 1209.2102 ; ATLAS-CONF-2012-167 ; ATLAS-CONF-2013-001

Other SUSY options if nothing is seen

Compressed spectrum

ATLAS studies \rightarrow squark/gluino limits collapse for small mass gaps

Long lived particles See 1211.1597

R-parity violation See recent arXiv:1212.1272

Beyond the MSSM Stealth SUSY, scalar gluons, NMSSM ?

Exotics

@ √s=8TeV unless otherwise mentioned all exclusions @ 95% C.L.

Theoretical issues

Same theoretical issues as for SUSY... ...However different possible origins

o Extra dimensions o Compositeness o 4th generation particles o Strong symmetry breaking o New gauge bosons o etc.

Final states → o Leptons+jets o Leptonic o Jet(s)

Leptons + jets final state – Resonant ZZ with $ZZ \rightarrow IIqq$

Leptonic final states – Excited electrons and muons $\ell^* \rightarrow \ell \gamma$

Signal $\ell + \ell - \gamma - ee\gamma, \mu\mu\gamma$ Isolated leptons (e, μ) with pT cut ; isolated photon m($\ell\ell$) > 110 GeV Background \rightarrow from MC scaled to data DY + ISR/FSR γ /jets ttbar and diboson \rightarrow small

Leptonic final states – High mass dilepton searches

Background DY Z/ γ^* , Diboson, ttbar \rightarrow from MC normalized w.r.t each other in Z peak region Dijets (mostly ee) \rightarrow from data in low mass region

Signal – ee, µµ

Exclude – for combined (ee, $\mu\mu$) channels mZ' (SSM) < 2.49 (2.39, 2.19) TeV mZ' (E6 models) < 2.09 – 2.24 TeV

Leptonic final states – Wgamma and Zgamma Production

[qJ] (γ(1⁺Γ)γ) [fb] Observed 95% CL upper limit The models Expected 95% CL upper limit Expected $\pm 1\sigma$ o Anomalous Triple Gauge Couplings Expected $\pm 2\sigma$ \rightarrow Already covered in Konstantinos Bachas' talk $\sigma_{fid} \times BR(\omega_T$ $\omega_{\tau} \rightarrow Z(l^+l)\gamma$ o Low Scale Techni-Colour (LSTC) resonances Signal – ($\ell \ell, \ell \nu, \nu \nu$) + γ Background $Z/W/\gamma$ +jets, multijets \rightarrow from data ATLAS Others \rightarrow from MC Variables : m(ℓℓ), mT, MET $L dt = 4.6 \text{ fb}^{-1}$ LSTC: Fit to invariant mass distribution $pp \rightarrow l^{\dagger}l^{\gamma} \sqrt{s}=7 \text{ TeV}$ of $W\gamma$ and $Z\gamma$ 10⁻¹ 200 400 500 600 300 $m_{\omega_{\tau}}$ [GeV] Exclude

m(W γ) and m(Z γ) \rightarrow limits on TC

m(ωT) < 494 GeV in Zγ mode m(aT) < 703 GeV in Wγ mode

No deviations from SM WW γ , ZZ γ and Z $\gamma\gamma$ triple-gauge-boson couplings ($\lambda_{\gamma} \Delta \kappa_{\gamma} h_{3}^{V} h_{4}^{V}$)

Jet final state – Monojet + MET \rightarrow Both SUSY and Exotics search (1)

The models o Large Extra Dimensions e.g. ADD M_{Pl}² ~ M_D²⁺ⁿ Rⁿ MD=fundamental Planck scale in 4+n dimensions R=compactification radius n = number of XtraDs o WIMPs : Dirac fermions Non-renormalizable effective theory with vertex operators e.g. D5, D9, D11 Effective cutoff mass scale (suppression scale) M* o GMSB m_{Gravitino}∞ (SUSY breaking scale F)/ M_{Pl}

4 signal regions Background $Z(\rightarrow vv)/W(\rightarrow lv)+jets:$ from MC normalized to data CRs Other (except multijet) : from MC

ATLAS-CONF-2012-147

Jet final state – Monojet + MET \rightarrow Both SUSY and Exotics search (2)

