

G. Moortgat-Pick (Uni Hamburg/DESY)

Status LHC results -- in short

- Discovery of a SM-like Higgs around m_H~125 GeV
 - Is an absolute revolution!
 - Completely new type

The properties of the Higgs boson, to be discovered at the LHC, must be thoroughly investigated in a good condition at the ILC' (K. Kawagoe)

- Still not clear whether a pure SM-Higgs
- Limits in SUSY coloured sector (approx.):
 - mg>700 GeV,mq>800 GeV
 - 3rd generation: much weaker
- Limits on Z', W': ~2 TeV
- And more limits on ED, exotics, 4th generation etc.
 Physics left for a Linear Collider? Which energy steps?

Les Rencontres de La Thuile 2/13

Physics Status LC -- in short

Details and more examples in the many new LC reports:

- CLIC CDR finished
- ILC TDR sent to PAC
- General LC review report

This talk personal choice of

- just new results in tricky scenarios
- only BSM/SUSY

3

Status LC -- in short

• ILC newsline, 7.2.13:

On Friday, 18 January, Hakubun Shimomura, Japan's Minister of MEXT (Ministry of Education, Culture, Sports, Science and Technology), the funding agency for Japan's high-energy physics programme, stated Japan's intention to invite the ILC [...] Shimomura said [...] I wish to carry forward to cooperate with countries concerned, and hopefully to invite it to Japan,". Japanese government would start a preparation to start discussion, including the distribution of the construction cost, with countries concerned in the first half of 2013.

• B. Foster, PECFA CERN 11/12:

- Japanese HEP community proposes to host ILC based on the "staging scenario" to the Japanese Government.
 - ILC starts as a <u>250GeV Higgs factory</u>, and will evolve to a 500GeV machine.
 - Technical extendability to 1TeV is to be preserved.
- It is assumed that one half of the cost of the 500GeV machine is to be covered by Japanese Government. However, the share has to be referred to inter-governmental negotiation.

Looks absolutely striking So back to physics!

Les Rencontres de La Thuile 2/13

Impact from (still) LHC non-findings

- SUSY: still strongly motivated and beautiful, but
 - so far, nothing, only rather heavy exclusion limits in the coloured sector
 - Constrained models (mSUGRA, CMSSM, Simpl. M) under tension!

• Further hints from theory?

C.L. upper limit on σ (pb)

95%

Further SUSY facts

- Low energy experiments, (g-2)_μ:
 - favour rather low SUSY masses in electroweak sector:

$$\delta \boldsymbol{a}_{\mu}(\mathrm{N.P.}) = \mathcal{O}(\boldsymbol{C}) \left(\frac{\boldsymbol{m}_{\mu}}{\boldsymbol{M}}\right)^{2}, \quad \boldsymbol{C} = \frac{\delta \boldsymbol{m}_{\mu}(\mathrm{N.P.})}{\boldsymbol{m}_{\mu}}$$

- C very model dependent, SUSY/ED ~ $O(\alpha/4\pi ...)$
- LHC results prefer rather heavy coloured sector in 1st +2nd generation
- Way out: rather simple
 - Decouple uncoloured and coloured sector and/or take hybrid models of SUSY breaking
 - Just leave out the constrained minimal models, that's al

Remember: Minimal SUSY contains 105 new parameter... why should nature be too simple ?

Example: New TDR benchmarks Vs=500 GeV

The goal of LC phenomenology: fixing the structure of the underlying model and parameters!

• Minimization of 1-loop Higgs Potential:

$$\frac{M_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2 \simeq -(m_{H_u}^2 + \Sigma_u^u) - \mu^2$$

• To keep EWFT ~ 3%:

rather small µ (~200 GeV) required

Papucci,Ruderman,Weiler 2011 Baer,Barger,Huang, Tata, 2012

- 'naturalness'
- Several 'natural' scenarios: light stops, light higgsinos or light sleptons

MSSM interpretation of light Higgs

Preferred values for stop masses from fits :

Bechtle, Heinemeyer, Stal, Stefaniak, Weiglein, Zeune '12 2.0 1.0 1.5 0.8 $m_{\tilde{t}_2}$ (TeV) 0.61.0 0.4 0.5 0.2 -2 -3 0.2 2 0.4 0.6 .8 .0 1.2 m₇ (TeV)

- M_h~125 GeV requires large stop mixing ~ large X_t
 - Rather large $X_t = A_t \mu \cot \beta$
- But m_t can still be light !

