CP Violation and Rare Decays in the Charm System at LHCb

B. Viaud¹

On behalf of the LHCb collaboration

¹ CNRS-IN2P3 viaud@lal.in2p3.fr Rencontres de Physique de la Vallée d'Aoste, La Thuile, Fev. 24 – March 2 2013

Introduction

The Charm system provides good tools to seek NP....

SM: CPV is very small, Rare Decays are very rare

- Charm decays are essentially a two-family story: no CPV at first order
- FCNC's that provide higher order effects are very suppressed by GIM

This offers a list of 'surprises' that could sign the presence of NP

- CPV at O(1%) in the mixing or in certain decays
- Rare decays with a branching ratio $O(10^{-9}-10^{-8})$
- Bonus: charm involve up-type quark FCNC, thus NP couplings hardly tested with B, K

LHCb aims at a thorough exploration. In this talk:

- Charm mixing: x' & y' with WS $D^0 \rightarrow K^+ \pi^-$ decays 2010/2011 data
- CP violation: $D \rightarrow K^+K^-$, $\pi^+\pi^-$, $K^+K^-\pi^+$, $\pi^+\pi^-\pi^+\pi^-$

~ 1 fb⁻¹

- Rare decays: $D \rightarrow \mu^+ \mu^-$, $D \rightarrow \pi^+ \mu^+ \mu^-$

Huge b and c production in high E p-p collisions

- @ $\sqrt{s}=7$ TeV: $\sigma(pp \rightarrow b\bar{b}+X)=(284 \pm 20 \pm 49) \ \mu b [1]$ $\sigma(pp \rightarrow c\bar{c}+X)=(6100 \pm 930) \ \mu b [2]$ [1] Phys. Lett. B694: 209-216, 2010
[2] LHCb-CONF-2010-013,
LHCB-PAPER-2012-041,
arXiv:1302.2864

 $\rightarrow \sim 10^{12}$ cc pairs per fb⁻¹ in LHCb's acceptance. 3 fb⁻¹ collected so far !

LHCb is optimized for *Flavor Physics* in a *hadronic* environment.

- Forward detector, performant vertexing, p and M reconstruction, particle-ID
- Very selective, polyvalent and configurable trigger:
 - 1 hardware trigger (L0) followed by 2 software triggers (HLT1-2)

L0: ~ 15 MHz \rightarrow 1MHz

HLT: ~1MHz to ~ 3 kHz (4.5 kHz) with ~1 kHz (2 kHz) for charm in 2011 (2012)

Charm Measurements @ LHCb: typical ingredients

All selections use typical features of D decays

- D →hh(h): Cut based selection
 (low multiplicity, high BF's, low peaking BKG)
- D →hhhh: Multivariate analysis
 (high multiplicity so large BKG)
- Rare decays: Multivariate analysis + PID (large combinatorial <u>and</u> peaking BKG, Ex: $B(D^0 \rightarrow \pi^+ \pi^-) > 10^6 B(D \rightarrow \mu \mu)$)

Control modes and normalization

- Huge data samples of $D^0 \rightarrow K^- \pi^+$, $B \rightarrow J \psi(\mu \mu) X$,... to determine tracking and PID efficiencies from data
- Modes similar to the signal with a larger and known BF to further minimize systematics.

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) = \frac{N_{D^{*+} \to D^0(\to \mu^+ \mu^-)\pi^+}}{N_{D^{*+} \to D^0(\to \pi^+ \pi^-)\pi^+}} \frac{\varepsilon_{\pi\pi}}{\varepsilon_{\mu\mu}} \cdot \mathcal{B}(D^0 \to \pi^+ \pi^-)\pi^+}$$

Reliable Meas't

S/B

Charm Mixing

Charm mixing

Effective Hamiltonian that allows to focus on time evolution in {|D⁰>, |D
0
0>} basis, but also accounts for its decay (non hermitian)

$$\begin{split} i\frac{\partial}{\partial t} \begin{pmatrix} D^{0}(t)\\ \overline{D}^{0}(t) \end{pmatrix} &= \begin{pmatrix} \mathbf{M} - \frac{i}{2}\mathbf{\Gamma} \end{pmatrix} \begin{pmatrix} D^{0}(t)\\ \overline{D}^{0}(t) \end{pmatrix} & \begin{bmatrix} \mathbf{C} & \mathbf{D}, \mathbf{S}, \mathbf{d} & \mathbf{u} \\ \mathbf{D}^{0} & \mathbf{V}_{\mathsf{cs}} & \mathbf{V}_{\mathsf{us}} & \mathbf{V}_{\mathsf{us}} & \mathbf{V}_{\mathsf{us}} \\ \mathbf{U} & \mathbf{D}^{\mathsf{v}} \\ \mathbf{D}^{\mathsf{v}} & \mathbf{V}_{\mathsf{us}} & \mathbf{V}_{\mathsf{us}} & \mathbf{V}_{\mathsf{us}} \\ \mathbf{U} & \mathbf{U} & \mathbf{U} \\ \mathbf{U} \\ \mathbf{U} & \mathbf{U} \\ \mathbf{U} \\ \mathbf{U} & \mathbf{U} \\ \mathbf$$

Physical states eigenvalues rule $(M_{1,2} \pm i\Gamma_{1,2})$ the mixing time evolution. $|g_{\pm}(t)|^2$ can be written in terms of x and y

$$x \equiv \frac{\Delta M}{\Gamma}, \ \Delta M \equiv M_1 - M_2$$
 $y \equiv \frac{\Delta \Gamma}{2\Gamma}, \ \Delta \Gamma \equiv \Gamma_1 - \Gamma_2$

- Hard to predict. Expected small in SM (GIM suppr.): $x_y \sim 0.1$ to 1%
 - B-factories and FNAL: strong evidence that mixing exists.
 - CPV in this mixing still to be discovered: good probe for NP.