Exclude :

o ADD fundamental Planck scale in 4+n dimensions $M_D < 4.37$ (2.53) TeV for n = 2 (6) (NLO)

o WIMP suppression scale (effective cut-off mass scale) @ 90% CL M*<704, 608, 336 GeV for m_{wimp}≤80, =400, =1000 GeV with the D5 contact operator

o GMSB m(Gravitino) $< 3 \cdot 10^{-4} \text{ eV} - 3 \cdot 10^{-5} \text{ eV}$ depending on m(squark) and m(gluino)

ATLAS-CONF-2012-147

Conclusion and outlook

"C'mon, c'mon - it's either one or the other."

o Individual searches are sensitive to different complementary regions of the SUSY/Exotics parameter space

> o 2011 – gradually coming in 2012 – data results are truly amazing and together disconcerting for the "Searches clan"

o What if there isn't anything more than the 125 Gev boson -SM Higgs ? to discover at the LHC? Would this really be **The Pightmare Scenario** ?

o On the other hand, other particles e.g. light stop/sbottom/gauginos could be just around the corner !!

o 13-14 TeV high luminosity upgrade very promising 21

Backup slides

Recent searches results – more to come in upcoming conferences

@ 8TeV

New Phenomena in the Dijet Mass Distribution @8TeV ATLAS-CONF-2012-148

0 lepton + 2 b-jets + Etmiss [Medium / heavy stop] ATLAS-CONF-2013-001 2 leptons + Etmiss [Medium stop] ATLAS-CONF-2012-167 1 lepton + >=4 jets (>=1 b-jet) + Etmiss [Medium / heavy stop] ATLAS-CONF-2012-166

@ 7 TeV

WH production with a light Higgs boson decaying to prompt electron-jets 1302.4393 Single b*-quark production 1301.1583 Long-lived, multi-charged particles 1301.5272

> 0-2 leptons + 0-1 b-jets multichannel (razor) 1212.6149 Heavy resonance to eµ, eτ, μτ [RPV-LFV] 1212.1272 Long-lived particles [R-hadrons, slepton] 1211.1597

ATLAS A Toroidal LHC Apparatus

Calorimetry |η| < 4.9 **EMBC, EMEC** accordion LAr + Pb $|\eta| < 3.2$ **Tile** Hadronic Fe + scintillator $|\eta| < 1.7$ **HEC** Hadr end cap Cu+Lar $1.5 < |\eta| < 3.2$ **FCAL** Forward calo Cu+W+Lar 3.1< $|\eta|$ <4.9

Muon spectrometer $|\eta| < 2.7$ High precision tracking **MDT** Monitored Drift Tubes **CSC** Cathode Strip Chambers **Trigger chambers RPC** Resistive Plate Chambers **TGC** Thin Gap Chambers Air core toroid system \rightarrow strong bending power in large volume

SCT Silicon Strips

Inner Detector

Pixels

TRT Transition Radiation Tracker e/π separation

3 trigger levels : L1, L2, Event Filter (L2+EF=HLT) $40 \text{ MHz} \rightarrow 200 \text{ Hz}$