 $m_{\tilde{t_i}}$ (TeV)

Start with stops: features at a LC

• With polarized beams: A_{LR} applicable

$\mathcal{L}_{\mathrm{int}}$	$P_{e^{-}}$	$P_{e^+} \Delta m_{\tilde{t}_1}$	$\Delta \cos \theta_{\tilde{t}}$
$100 {\rm ~fb^{-1}}$	∓ 0.9	0 1.1%	2.3%
$500 {\rm ~fb}^{-1}$	∓ 0.9	0 0.5%	1.1%
$100 {\rm ~fb}^{-1}$	∓ 0.9	± 0.6 0.8%	1.4%
$500 {\rm ~fb^{-1}}$	∓ 0.9	$\pm 0.6 \ 0.4\%$	0.7%

- Mixing angle $\Delta \cos \theta_t < 1\%$
 - If $\Delta X_t \pm 1\%$: $\Delta m_h = \pm 0.2 \text{GeV}$
- → matches long-term LHC precision
 - If $\Delta X_t \pm 10\%$: $\Delta m_h = \pm 1.5 GeV$
- \rightarrow Too big to check the consistency of the model!

Next: Higgsino-like scenarios

- Can be embedded in hybrid gauge-gravity mediation
 - 'M' driven by gauge-mediation
 - 'µ' driven by gravity mediation

Bruemmer,List,GMP, Rolbiecki,Sert

• Two examples as 'prototypes' under study

- Higgsino masses: $m_{\chi_{0_1}} \sim 165 \text{ GeV}, m_{\chi_{0_2}} \sim 167 \text{ GeV}, m_{\chi_{\pm_1}} \sim 166 \text{ GeV}$
- Common feature: Δm(_{x±1-x01})~1 GeV
 - Challenges: mass degeneration, many π 's, soft γ , E_{miss} from decay
 - How to resolve such scenarios?

Apply ISR method

- Accessible processes: $e+e- \rightarrow \chi_{1}^{0}\chi_{2}^{0}, \chi_{1}^{+}\chi_{1}^{-}$
 - Decays: χ_1 mainly hadronic, χ_2^0 mainly in γ 's
- Measure masses via ISR method:
 - Take only events with hard γ from ISR
 - Get also rid of SM background two photons
- Measure process at two energies, \sqrt{s} =350 and 500 GeV
 - Use recoil mass and semihadronic channel

Mean value of fit gives the $\Delta M(ilde{\chi}_1^{\pm}, ilde{\chi}_1^0)$

 $\blacktriangleright \Delta M^{true} = 0.77 \text{ GeV}$

 $ightarrow \Delta M^{\it fit} pprox 0.80 \pm 0.02 \; {
m GeV}$

Determine MSSM parameters

Berggren, List, Sert

Les Rencontres de La Thuile 2/13

LC: Parameters from $e^+e^- \rightarrow \chi^+_1 \chi_1^- aNLO$

- In the past: parameter determination at tree level
 - Extracted from $\sigma_{L,R}$ polarized cross sections and masses $m\tilde{\chi}_1$ and $m\tilde{\chi}_1^0$ with 500 fb⁻¹

	SUSY Parameters				М	ass Prediction	dictions	
	M_1	M_2	μ	aneta	$m_{ ilde{\chi}_2^{\pm}}$	$m_{ ilde{\chi}_3^0}$	$m_{ ilde{\chi}_4^0}$	
99.1	1 ± 0.2	192.7 ± 0.6	352.8 ± 8.9	10.3 ± 1.5	378.8 ± 7.8	359.2 ± 8.6	378.2 ± 8.1	

- However: Loop effects known to be relevant
 - Sensitivity to parameters arising from loops, e.g. stop-sector

Bharucha, Kalinowski, Moortgat-Pick, Rolbiecki, Weiglein 2012

• Now: Strategies for parameter determination still applicable?

Les Rencontres de La Thuile 2/13

LC: Parameters from $e^+e^- \rightarrow \chi^+_1 \chi^-_1 @NLO$

- Strategy: Use NLO corrected masses and $\sigma_{L,R}$ at \sqrt{s} =350,500
 - Use in addition A_{FB}
 - Fit of M_1 , M_2 , μ , tan β and stop sector mt₁, mt₂ and cos $\theta_{\tilde{t}}$
 - Compare mass accuracy from
 - Threshold scans
 - Continuum measurement

Bharucha, Kalinowski, Moortgat-Pick, Rolbiecki, Weiglein 2012

Parameter	Threshold fit		Continuum fit	
M_1	125 ± 0.3	(± 0.7)	125 ± 0.6	(± 1.2)
M_2	250 ± 0.6	(± 1.3)	250 ± 1.6	(±3)
μ	$180{\pm}0.4$	(± 0.8)	180 ± 0.7	(± 1.3)
$\tan\beta$	10 ± 0.5	(±1)	10 ± 1.3	(± 2.6)
$m_{\bar{\nu}}$	1500 ± 24	$\binom{+60}{-40}$	1500 ± 20	(± 40)
$m_{\tilde{t}_1}$	400^{+180}_{-120}	$\left(\begin{smallmatrix} at \ limit \\ at \ limit \end{smallmatrix} \right)$	_	
$m_{\tilde{t}_2}$	800^{+300}_{-170}	$\binom{+1000}{-290}$	800^{+350}_{-220}	${\rm (at\ limit)\atop at\ limit)}$