LHCb with 1fb⁻¹: observe mixing at $>5\sigma$ with one single measurement LHCb with 3fb⁻¹: search for CPV in mixing

Time dependent $D^0 \rightarrow K\pi$ WS/RS ratio

Wrong Sign events (WS)

Right Sign events (RS)

Assuming x,y small and no CPV

Count decays in 13 bins of decay time to get

 $R_{i} = N(D^{0} \rightarrow K^{+}\pi^{-} + \overline{D}^{0} \rightarrow K^{-}\pi^{+})_{i} / N(D^{0} \rightarrow K^{-}\pi^{+} + \overline{D}^{0} \rightarrow K^{+}\pi^{-})_{i}$

χ^2 fit of R(t) this to these data points

Exploit $D^* \rightarrow D^0 \pi_s$ to tells D^0 from $\overline{D^0}$, maximize S/B, extract N(D $\rightarrow K\pi$)'s

Clean signature

- $\mathcal{OM}(D^0\pi_s) \sim \mathcal{OP}(\pi_s)$

 $-\sigma M(D^0 \pi_s) < 1$ MeV thanks to a kinematical fit forcing to come from the Primary Vertex.

Large yields

- 4110 (949000) WS(RS) in bin 5 - 910 (165200) WS(RS) in bin 13

Systematic uncertainties mostly cancel in the ratio. Remaining biases on R_i are included in the fit.

- D⁰ from B decays (t wrong since B is long lived)
- Double mis-ID: $D^0 \rightarrow K^- \pi^+$ (RS) seen as $D^0 \rightarrow K^+ \pi^-$ (WS)

Mixing established at 9.1 σ ! 1st individual measurement > 5 σ

CPV in 2-body Charm Decays

$$\Delta \mathbf{A}_{CP} = \mathbf{A}_{CP} (\mathbf{D}^{0} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-}) - \mathbf{A}_{CP} (\mathbf{D}^{0} \rightarrow \pi^{+} \pi^{-})$$

- **CPV** we're after: ~1% at most.
 - \rightarrow Difficulty: Production and detection asymmetries can reach 1%.

Measure:
$$A_{raw}(f) = \frac{N(D^{*+} \to D^0(f)\pi_s^+) - N(D^{*-} \to \overline{D}^0(\overline{f})\pi_s^-)}{N(D^{*+} \to D^0(f)\pi_s^+) + N(D^{*-} \to \overline{D}^0(\overline{f})\pi_s^-)}$$

- First order Taylor Expansion:

$$A_{RAW}(f)^{*} = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}) + A_{P}(D^{*+})$$
Wanted Physics CP asymmetry
$$Detection asymmetry of D$$
Production asymmetry
$$A_{cP}(f) = \frac{\Gamma(D^{0} \rightarrow f) - \Gamma(\overline{D}^{0} \rightarrow f)}{\Gamma(D^{0} \rightarrow f) + \Gamma(\overline{D}^{0} \rightarrow f)}$$
Detection asymmetry of the slow pion
$$When f = \pi^{+}\pi^{-} \text{ or } K^{+}K^{-}: \text{ no detection}$$
asymmetry between D and D
$$\Rightarrow A_{D}(f) = 0$$

$$M_{RAW} = A_{RAW}(K^{+}K^{-}) - A_{RAW}(\pi^{+}\pi^{-}) = \Delta A_{CP}$$

 $\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^+K^-) - A_{CP}(D^0 \rightarrow \pi^+\pi^-)$

Fit to δm distributions in 216 bins

54 bins in $P_{T,D^*} \times \eta_{D^*} \times P_{slow_{\pi}} \times left/right$ × 2 Mag Up / Mag Down × 2 Before/After an LHC technical stop

→ A_{RAW} and △A_{RAW} in each bin, then weighted average

0.6 fb⁻¹

Phys.Rev.Lett. 108 (2012) 111602

 $\Delta A_{CP} = (-0.82 \pm 0.21_{stat} \pm 0.11)\%$

(χ^2 / NDF = 211/215) 3.5 σ from no CPV.