Summary

		ATLAS Exotics	Searches* - 95% CL Lov	wer Limits (Statu	us: HCP 2012)
	Large ED (ADD) : monojet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1210.4491]		4.37 TeV M _D (δ=2)	
	Large ED (ADD) : monophoton + E _{T,miss}	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV M	, (δ=2)	ATLAS
ns	Large ED (ADD) : diphoton & dilepton, m _{yy / II}	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]	4	1.18 TeV M _S (HLZ δ=3, I	NLO) Breliminary
.9	UED : diphoton + $E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	1.41 TeV Compa	ct. scale R1	rieminary
U.S	S ¹ /Z ₂ ED : dilepton, m _{il}	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]		4.71 TeV M _{KK} ~ R ⁻¹	
ne	RS1 : diphoton & dilepton, m _{yy / II}	L=4.7-5.0 fb ⁻¹ , 7 TeV [1210.8389]	2.23 TeV	Graviton mass (k/M _{PI} =	0.1)
dir	RS1 : ZZ resonance, m	L=1.0 fb ⁻¹ , 7 TeV [1203.0718]	845 Gev Graviton mass	$(k/M_{\rm Pl} = 0.1)$	
aj	RS1: WW resonance, $m_{T,NN}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 TeV Graviton	mass (k/M _{PI} = 0.1)	$Lat = (1.0 - 13.0) \text{ fb}^{-1}$
xti	RS g \rightarrow tt (BR=0.925) : tt \rightarrow I+jets, m	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-136]	1.9 TeV 9 _{KK}	mass	s = 7.8 TeV
ш	ADD BH $(M_{TH}/M_{D}=3)$: SS dimuon, $N_{ch. part.}$	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 TeV M _D (δ=6)		13 - 1, 0 101
	ADD BH $(M_{TH}/M_D=3)$: leptons + jets, Σp_T	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 TeV Μ _D (δ	=6)	
	Quantum black hole : dijet, $F_y(m_{\parallel})$	L=4.7 fb ⁻¹ , 7 TeV [1210.1718]	4	.11 TeV M _D (δ=6)	
_	qqqq contact interaction : $\chi(m)$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038]		7.8 TeV A	
O	qqll CI : ee & μμ, m	L=4.9-5.0 fb ⁻¹ , 7 TeV [1211.1150]		13.9 Te\	A (constructive int.)
	uutt CI : SS dilepton + jets + $E_{T,miss}$	L=1.0 fb ⁻¹ , 7 TeV [1202.5520]	1.7 TeV A		
	Z' (SSM) : m _{ee/μμ}	L=5.9-6.1 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-129]	2.49 TeV	Z' mass	
	Z' (SSM) : m _{ee}	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mass	;	
5	W' (SSM) : <i>m</i> _{τ,e/μ}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV	W' mass	
	$VV' (\rightarrow tq, g = 1) : m_{tq}$	L=4.7 fb ⁻¹ , 7 TeV [1209.6593]	430 GeV W' mass		
	$W'_{R} (\rightarrow tb, SSM) : m_{tb}$	L=1.0 fb ⁻¹ , 7 TeV [1205.1016]	1.13 TeV W' mass		
	W* : m _{τ.e/μ}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.42 TeV	W* mass	
α	Scalar LQ pair (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 Gev 1° gen. LQ mass		
Ľ	Scalar LQ pair (β=1) : kin. vars. in μμjj, μvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 Gev 2" gen. LQ mass		
	Scalar LQ pair (β=1) : kin. vars. in ττjj, τvjj	L=4.7 fb ⁻¹ , 7 TeV [Preliminary]	538 GeV 3" gen. LQ mass		
KS	4 th generation : t't'→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV t' mass		
an	4 th generation : b'b'($ _{5/3} _{5/3}$) \rightarrow WtWt	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-130]	670 Gev b' (T 5/3) mass		
nb	New quark b': b'b' \rightarrow Zb+X, m	L=2.0 fb ⁻¹ , 7 TeV [1204.1265] 4	00 GeV b' mass		
~	Top partner : $I I \rightarrow tt + A_0 A_0$ (dilepton, M ₁₂)	L=4.7 fb ⁻¹ , 7 TeV [1209.4186]	483 GeV T mass (m(A ₀) < 100 C	SeV)	
lei	Vector-like quark : CC, mivg	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass	(charge -1/3, coupling)	$\kappa_{q0} = v/m_{Q}$
<	Vector-like quark : NC, m _{lig}	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.08 TeV VLQ mass	(charge 2/3, coupling κ,	$_{10} = v/m_{Q}$
з;	Excited quarks : γ -jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV	q* mass	
en Ko	Excited quarks : dijet resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3.	4 TeV q* mass	
Ш÷	Excited lepton : I-y resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV	* mass (Λ = m(I*))	
-	Techni-hadrons (LSTC) : dilepton, $m_{ee/\mu\mu}$	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV ρ _T /ω _T mass (<i>m</i>	$(\rho_T/\omega_T) - m(\pi_T) = M_W)$	
	ecnni-nadrons (LSTC): WZ resonance (VIII), m	L=1.0 fb ⁻¹ , 7 TeV [1204.1648]	483 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T})$	$+ m_{W}, m(a_{T}) = 1.1 m(\rho_{T})$)
e	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mas	$s(m(W_R) = 2 \text{ TeV})$	
ţ	W_{R} (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	2.4 TeV	W _R mass (m(N) < 1.4 T	ſeV)
0	H_{-}^{-} (DY prod., BR($H^{-} \rightarrow II$)=1) : SS ee ($\mu\mu$), m	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 4	Hos Gev HLIII mass (limit at 398 Ge	V for µµ)	
	$H_{L}^{}$ (DY prod., BR($H_{L}^{} \rightarrow e\mu$)=1): SS $e\mu$, $m_{e\mu}^{}$	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 37	5 GeV HL ^{±±} mass		
	Color octet scalar : dijet resonance, m	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	1.86 TeV Sca	alar resonance mass	
		40-1			
		10 '	1	10	10
*0-4					Mass scale [Te∛]