Relevance of threshold scans and sensitivity to heavy masses

- Impact also on dark matter prediction:
 - These uncertainties of the NLO corrected parameters cause 5% uncertainty in DM prediction (total uncertainty = 10%)

Les Rencontres de La Thuile 2/13

Challenge: MSSM vs NMSSM at LHC+LC?

- NMSSM: Higgs singlet allows more freedom ...
 - Choose tricky scenario with mh~124 GeV but singlet as 2nd lightest Higgs and M₁~370GeV, M₂~150 GeV, μ~360 GeV, tanβ~9,x~900 GeV
 - similar rates and masses
 - pretty 'MSSM-like' phenomenology
- How to distinguish the model?
 - First hints maybe from BR($\chi^0_{2\rightarrow}$ S χ^0_1)
 - Exploit gaugino sector:
 parameter determination, prediction
 of heavier states
 - Model inconsistency clarifies the model !

Les Rencontres de La Thuile 2/13

Gudrid Moortgat-Pick

Hesselbach Franke Fraas, GMP '05, Levermann, List, Hartin,Porto, GMP

What if nothing else than H is found now?

But the exciting Higgs story has just started....

- Since m_H~ free parameter in SM at tree level
 - Crucial relations exist, however, between m_{top} , m_W and $sin^2\theta_{eff}$
 - If nothing else appears in the electroweak sector, these relations have to be urgently checked in order to
 - a) distinguish between SM and Higgs in BSM models (remember $\Delta m_H \sim m_{top}^4$)
 - b) Close the SM picture
- Which strategy should one aim?
 - exploit precision observables and check, whether the measured values fit together at quantum level
 - m_Z , m_W , α_{had} , $sin^2\theta_{eff}$ und m_{top}

Higgs story has just started ...

LEP: $sin^{2}\theta_{eff}(A_{FB}^{b})=0.23221\pm0.00029$ SLC: $sin^{2}\theta_{eff}(A_{LR})=0.23098\pm0.00026$ World average: $sin^{2}\theta_{eff}=0.23153\pm0.00016$

 Uncertainties from input parameters: Δm_Z, Δα_{had}, m_{top} Heinemeyer, Weiglein

- Δm_z=2.1 MeV:
- Δα_{had}~10 (5 future) x 10⁻⁵:
- Δm_{top}~1 GeV (Tevatron/LHC):
- Δm_{top}~0.1 GeV (ILC):

 $\Delta sin^{2} \theta_{eff}^{para} \sim 1.4x10^{-5}$ $\Delta sin^{2} \theta_{eff}^{para} \sim 3.6 (1.8 \text{ future })x10^{-5}$ $\Delta sin^{2} \theta_{eff}^{para} \sim 3x10^{-5}$ $\Delta sin^{2} \theta_{eff}^{para} \sim 0.3x10^{-5}$

Higgs story has just started ...

√s=92 GeV To close the story... GigaZ

Measure $\sin^2\theta_{eff}$ via A_{LR} with high precision: $\Delta \sin\theta = 1.3 \ 10^{-5}$ •

Assume only Higgs@LHC but no hints for SUSY:

- Really SM?
- Help from $\sin^2\theta_{eff}$?
- If GigaZ precision:
 - i.e. Δm_{top} =0.1 GeV...
 - Deviations measurable
- sin²θ_{eff} can be the crucial quantity to outline the scale!

Heinemeyer, Weber, Weiglein

Les Rencontres de La Thuile 2/13

In 20 years time.....we could tell a story

Once upon a time –it was July 4th– …

Let's do it !

Distinction of mass degenerated ew'inos

• Exploiting 'particle flow' at the LC:

Gaugino masses: [GeV] (Spheno)

• Strategy (see LOI):

- determine Mỹ[±]₁ and M ỹ⁰₂ from the energy spectrum of W / Z candidates
 300
- χ^0_2 , χ^+_1 separated!
 - even in fully hadronic mode

Les Rencontres de La Thuile 2/13

R-parity violation

- Much lower mass bounds in such models:
- RPV often leads to displaced vertices
- Dedicated simulations also at LC

- Since χ^0 and v mix:
 - angle θ₂₃ measurable
 very precise at LC

Vormwald, List '12

Les Rencontres de La Thuile 2/13