World average (HFAG)

 $\Delta A_{CP}^{dir} = (-0.678 \pm 0.147)\%$

CP Violation across the Dalitz Space

$D^+ \rightarrow K^- K^+ \pi^+$

 $D^0 \rightarrow \pi^- \pi^+ \pi^+ \pi^-$

Look for local asymmetries across Dalitz Plots.

$$\chi^{2} = \sum_{i=1}^{Nbins} \left(S_{CP}^{i} \right)^{2} \qquad S_{CP}^{i} = \frac{N^{i}(D^{+}) - \alpha N^{i}(D^{-})}{\sqrt{N^{i}(D^{+}) + \alpha^{2} N^{i}(D^{-})}}, \quad \alpha = \frac{N_{\text{tot}}(D^{+})}{N_{\text{tot}}(D^{-})},$$

- Sensitivity to a given CPV scenario depends on the binning: try several !
- Check detection asymmetries: compute χ^2 for non CPV control modes.

First application of this method: $D^+ \rightarrow K^- K^+ \pi^+$ with 2010 data (35 pb⁻¹)

Model independent search for CPV: $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

- High multiplicity causes large background: selection uses a NN.
- **Control mode:** 1.3M $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$
- 4-body: Sⁱ_{CP} measured in bins of a 5D Dalitz Plot.
- Tries 3 different binnings.

1 fb-1 , LHCb-CONF-2012-019

Bins	p-values (%)
15	97.1
29	95.6
66	99.8

➔ No evidence for CPV

Rare decays

Motivations

 SD contributions are good tools to probe NP (very strong GIM suppression)

Branching ratios dominated by LD effects, via intermediate states

 $B_{SM} < 6. \ 10^{-11} \ [1,2]$ $B_{SM} \sim 10^{-8} \ to \ 10^{-5} \ [4]$

- NP might change the picture, making the SD contribution measurable
 - Via the total BF: $D^0 \rightarrow \mu \mu$ [5]
 - Via partial BF's or asymmetries (CP, FB, ...) to avoid LD contributions: $D \rightarrow h(h')\mu^+\mu^-$ [6]

Measurement relative to the $D^0 \rightarrow \pi\pi$ channel

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) = \frac{N_{D^{*+} \to D^0(\to \mu^+ \mu^-)\pi^+}}{N_{D^{*+} \to D^0(\to \pi^+ \pi^-)\pi^+}} \frac{\varepsilon_{\pi\pi}}{\varepsilon_{\mu\mu}} \cdot \mathcal{B}(D^0 \to \pi^+ \pi^-)$$

CERN-LHCb-CONF-2012-005

→ ~10 times better than Belle's limit.

(Phys. Rev. D81 (2010) 091102, arXiv:1003.2345)

→ Still orders of magnitude above SM,

paper with improved analysis in preparation

Search for $D^+_{(S)} \rightarrow \pi^+ \mu^+ \mu^-$ decays

5 regions of the dimuon spectrum studied simultaneously

D⁺(S) $\rightarrow \pi^+ \phi(\mu^+\mu^-)$ used as *Standard Candles*

- Normalization mode: minimize σ (syst) since the final state is the same as the signal.
- Signal proxy to optimize the selection
 (BDT + muon ID) and help the fit
 (provides signal shape)
- The error on their BF is the dominant systematic uncertainty in this analysis

Search for $D^+_{(S)} \rightarrow \pi^+ \mu^+ \mu^-$ decays

5 regions of the dimuon spectrum studied simultaneously

Search for $D^+_{(S)} \rightarrow \pi^+ \mu^+ \mu^-$ decays

5 regions of the dimuon spectrum studied simultaneously

Upper limits ×10 ⁻⁸ @ 90% (95%) C.L.			
Region $B(D^+ \rightarrow \pi^+ \mu^+ \mu^-)$		B(D _s →π⁺μ⁺μ⁻)	
Low M(μμ)	2.0 (2.5)	6.9 (7.7)	
High M(μμ)	2.6 (2.9)	16.0 (18.6)	
Total ⁽¹⁾	7.3 (8.3)	41.0 (47.7)	

(1) Total non resonant BF, extrapolated from the high $M(\mu\mu)$ region (phase space model).

<u>Conclusion</u>: - Limits of the order of a few 10^{-8} (10^{-7}) for D⁺ (D_s) decays.

- 50 to 100 times better than before (D0, Babar).

(V. Abazov et al., Phys.Rev. Lett. 100 (2008) 101801, arXiv:0708.2094 ; J. Lees et al., Phys.Rev. D84 (2011) 072006, arXiv:1107.4465)

- Still above largest theory predictions ($\sim 10^{-8}$).

Same approach as for $D^+_{(S)} \rightarrow \pi^+ \mu^+ \mu^-$ with 4 regions in $M(\mu \pi)$:

(if mediated by a Majorana neutrino, larger significance in region where its mass peaks)

1 fb ⁻¹	Upper limits ×10 ⁻⁸ @ 90% (95%) C.L.	
Region [MeV/c²]	B(D⁺→π⁻μ⁺μ⁺)	$B(D_{S} \rightarrow \pi^{-} \mu^{+} \mu^{+})$
250 <m(μμ) <1140<="" td=""><td>1.4 (1.7)</td><td>6.2 (7.6)</td></m(μμ)>	1.4 (1.7)	6.2 (7.6)
1140 <m(µµ)<1340< td=""><td>1.1 (1.3)</td><td>4.4 (5.3)</td></m(µµ)<1340<>	1.1 (1.3)	4.4 (5.3)
1340 <m(µµ)<1540< td=""><td>1.3 (1.5)</td><td>6.0 (7.3)</td></m(µµ)<1540<>	1.3 (1.5)	6.0 (7.3)
1540<Μ(μμ)	1.3 (1.5)	7.5 (8.7)
Total	2.2 (2.5)	12.0 (14.1)

<u>Conclusion</u>: - No sign of LNV

- Limits of the order of a few 10^{-8} (10^{-7}) for D⁺ (D_S) decays.
- 100 times better than before (Babar).