*Only a selection of the available mass limits on new states or phenomena shown

Summary

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec 2012)

	MSUGRA/CMSSM : 0 lep + j's + E _{7,miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.50 TeV q = g mass	
	MSUGRA/CMSSM : 1 lep + j's + E _{T,miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104]	1.24 TeV $\tilde{q} = \tilde{g}$ mass	471 40
60	Pheno model : 0 lep + j's + E _{7,miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV $\tilde{\mathbf{g}}$ mass $(m(\tilde{\mathbf{q}}) < 2 \text{ TeV}, \text{ light } \overline{\chi}_{1}^{\circ})$	AILAS
he	Pheno model : 0 lep + j's + E _{T.miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.38 TeV $\tilde{\mathbf{q}}$ mass $(m(\tilde{g}) < 2$ TeV, light $\tilde{\chi}^0$	Preliminary
arc	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q \bar{q} \tilde{\chi}^{\pm}$) : 1 lep + j's + $E_{\tau \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	900 GeV \tilde{g} mass $(m(\chi^0) < 200 \text{ GeV}, m(\chi^{\pm}) = \frac{1}{2}(m)$	(χ [°])+m(ğ))
Se	GMSB (I NLSP) : 2 lep (OS) + j's + E	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	1.24 TeV g̃ mass (tanβ < 15)	
Ve	GMSB ($\overline{\tau}$ NLSP) : 1-2 τ + 0-1 lep + j's + $E_{\tau \text{ miss}}^{\prime,\text{mass}}$	L=4.7 fb ⁻¹ , 7 TeV [1210.1314]	1.20 TeV g mass (tanβ > 20)	C
IS!	GGM (bino NLSP) : $\gamma\gamma + E_{T,miss}^{\gamma,miss}$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.07 TeV \tilde{g} mass $(m(\chi^0) > 50 \text{ GeV})$	$I dt = (2.1 - 13.0) \text{ fb}^{-1}$
Jol	GGM (wino NLSP) : γ + lep + $E_{T}^{\gamma,mas}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-144]	619 GeV g mass	Jean - (2.1 - 10.0) 15
1	GGM (higgsino-bino NLSP) : $\gamma + b + E_{T}^{\gamma,mas}$	L=4.8 fb ⁻¹ , 7 TeV [1211.1167]	900 GeV \tilde{g} mass $(m(\chi^0) > 220 \text{ GeV})$	s = 7.8 TeV
	GGM (higgsino NLSP) : Z + jets + E ^{7,miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-152]	690 GeV g mass (m(H) > 200 GeV)	•- •, - • •
	Gravitino LSP : 'monoiet' + E	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	645 GeV $F^{1/2}$ scale $(m(\tilde{G}) > 10^{-4} \text{ eV})$	
÷:	$\tilde{a} \rightarrow b \bar{b} \tilde{z}^0$ (virtual \tilde{b}): 0 len + 3 b-i's + E_{-}	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.24 TeV $\widetilde{\mathbf{q}}$ mass $(m(\overline{\mathbf{r}}^{\circ}) < 200 \text{ GeV})$	
SC Dec	$\tilde{a} \rightarrow t \bar{t} \tilde{x}^{o}$ (virtual \tilde{t}) : 2 len (SS) + i's + E	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-105]	850 GeV \vec{q} mass $(m(\vec{r}^0) < 300 \text{ GeV})$	
еn.	$\vec{a} \rightarrow t \vec{r} \vec{v}$ (virtual \vec{t}): 3 len + i's + E	/ =13.0 fb ⁻¹ 8 TeV (AT) AS-CONE-2012-1511	860 GeV $\tilde{\mathbf{q}}$ mass $(m(\tau_{b}^{b}) < 300 \text{ GeV})$	8 TeV results
l g	$\tilde{a} \rightarrow t \tilde{z}$ (virtual t): 0 lep + multi-i's + E	/ =5.8 fb ⁻¹ 8 TeV (AT) AS-CONE-2012-103)	1.00 TeV $\tilde{0}$ mass $(m(\pi^2) < 300 \text{ GeV})$	7 To) / requite
3rc glt	\tilde{a} $tr_{T,miss}$	/ =12.8 fb ⁻¹ .8 TeV (ATLAS-CONE-2012-145)	115 TeV $\tilde{\mathbf{q}}$ mass $(m(\pi^2) < 200 \text{ GeV})$	7 Tev results
	$g \rightarrow i \chi$ (with data) \cdot 0 lop + 2 b jots + E	/ =12.8 fb ⁻¹ 8 TeV [ATLAS_CONE_2012_165]	620 GeV b mass $(m/2^0) < 120 \text{ GeV}$	
S U	$bb, b_1 \rightarrow b_2 = b_1 = b_2 = b_1 = b_2 = b_2 = b_1 = b_2 = b_2 = b_1 = b_2 = b_2 = b_2 = b_1 = b_2 = b_2 = b_2 = b_1 = b_2 = $	L=13.0 fb ⁻¹ 8 TeV [ATLAS-CONE-2012-151]	405 GeV b mass $(m(x_1^{-1}) < 120 \text{ GeV})$	
ctic	\widetilde{tt} (light) $\widetilde{t} \rightarrow \widetilde{v}^{\pm 1}$: 1/2 ¹ lep (+ b-jet) + E	L=4.7 fb ⁻¹ 7 ToV 11209 4205 1200 2102167 GoV	\tilde{t} mass $(m/z^0) = 55 \text{ GeV}$	
n dr	\widetilde{tf} (medium) \widetilde{t} $h\widetilde{z}^{\pm}$: 1 len + h-iet + E	1-12 0 /b ⁻¹ 8 Tay (ATLAS CONE 2012 102)	160.350 CoV 1 mass $(m(\pi^0) = 0.60V m(\pi^1) = 150.60V)$	
2.5	\widetilde{tt} (medium) \widetilde{t} h \widetilde{x}^{\pm} : 2 len + E	L=13.0 10 , 8 TeV [ATLAS-CONF-2012-100]	160-350 GeV (THASS $(m(\chi_1) = 0 \text{ GeV}, m(\chi_1) = 150 \text{ GeV})$	
3el	\widetilde{W} \widetilde{V}	L=13.0 fB , 8 fev [ATLAS-CONF-2012-167]	f(t) = f(t) = 0	
p g	$\pi_{1} \rightarrow \pi_{2}$, $\pi_{1} \rightarrow \pi_{2}$, $\pi_{2} \rightarrow \pi_{1}$, $\pi_{2} \rightarrow \pi_{2}$	L=13.0 fb , 8 lev [A1LAS-CONF-2012-166]	$(m(\chi_1) = 0)$	
0 3	$tt, t \rightarrow t\chi$: $0/1/2$ lep (+ b-jets) + $E_{T,miss}$	L=4.7 fb , 7 lev [1208.1447,1208.2590,1209.418	$m(\chi_{1}) = 0$	
	(1) (1)	L=2.1 fb , 7 lev [1204.6736]	$\frac{1}{100} \frac{1}{100} \frac{1}$	
, ti	$\pi^+\pi^-\pi^+$, $\overline{h_2}(\pi^+)$, $h_2(\pi^+)$, $h_2(\pi^+)$	L=4.7 fb , 7 lev [1208.2884] 85-195 0	(a real of the set of	
V V	$\chi_1 \chi_1, \chi_2 \rightarrow \text{IV}(\text{IV}) \rightarrow \text{IV}\chi_2$: 2 lep + $E_{T,\text{miss}}$	L=4.7 fb , 7 lev [1208.2884]	110-340 GeV χ_1 mass $(m(\chi_1) < 10 \text{ GeV}, m(\chi_2) = \frac{1}{2}(m(\chi_1) + m(\chi_2)))$	
d P	$\chi_1 \chi_2 \rightarrow I_1 V I_1 (VV), IV I_1 (VV) : 3 Iep + E_{T,miss}$	L=13.0 fb , 8 TeV [ATLAS-CONF-2012-154]	580 GeV χ_1 mass $(m(\chi_1) = m(\chi_2), m(\chi_1) = 0, m(l,v)$ as a	bove)