(J. Lees et al., Phys.Rev. D84 (2011) 072006, arXiv:1107.4465)

Summary

- LHCb has a copious Charm Physics program
- A good start with 2010/2011 data:
 - First evidence for Charm mixing in a single measurement
 - Intriguing $\Delta A_{CP}(KK/\pi\pi)$
 - 3 body and 4 body Dalitz Analyses.
 - Limits on rare decays $(D \rightarrow (\pi) \mu \mu)$ improved by two orders of magnitude

And many on-going analyses

- New rare decays: $D^+{}_{(S)} \rightarrow K^+\mu^+\mu^-$, $D^0 \rightarrow K^-K^+\mu^+\mu^-$, $D^0 \rightarrow K\pi\mu^+\mu^-$
- WS/RS mixing including search for CPV
- $A_{CP}(D^+ \rightarrow \phi \pi^+ D^0 \rightarrow K_S \pi^+)$
- T-odd asymmetry with $D^0 \rightarrow K^- K^+ \pi^- \pi^+$
- Mixing with $D^0 \rightarrow K_S hh$
- Λ_c decays

-...

Back-up I

References on Rare decays

[1] G. Burdman et al, Phys. Rev. D66 (2002) 014009, hep-ph/0112235

[2] BABAR Collaboration Collaboration, arXiv:1110.6480

[3] S. Fajfer et al, Phys. Rev. D64 (2001) 114009, hep-ph/0106333;
Phys. Rev. D76 (2007),074010, arXiv0706.1133;
M. Artuso et al., Eur. Phys. J. C57 (2008) 309, arXiv:0801.1833;
L. Cappiello et al., arXiv:1209.4235v1

[4] Particle Data Group.

[5] E. Golowich et al, Phys. Rev. D79 (2009) 11030, arXiv:0903.2830

[6] S. Fajfer et al, arXiv:1208.0759v2;

L. Cappiello et al., arXiv:1209.4235v1

Typical Performance

- Charged tracks momentum: $\sigma p/p=0.35-0.55\%$, $\sigma m=10-20 \text{ MeV/c}^2$
- ECAL: $\sigma E/E = 10\%/\sqrt{E} \oplus 1\%$ (E in GeV)
- muon-ID $\varepsilon(\mu \rightarrow \mu) \sim 95\%$, mis-ID rate $(\pi \rightarrow \mu) \sim 1\%$
- $K \pi$ separation $\varepsilon(K \rightarrow K) \sim 95\%$, mis-ID rate $(\pi \rightarrow K) \sim 10\%$
- Proper time: $\sigma_t \sim 30-50$ fs, $\sigma_z \sim 60 \mu m$ (Prim. Vtx) $\sigma_z \sim 150 \mu m$ (Secondary Vtx)

Charm Measurements @ LHCb: typical ingredients

Trigger: too much data for generic selection

- Each (group of) mode(s): a dedicated 'line' in HLT2
- Line = a selection, can be close to the offline sel.
- Needed both for the signal and control modes
- Thanks to very flexible/configurable trigger design: lines added/removed/updated every few months

Stripping (~ offline HLT)

- Lines run a few times per year to provide analysis with only the data they need
- Make CPU demand match resource

Charm mixing

Effective Hamiltonian that allow to focus on time evolution in {|D⁰>,|D⁰>} basis, but also accounts for its decay (non hermitian)

Physical states eigenvalues rule $(M_{1,2} \pm i\Gamma_{1,2})$ the mixing time evolution. $|g_{\pm}(t)|^2$ can be written in terms of x and y

$$x \equiv \frac{\Delta M}{\Gamma}, \ \Delta M \equiv M_1 - M_2$$
 $y \equiv \frac{\Delta \Gamma}{2\Gamma}, \ \Delta \Gamma \equiv \Gamma_1 - \Gamma_2$

Hard to predict x & y. Two theoretical approaches evaluate 0.1 to 1%

- OPE based on 4-fermions local operators: box diagrams either GIM (s,d in the loop) or CKM suppressed (b)
- Sum of hadronic intermediate states GIM suppression broken only by SU(3)F breaking.