	$\chi_1 \chi_2 \rightarrow VV^* \chi_1 Z^* \chi_1 : 3 \text{ lep } + E_{T, \text{miss}}$	L=13.0 fb , 8 TeV [ATLAS-CONF-2012-154]	0-295 GeV χ_1 mass $(m(\chi_1) = m(\chi_2), m(\chi_1) = 0$, sleptons decoupled)	
s o	Direct χ_1 pair prod. (AMSB) : long-lived χ_1	L=4.7 fb ⁻¹ , 7 TeV [1210.2852] 220	GeV χ_1 mass $(1 < \tau(\chi_1) < 10 \text{ ns})$	
live clex	Stable g R-hadrons : low β , $\beta\gamma$ (full detector)	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	985 GeV g mass	
-g-	Stable t R-hadrons : low β, βγ (full detector)	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	683 GeV t mass	
10 D 8	ο GMSB : stable τ	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	300 GeV τ mass (5 < tanβ < 20)	-
	$\tilde{\chi}_1 \rightarrow qq\mu (RPV) : \mu + heavy displaced vertex$	L=4.4 fb ⁻¹ , 7 TeV [1210.7451]	700 GeV Q MASS (0.3×10 ⁻³ < λ ₂₁₁ < 1.5×10 ⁻³ , 1 mm < 1	cτ < 1 m,ğ decoupled)
	LFV : pp $\rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$ resonance	L=4.6 fb ⁻¹ , 7 TeV [Preliminary]	1.61 TeV V_{τ} mass $(\lambda_{311}=0.10, \lambda_{132}=0.10, \lambda_{132}=0.10, \lambda_{133}=0.10, \lambda_{$	0.05)
Λc	LFV : pp $\rightarrow \tilde{v}_s + X, \tilde{v}_s \rightarrow e(\mu) + \tau$ resonance	L=4.6 fb ⁻¹ , 7 TeV [Preliminary]	1.10 TeV $V_{\underline{z}}$ mass $(\lambda_{311}^*=0.10, \lambda_{1(2 33}^*=0.05))$	
	Bilinear RPV CMSSM : 1 lep + 7 j's + E _{7,miss}	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-140]	$1.2 \text{ TeV} \dot{q} = \dot{g} \max_{LSP} < 1 \text{ mm}$	
2	$\tilde{\chi}_{\chi} \tilde{\chi}_{\chi} \tilde{\chi}_{\chi} \to W \tilde{\chi}_{\chi} \tilde{\chi}_{\chi} \to eev_{\mu}, e\mu v_{\mu} : 4 lep + E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-153]	700 GeV $\tilde{\chi}_1$ mass $(m(\tilde{\chi}_1) > 300 \text{ GeV}, \lambda_{121} \text{ or } \lambda_{122} >$	0)
	$ L _{L}, L \rightarrow \tilde{\chi}_{*}, \tilde{\chi}_{*} \rightarrow eev_{\mu}, e\mu v_{\mu} : 4 lep + E_{T, miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-153]	430 GeV MASS $(m(\tilde{\chi}_1^0) > 100 \text{ GeV}, m(\tilde{l}_e) = m(\tilde{l}_e), \lambda_{121} \text{ or } \lambda_{121}$	122 > 0)
	g̃ → qqq : 3-jeť resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4813]	666 GeV g mass	
	Scalar gluon : 2-jet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4826] 10	0-287 GeV Sgluon mass (incl. limit from 1110.2693)	
WIN	IP interaction (D5, Dirac χ): 'monojet' + $E_{T,miss}$	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	704 GeV M^* scale (m_χ < 80 GeV, limit of < 687 GeV f	for DB)
		10 ⁻¹	1	10