1st way: observe a decay at too high a rate, unless the D flavor flipped

2nd way: measure different lifetimes in $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^-\pi^+$

- CP-even eigenstates couple to $|D_1>=|D^0>+|\overline{D}^0>$ (assume no CPV)
 - \rightarrow Measured lifetime distribution $\sim exp(-i\Gamma_1 t)$
- Flavor eigenstates couple to a mixture of $|D_1>$ and $|D_2>$
 - \rightarrow Measured lifetime distribution $\sim exp(-i\Gamma_1 t) + exp(-i\Gamma_2 t)$

→
$$y_{CP} \equiv \frac{\hat{\Gamma}(D^0 \to K^+ K^-)}{\hat{\Gamma}(D^0 \to K^- \pi^+)} - 1$$

- These suppressions make charm mixing far slower than for in K, B, B_s
- Less good at interfering with the decay to enhance a potential CPV signal. *However* still a good tool to seek NP
 - CPV in the mixing should have a low SM background
 - |x|>>|y| would also be a sign (x generated by <u>virtual</u> intermediate states: more sensitive to heavy NP particles)

Charm mixing: State of the Art in 2012

HFAG [3]

x = (0.63 ± 0.19) % y = (0.73 ± 0.11) %

1st way: observe a decay at too high a rate, unless the D flavor flipped

2nd way: measure different lifetimes in $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^-\pi^+$

- CP-even eigenstates couple to $|D_1\rangle = |D^0\rangle + |D^0\rangle$ (assume no CPV)
 - \rightarrow Measured lifetime distribution $\sim \exp(-i\Gamma_1 t)$
- Flavor eigenstates couple to a mixture of $|D_1>$ and $|D_2>$
 - \rightarrow Measured lifetime distribution $\sim \exp(-i\Gamma_1 t) + \exp(-i\Gamma_2 t)$

$$\mathbf{y}_{CP} \equiv \frac{\hat{\Gamma}(D^0 \to K^+ K^-)}{\hat{\Gamma}(D^0 \to K^- \pi^+)} - 1$$

Anything that distorts R_i's !

- Reconstruction effects mostly cancel in the ratio
- 3% of D⁰'s are likely to come from B decays: same R(t) but t is wrong !

Systematic uncertainties

Anything that distorts R_i's !

- Reconstruction effects mostly cancel in the ratio
- Peaking backgrounds surviving tight M_{D0} and PID cuts

 M_{D0} sideband: misidentified RS decays are (0.4±0.2) % of the WS sample

Fit with:

$$R^{m}(t) = R(t) + N^{RS}(double mis-IS) / N^{RS}$$

$D^* \rightarrow D^0 (\rightarrow K\pi)\pi$ signal vs backgrounds

Cut tight on PID and D⁰ mass to reduce physics bkg and fit D⁰ π_s mass, then consider only signal and random pions in the fit

	ΔRD	Δy'	Δx'²
Asymmetries in detection or production	<0.001 σ	<0.001 σ	<0.001 σ
VELO lenght scale	0	0. <mark>0</mark> 03σ	0.001σ
Multiple candidates	0.02σ	0.06σ	0.07σ

Cross-checks

- We perform the measurement in statistically independent sub-samples of the data and find consistent results
 - different data-taking periods,
 - magnet polarities,
 - number of reconstructed primary vertices
- Also use alternative decay-time binning schemes or alternative fit methods to separate signal and background, and find no significant variations in the estimated mixing parameters

\mathbf{y}_{CP} and \mathbf{A}_{Γ} with two-body D decays

Key point I : treating the experimental distortion of this distribution

→ Swimming: data driven determination of the time acceptance A(t)

- Event by event method: given its kinematics, an event is accepted by the lifetime biasing cuts (ex: $IP\chi 2$, Flying Distance,...) based on *t* only.
- Replay the selection, with recomputed cut variables, for several values of t.

Measurement technique

Measure the proper decay time distribution of $D^0 \rightarrow K^-\pi^+$, K^+K^- and fit an exponential model to extract effective lifetimes $\rightarrow \Gamma$

$$y_{CP} \equiv \frac{\hat{\Gamma}(D^0 \to K^+ K^-)}{\hat{\Gamma}(D^0 \to K^- \pi^+)} - 1 \quad A_{\Gamma} \equiv \frac{\hat{\Gamma}(D^0 \to K^+ K^-) - \hat{\Gamma}(\overline{D}{}^0 \to K^+ K^-)}{\hat{\Gamma}(D^0 \to K^+ K^-) + \hat{\Gamma}(\overline{D}{}^0 \to K^+ K^-)} \xrightarrow{2} \stackrel{4}{2} \xrightarrow{4} \stackrel{6}{\text{Decay time (ps)}}$$

Entries / 0.05 ps

10³

10²

10

LHCb

Key point I : treating the experimental distortion of this distribution

→ Swimming: data driven determination of the time acceptance A(t)

- Event by event method: given its kinematics, an event is accepted by the lifetime biasing cuts (ex: $IP\chi 2$, Flying Distance,...) based on *t* only.
- Replay the selection, with recomputed cut variables, for several values of t.
- Tracks hits are hard to move \rightarrow move the primary vertex instead.
- HLT uses biasing cuts ! But one key feature of LHCb's trigger:

HLT can be re-run exactly offline !

Key point II : D⁰ from B decays

- background to prompt D⁰ with a different decay time distribution
- treated by the fit, using the $D(IP\chi 2)$ distribution
- → Model used in the fit = dominant systematic uncertainty

Results

29 pb⁻¹, 2010 data.

$$y_{CP} = (5.5 \pm 6.3_{\text{stat}} \pm 4.1_{\text{syst}}) \times 10^{-3}.$$

 $A_{\Gamma} = (-5.9 \pm 5.9_{\text{stat}} \pm 2.1_{\text{syst}}) \times 10^{-3}$

J.Phys.G39 (2012) 045005, arXiv:1112.4698v1

Will be much improved with LHCb's full sample: 3 fb⁻¹

 $\Delta A_{RAW} = A_{RAW}(K^+K^-) - A_{RAW}(\pi^+\pi^-) = \Delta A_{CP}$

- This is a very robust observable !
- Yet not perfect. Ex:
 - B causes A_D(π_s)
 π⁺/π⁻ bent in opposite directions
 → each sees a different detector if left-right asymmetries.

- Large asymmetries (>>1%) cause the Taylor Expansion to break down.
 Large A_D close to detector's edges
- $A_P(D^*)$ depends on \mathbf{p} . So do the particle reco and selection, thus $A_D(\pi_s)$! KK and $\pi\pi$ selections favor different regions (PID efficiency also depends on $\mathbf{\vec{p}}$)

Main protections

- Measurements in separate bins of P_T and η of D^* 's, P of π_S
- Combine opposite B polarities (up & down) to cancel left/right det. asymmetry
- Fiducial cuts to remove regions of large asymmetry

• Many checks/systematics (back-up slides: compare ΔA_{CP} with or w/o binning, consistency between the various bins, between up and down polarities, etc...)

$\Delta \mathbf{A}_{CP} = \mathbf{A}_{CP} (\mathbf{D}^{0} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-}) - \mathbf{A}_{CP} (\mathbf{D}^{0} \rightarrow \pi^{+} \pi^{-})$

Systematics

Effect	Uncertainty
∆A_{CP} with vs. without Fiducial cuts	0.01%
Background peaks (+their asymmetry) from m(D ⁰) sideband injected into TOYs to check the effect on the fit.	0.04%
AA _{CP} with fit vs. sideband subtraction cuts	0.08%
ΔA_{CP} with multiple candidates vs. only one allowed per event	0.06%
△A _{CP} with kinematical bins vs. one single bin	0.02%
TOTAL	0.11%

$$\Delta A_{CP} = (-0.82 \pm 0.21_{stat} \pm 0.11)\%$$

3.5 σ from no CPV.

Cross Checks

- Electron and muon vetoes on the soft pion and D⁰ daughters
- Different kinematic binnings
- Stability of result vs data-taking runs
- Stability vs kinematic variables
- Toy MC studies of fit procedure, statistical errors
- Tightening of PID cuts on D⁰ daughters
- Tightening of kinematic cuts
- Variation with event track multiplicity
- Use of other signal, background line-shapes in the fit
- Use of alternative offline processing (skimming/stripping)
- Internal consistency between subsamples (splitting left/right, field up/ field down)

Cross Checks

Flavor physics means precision physics, ie many cross checks

- Different kinematic binnings
- Remove fiducial cuts
- Tightening of PID cuts on D daughters (correlated with P, and bkg level)
- Impact of neglecting some backgrounds.
- Alternative signal & bkg shapes in the fit, compare with mere sideband sub.
- Alternative online/offline processing (trigger, selection, signal region, etc...)
- Stability of result vs data-taking time
- Control mode resembling the signal (ex: $D_s \rightarrow \phi \pi$; DP outside the phi region)
- Internal consistency among subsamples (left vs. right, field up vs. down)
- Electron and muon vetoes on the soft pion and D⁰ daughters
- Variation with event track multiplicity
- Toy MC studies of fit procedure, statistical errors
- Stability vs kinematic variables

Please check if other tests have been done by one of the ANA

Cross Checks

No evidence of dependence on relevant kinematic variables

Stability with time

Stability wrt PID

No significant variation of ΔA_{CP} when tightening the cut on the hadron PID information provided by the RICH

PID tight+

$$\Delta A_{CP} = (-0.88 \pm 0.26_{stat})\%$$

PID tight++

$$\Delta A_{CP} = (-1.03 \pm 0.31_{stat})\%$$

Internal consistency:	Subsample	ΔA_{CP}	χ^2/ndf
	Pre-TS, field up, left	$(-1.22 \pm 0.59)\%$	13/26(98%)
a closer look	Pre-TS, field up, right	$(-1.43 \pm 0.59)\%$	27/26(39%)
	Pre-TS, field down, left	$(-0.59 \pm 0.52)\%$	19/26(84%)
<i>Split the 216 bins into <mark>8</mark> smaller</i>	Pre-TS, field down, right	$(-0.51 \pm 0.52)\%$	29/26(30%)
sets and check γ^2 for each.	Post-TS, field up, left	$(-0.79 \pm 0.90)\%$	26/26(44%)
	Post-TS, field up, right	$(+0.42 \pm 0.93)\%$	21/26(77%)
and between them:	Post-TS, field down, left	$(-0.24 \pm 0.56)\%$	34/26(15%)
$\chi^2 / NDF = 6.7/7$	Post-TS, field down, right	$(-1.59 \pm 0.57)\%$	35/26(12%)
	All data	$(-0.82 \pm 0.21)\%$	211/215(56%)