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty. Mass scale [Te¥§

Expected limits in TeV

 $Z'(SSM) \rightarrow$ ee and $Z'(SSM) \rightarrow$ mumu for pp collisions at 14 TeV

model	$300{\rm fb}^{-1}$	1000fb^{-1}	3000fb^{-1}
$Z'_{SSM} \rightarrow ee$	6.5	7.2	7.8
$Z'_{SSM} \to \mu\mu$	6.4	7.1	7.6

Backup slides

SUSY searches

Jets + missing momentum - MSUGRA/CMSSM interpretation

8TeV data – 5 signal regions Njets=2 - \geq 6 with loose-medium-tight selection – each signal has 4 CRs for background estimation Meff= $\sum p_T^{jets} + E_t miss (+p_T^{lepton})$

Observed m_{eff}(incl.) distributions for medium (left) and loose (right) cuts.

The histogram denotes the MC background expectations, normalised to cross section times integrated luminosity.

In the lower panels the yellow error bands denote the experimental and MC statistical uncertainties,

while the green bands show the total uncertainty.

The red arrows indicate the values at which the cuts on m_{eff}(incl.) are applied.

The expected distributions for a MSUGRA/CMSSM benchmark model point with

m_{0}=1600 GeV, m_{1/2}=400 GeV, A_{0}=0, tan(beta)=10 and mu>0 are also shown for comparison.

SUSY Jets + MET

95% CL exclusion limits for MSUGRA/CMSSM models with tan(beta)=10, A_{0}=0 and mu>0 presented in the m_{gluino}--m_{squark} plane. Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The blue dashed lines show the expected limits at 95% CL, with the light (yellow) bands indicating the \$1\sigma\$ excursions due to experimental uncertainties. Observed limits are indicated by medium (maroon) curves, where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the cross section by the theoretical scale and PDF uncertainties. The theoretically excluded regions (green and blue) are described in Ref. [63].

Inclusive searches : (one isolated lepton +) jets + MET (2)

MSUGRA/CMSSM tan β =10, A₀=0 and μ >0

Exclude @95% C.L. $m_{1/2} < 350 \text{ GeV for all } m_0$ $m_{1/2} < 740 \text{ GeV for low } m_0 \text{ from jets+MET}$ m(squark)=m(gluino) < 1500 (1240) GeV from jets+MET (lepton+jets+MET) $m(\text{gluino}) < \sim 900 \text{ GeV at high } m_0 \text{ from lepton+jets+MET}$ Also interpretations in various "process-driven" simplified models

ATLAS-CONF-2012-104 (103)³

ATLAS-CONF-2012-109

Multichannel search for squarks/gluinos : 0-1-2 lepton(s)+jets + MET Razor variable N.B. E_{cm}= 7 TeV

razor
$$R \equiv \frac{M_T^R}{M_R}$$

 $M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$
 $M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j_1} + p_T^{j_2}) - \vec{E}_T^{miss} \cdot (\vec{p}_T^{j_1} + \vec{p}_T^{j_2})^2}{2}}$

Exclusion : ly between m_{gluino} and m_{LSP} For 0-1-2 lepton + jets + MET

Gluino pair production : 3 b-jets + MET (1)

Gluino pair production gluino \rightarrow sbottom₁+b or stop₁+t

6 signal regions Main backgrounds

ttbar + jets : from data CR QCD multijet : from data → negligible Other backgrounds → from MC **Discriminating variables**

Etmiss, Meff+variants???,

 $\Delta {\varphi_{\text{min}}}^{4j}$: minimum azimuthal separation between any of the 4 leading jets and the MET

Common criteria: lepton veto, $p_T^{j_1} > 90$ GeV, $E_T^{miss} > 200$ GeV,					
\geq 3 <i>b</i> -jets, $E_{\mathrm{T}}^{\mathrm{miss}}/\mathrm{m}_{\mathrm{eff}}^{\mathrm{4j}}$ > 0.2, $\Delta\phi_{\mathrm{min}}^{\mathrm{4j}}$ > 0.4					
SR	$N_J(p_{\rm T}>50~{\rm GeV})$	$p_{\rm T} b$ -jets	$\mathrm{m_{eff}}$		
SR4-L/M/T	\geq 4 jets	> 50 GeV	$m_{eff}^{4j} > 900/1100/1300 \; GeV$		
SR6-L/M/T	\geq 6 jets	> 30 GeV	$m_{eff}^{incl} > 1100/1300/1500 \; GeV$		