World Wide

Year	Experiment	Results	Δ(t)/ τ	<u>(τ)</u> /τ
2007	Belle	$A_{\Gamma} = (0.01 \pm 0.30 \text{ (stat.)} \pm 0.15 \text{ (syst.)})\%$	-	-
2008	BaBar	$A_{\Gamma} = (0.26 \pm 0.36 \text{ (stat.)} \pm 0.08 \text{ (syst.)})\%$	-	-
2011	LHCb	$A_{\Gamma} = (-0.59 \pm 0.59 \text{ (stat.)} \pm 0.21 \text{ (syst.)})\%$	-	-
2008	BaBar	$\begin{aligned} A_{CP}(KK) &= (0.00 \pm 0.34 \text{ (stat.)} \pm 0.13 \text{ (syst.)})\% \\ A_{CP}(\pi\pi) &= (-0.24 \pm 0.52 \text{ (stat.)} \pm 0.22 \text{ (syst.)})\% \end{aligned}$	0.00	1.00
2008	Belle	$\Delta A_{CP} = (-0.86 \pm 0.60 \text{ (stat.)} \pm 0.07 \text{ (syst.)})\%$	0.00	1.00
2011	LHCb	$\Delta A_{CP} = (-0.82 \pm 0.21 \text{ (stat.)} \pm 0.11 \text{ (syst.)})\%$	0.10	2.08
2012	CDF Prelim.	$\Delta A_{CP} = (-0.62 \pm 0.21 \text{ (stat.)} \pm 0.10 \text{ (syst.)})\%$	0.25	2.58

CDF public note 10784

$$a_{CP}^{\text{ind}} = (-0.025 \pm 0.231)\%$$

 $\Delta a_{CP}^{\text{dir}} = (-0.656 \pm 0.154)\%$

Agreement with no CPV: 2×10⁻⁵

World Average

• Can be combined with other measurements of ΔA_{CP} and with measurements of A_{Γ} by disentangling direct & indirect CPV.

$$A_{CP}(f) \approx a_{CP}^{dir}(f) + \frac{\langle t \rangle}{\tau} a_{CP}^{ind}$$

- Depends on $\langle t \rangle$ in the D⁰ sample (\sim time given the mixing to interfere).
- $D^0 \rightarrow \pi \pi$ and $D^0 \rightarrow \pi \pi$ can have different time acceptance

$$\Delta A_{CP} = \left[a_{CP}^{\text{dir}}(K^-K^+) - a_{CP}^{\text{dir}}(\pi^-\pi^+)\right] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\text{ind}}$$

 \rightarrow Also measured $\triangle < t >$: Contribution of indirect CPV < 10%

HFAG average

 $a_{CP}^{ind} = (0.027 \pm 0.163)\%$

 $\Delta a_{CP} dir = (-0.678 \pm 0.147)\%$

Agreement with no CPV: 6×10⁻⁵

(see http://www.slac.stanford.edu/xorg/hfag/charm/ICHEP12/DCPV/direct_indirect_cpv.html)

- High signal statistics.
- Control of the artificial asymmetries thanks to large control samples: $D^+ \rightarrow K^- \pi^+ \pi^+, D_S \rightarrow K^- K^+ \pi^+$

 $D^{+} \rightarrow K^{-} K^{+} \pi^{+} \quad (3.284 \pm 0.006) \times 10^{5}$ $D^{+}_{s} \rightarrow K^{-} K^{+} \pi^{+} \quad (4.615 \pm 0.012) \times 10^{5}$ $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+} \quad (3.3777 \pm 0.0037) \times 10^{6}$

Larger than in all previous studies (Babar, Belle, CLEO-c)

 $D^+ \rightarrow K^- \pi^+ \pi^+ (3.3777 \pm 0.0037) \times 10^6$

-Same plots for **control modes**: no artificial asymmetry!

$\mathbf{D^0} \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

P, <u>1 fb⁻¹</u>

- Use D* tag the D⁰ flavor
- High purity and statistics despite the large background inherent to 4-body decays. Used a NN¹.
- High statistics CP conserving control mode: 1.3M D⁰→K⁻π⁺π⁻π⁺

4-body: 5D phase space necessary to fully describe the decay.

 $\rightarrow S^{i}_{CP}$'s measured in bins of a 5D Dalitz Plot.

$\mathbf{D^0} \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

P, <u>1 fb⁻¹</u>

- Use D* tag the D⁰ flavor
- High purity and statistics despite the large background inherent to 4-body decays. Used a NN¹.
- High statistics CP conserving control mode: 1.3M D⁰→K⁻π⁺π⁻π⁺

4-body: 5D phase space necessary to fully describe the decay.

 $\rightarrow S^{i}_{CP}$'s measured in bins of a 5D Dalitz Plot.

 $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

Bins	p-values (%)
15	97.1
29	95.6
66	99.8

LHCb-CONF-2012-019

p-values assuming no CPV close to 1.→ No evidence of CPV

$\mathbf{D^0} \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

Checks for non CPV asymmetries: measure χ2

- Several binnings
- Separately for magnet up and down
- For $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$

 $D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$

- For D⁰ (mag up/left) vs. D⁰ (mag down/right) Equivalent to D⁰ vs. D⁰ with a single magnet polarity
- For the background from the sideband
- For Many different time periods

Ī		p-values $\%$		
Bi	ns	Magnet down	Magnet up	Combined polarities
,	7	6.67	58.8	5.18
2	3	16.5	71.1	32.2
4	9	45.3	37.3	20.0
9	1	30.3	35.4	20.0
1	50	15.3	61.4	30.3

$D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$, 10 time-ordered samples

	p-values (%)		
data subset	Magnet down	Magnet up	
1	9.15	11.0	
2	15.3	81.1	
3	91.4	75.9	
4	76.7	86.1	
5	1.59	18.3	
6	35.6	50.8	
7	5.77	99.8	
8	40.6	26.0	
9	76.8	71.1	
10	17.8	66.9	

Single event sensitivity

CERN-LHCb-CONF-2012-005

Yields

Quantity	Value	Channel	Fitted value
$\begin{split} N_{D^{0} \to \pi^{+} \pi^{-}}^{sig} \\ \varepsilon_{trig}(\pi\pi) \\ \varepsilon_{trig}(\mu\mu) \\ \frac{\varepsilon_{sel}(\pi\pi)}{\varepsilon_{sel}(\mu\mu)} \\ \text{Prescale on } D^{0} \to \pi^{+} \pi^{-} \end{split}$	$1710 \pm 47 (13.96 \pm 1.24)\% (82.54 \pm 3.13)\% 0.95 \pm 0.06 0.0015$	$D^{*+} \rightarrow D^0 (\rightarrow \pi^+ \pi^-) \pi^+$ $D^{*+} \rightarrow D^0 (\rightarrow \mu^+ \mu^-) \pi^+$ $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$ Comb. background	$\begin{array}{c} 204 \pm 33 \\ (0.49 \pm 0.42) \cdot 10^{-8} \\ 380.3 \pm 34.1 \\ 7439.6 \pm 95.9 \end{array}$
$\mathcal{B}(D^0\to\pi^+\pi^-)$	$(1.397 \pm 0.026) \cdot 10^{-3}$		
α	$(1.96\pm 0.23)\cdot 10^{-10}$		

→
$$\mathcal{B}(D^0 \to \mu^+ \mu^-) < 1.3 \ (1.1) \cdot 10^{-8}$$
 at 95 (90)%CL

LHCb Preliminary

One order of magnitude below Belle [XX]

Stay tuned: An improved analysis presented in a few weeks !

(1) Total non resonant BF, extrapolated from the high $M(\mu\mu)$ region (phase space model).

→ 2 orders of mag. better than previous limits (D0 [XX], Babar [XX])

→ Still above largest theory predictions (~10⁻⁸)

Same approach as for $D^+{}_{(S)} \rightarrow \pi^+\mu^+\mu^-$ with 4 regions in $M(\mu\pi)$:

(if mediated by a Majorana neutrino, larger significance in region where its mass peaks)

➔ No LNV signal

→ 2 orders of mag. better than previous limits (Babar [XX])

Implications of LHCb measurements and future prospects

The LHCb collaboration[†]

and

A. Bharucha^a, I.I. Bigi^b, C. Bobeth^c, M. Bobrowski^d, J. Brod^e, A.J. Buras^f, C.T.H. Davies^g, A. Datta^h, C. Delaunayⁱ, S. Descotes-Genon^j, J. Ellis^{i,k}, T. Feldmann^l, R. Fleischer^{m,n},
O. Gedalia^o, J. Girrbach^f, D. Guadagnoli^p, G. Hiller^q, Y. Hochberg^o, T. Hurth^r, G. Isidori^{i,s}, S. Jäger^t, M. Jung^q, A. Kagan^e, J.F. Kamenik^{u,v}, A. Lenz^{i,w}, Z. Ligeti^x, D. London^y,
F. Mahmoudi^{i,z}, J. Matias^{aa}, S. Nandi^l, Y. Nir^o, P. Paradisiⁱ, G. Perez^{i,o}, A.A. Petrov^{ab,ac}, R. Rattazzi^{ad}, S.R. Sharpe^{ae}, L. Silvestrini^{af}, A. Soni^{ag}, D.M. Straub^{ah}, D. van Dyk^q, J. Virto^{aa}, Y.-M. Wang^l, A. Weiler^{ai}, J. Zupan^e

^aInstitut für Theoretische Physik, University of Hamburg, Hamburg, Germany

^bDepartment of Physics, University of Notre Dame du Lac, Notre Dame, USA

^cTechnical University Munich, Excellence Cluster Universe, Garching, Germany

^dKarlsruhe Institute of Technology, Institut für Theoretische Teilchenphysik, Karlsruhe,

Germany

^eDepartment of Physics, University of Cincinnati, Cincinnati, USA ^fTUM-Institute for Advanced Study, Garching, Germany

^gSchool of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

^hDepartment of Physics and Astronomy, University of Mississippi, Oxford, USA

ⁱEuropean Organization for Nuclear Research (CERN), Geneva, Switzerland

^jLaboratoire de Physique Théorique, CNRS/Univ. Paris-Sud 11, Orsay, France

^kPhysics Department, Kings College London, London, UK

¹Theoretische Elementarteilchenphysik, Naturwissenschaftlich Techn. Fakultät, Universität

Sienen Sienen Cormony