ATLAS-CONF-2012-145

Gluino pair production : 3 b-jets + MET (2)

Gbb model : BR(~g \rightarrow bbar χ_1^0)=100% Gtt model : BR(~g \rightarrow ttbar χ_1^0)=100%

The shaded (yellow) bands around the expected limits show the impact of the experimental uncertainties while the dotted red lines show the impact on the observed limit

of the variation of the nominal signal cross-section by 1 sigma theoretical uncertainty.

Also shown for reference are the results of the previous analysis.

m_{\chi_1^0} < 200 GeV : exclude \tilde{g} mass up to 1240 (1100) GeV in Gbb (Gtt) model.

- $m_{\tilde{g}} = 1100 \text{ GeV}$: exclude χ_1^0 mass below 570 (440) GeV in *Gbb* (*Gtt*) model.

Feeling a bit cramped? Relaxing the constraints using "Simplified models" ??Which atl conf or note???

Gauge mediation put 7TeV photon + b-jets + MET 1211.1167

N.B. E_{cm}= 7 TeV

Light gravitino LSP → several candidates for NLSP Stau/slepton/neutralino→tau/lepton/X + gravitino If neutralino NSLP → decay depends on bino/wino/higgsino mixture bino/wino/higgsino-like : neutralino → photon/Z/h + gravitino Search for combinations of photons/Z/h + missing transverse momentum Prompt or non-prompt decay

Conclusion???

Previous results impose severe constraints on SUSY If m(Higgs)~125 GeV then in a "Natural spectrum"

m(light-stop-bottom, charginos) <~ 500 GeV m(gluino) <~ 1100-1500??? GeV [arxiv 1302.2146v1, 1110.6670]

Hence emphasize search for

 \rightarrow gluino mediated and direct production of stops or sbottoms

ightarrow direct production of charginos and neutralinos (see Stewart Martin-Haugh's talk) $_{\scriptscriptstyle 38}$

Direct medium stop production : two leptons + MET

for $m_{chargino}$ and m_{stop} approximately degenerate and $m\chi_1^0 = 0$

ATLAS-CONF-2012-167

Direct stop production : one lepton + jets + MET

Both stop1 \rightarrow b χ_1^+ with $\chi_1^+ \rightarrow W^{(*)} \chi_1^0$ or both stop1 \rightarrow t χ_1^0 6 signal regions Background Dileptonic ttbar, W+jets, top : from data CR QCD multijet : from data Other : from MC Discriminating variables MET, MET/√HT, mT, mT2

ATLAS-CONF-2012-166

Gluino mediated stop production

Searches for gaugino pair production : 3 leptons + MET

ATLAS-CONF-2012-154

RPV tau sneutrino : search for heavy narrow resonance \rightarrow eµ, e τ , µ τ

RPV lagrangian = $\frac{1}{2} \lambda_{ijk} L_i L_j e_k + \lambda'_{ijk} L_i Q_j d_k$ = Multileptons + Leptoquarks

Upper limit on σ_{prod} x B.R. versus $m_{sneutrino}$ for the e μ mode

Long lived sleptons and R-hadrons

 $\begin{array}{l} \mbox{Long-lived staus in GMSB models excluded for} \\ M_{stau} < 300 \mbox{ GeV for tan } \beta = 5\mbox{-}20. \\ \mbox{Directly produced long-lived sleptons are excluded for} \\ M_{slepton} < 278 \mbox{ GeV}. \end{array}$

R-hadrons, composites of gluino (stop, sbottom) and light quarks, excluded for $m_{R-hadron} < 985$ GeV (683 GeV, 612 GeV) when using a generic interaction model. Additionally 2 sets of limits on R-hadrons obtained less sensitive to interaction model .

200 300 400 500 600 700 800 9001000

m_ã [ĠeV]

SUSY - Upgrade

SUSY - Upgrade

SUSY - Upgrade

Exotics searches

Searches in the dijet mass distribution

ATLAS-CONF-2012-148 (-088)