Recent results on Higgs to yy at ATLAS

Maud Schwoerer (LAPP)

On behalf of **The ATLAS Collaboration**

Les Rencontres de Physique de La Vallée d'Aoste 27/02/2013

4th July 2012

 \times Discovery of a new boson announced by ATLAS and CMS in the search for the SM Higgs boson.

2

Standard Model Higgs ?

Event selection

x Two high p_{T} isolated photons + requirements on EM shower shape variables (photon's identification) \rightarrow rejection of the reducible background *jet-jet* and γ -*jet* (cross-sections $10^{7}-10^{4}$ larger than $\gamma\gamma$).

Event categorisation (1)

Event categorisation (2)

Discovery in the yy channel alone

× Last ATLAS update with 4.8fb^{-1} of data at 7TeV and 13fb^{-1} at 8TeV

7

Signal strength per production mode

X Main experimental systematic: 5.3% photon efficiency. Theo. error includes QCD scale + PDF + Higgs BR.

	Value	Stat. error	Syst. error	Theo. error
μ _{ggF+ttH} x B/B _{SM}	1.8	±0.4	±0.2	±0.2
μ _{VBF} x B/B _{SM}	2.0	±1.2	±0.6	±0.3
μ _{νΗ}	1.9	±2.5	±0.6	±0.4

Spin

 \times Spin 1 is strongly disfavored due to the observation of the $\gamma\gamma$ decay (Landau-Yang theorem).

× Considered models : 0^+ SM Higgs and the graviton-like spin-2 state with minimal coupling 2_m^+

z' (CS) × Study based on the single discriminating variable $|\cos\theta^*|$ p'4 Expected sensitivity : 1.80 between spin 0^+ and 2^+_- 3000ı / bin Events / 0.05 J^P=0⁺ (SM) hypothesis **ATLAS** Preliminary $= 0^+$ (SM) pdf 80 Background-subtracted data $qq, J^P = 2_m^+ pdf$ #Pseudo-experiments Background uncertainty J^P=2⁺ hypothesis 2500 $L dt = 13 \text{ fb}^{-1}$ 60 observed ∖s= 8 TeV 2000 40

1500 20 1000 0 500 -20 L dt = 13 fb⁻¹, √s = 8 TeV **ATLAS** Preliminary -10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -8 -6 -4 -2 0 2 8 0 4 6 10 |cosθ*| $-\ln(L(0)/L(2))$ Observed p0 value for: 0⁺ hypothesis 29% (0.550) 2⁺ hypothesis 8.4% (1.40) **0**⁺ SM Higgs boson hypothesis favoured

Mass

$_{\rm X}$ Best fit value of $m_{_{\rm H}}$

- × 3 main uncertainties:
- . Extrapolation from Z \rightarrow ee energy scale
- . Material modelling
- Presampler energy scale $\rightarrow 0.45\%$ (550 MeV)

+ fraction of converted
photons + signal resolution +
background modelling choice
+... Each < 0.2%</pre>

No correlation between mass and μ measurement

 M_{μ} =126.6 ± 0.3(stat) ± 0.7 (syst) GeV

Conclusion

- × 6.1 σ → discovery in $\gamma\gamma$ channel (expected : 3.3 σ)
- × μ =1.80+0.42-0.36 at m_{μ} =126.6 ± 0.3(stat) ± 0.7 (syst) GeV \rightarrow 2.4 σ from the Standard Model
- × Favour **0+** state
- × Next update: 21 fb⁻¹ (+ analysis improvements :)

	Total	ggH	VBF	VH	ttH
Number of expected event for 21 fb ⁻¹	400	352	28	18	2

The ATLAS experiment

4th July 2012

 \times Observation of an excess in the search for the SM Higgs boson in the $\gamma\gamma$ channel.

```
ATLAS
4.5\sigma at m<sub>H</sub>=126.5 GeV
\mu=1.9±0.5
```

```
CMS
4.1σ at m<sub>H</sub>=125 GeV
μ=1.56±0.43
```

Photon's identification

× 9 variables to caracterize the EM shower shape

Photon's isolation

× Tracker isolation: p_T sum of all tracks with pT > 1 GeV in a cone of $\Delta R < 0.2$ around each photon. Required to be below 2.6 GeV

× Calorimeter isolation: transverse energy sum (of topological cluster) deposited in the calorimeter around the photon in a cone of $\Delta R = 0.4$. Required to be below 6 GeV

"Tight" selection + isolation requirement → rejection factor ~10000

Event categorisation CMS/ATLAS

Categories

 $_{\rm X}$ η , $p_{_{\pi_{\rm T}}}$ and conversion categories

Central and Rest divided into $p_{Tt} < 60 \, {
m GeV}$ and $p_{Tt} > 60 \, {
m GeV}$

Purity per category

 \times Number of events in the data and expected number of signal events for m_=126.5 GeV, for each category in the mass range 100-160 GeV

\sqrt{s}	8 TeV						
Category	N _D	N_S	$gg \rightarrow H [\%]$	VBF [%]	WH [%]	ZH [%]	ttH [%]
Unconv. central, low p_{Tt}	6797	32	93	4.2	1.4	0.9	0.2
Unconv. central, high p _{Tt}	319	4.7	76	15.2	3.9	2.9	1.7
Unconv. rest, low p_{Tt}	26802	69	93	4.2	1.7	1.1	0.2
Unconv. rest, high p_{Tt}	1538	9.7	76	15.1	4.5	3.3	1.2
Conv. central, low p_{Tt}	4480	21	93	4.2	1.4	0.9	0.2
Conv. central, high p_{Tt}	199	3.1	77	14.5	4.1	2.8	1.7
Conv. rest, low p_{Tt}	24107	60	93	4.1	1.7	1.1	0.2
Conv. rest, high p_{Tt}	1324	8.3	75	15.1	4.9	3.4	1.3
Conv. transition	10891	28	90	5.6	2.3	1.5	0.3
High Mass two-jet	345	7.6	31	68.2	0.3	0.2	0.1
Low Mass two-jet	477	4.7	60	5.1	20.7	12.1	1.6
One-lepton	151	2.0	3.2	0.4	62.5	15.8	18.0
All categories (inclusive)	77430	249	88	7.4	2.8	1.6	0.5

Resolutions and S/B ratio per category

× Signal, mass resolutions and number of events in the data and expected number of signal events in a mass window around $m_{_{\rm H}}$ =126.5 GeV containing 90% of the expected signal.

\sqrt{s}	8 TeV					
Category	$\sigma_{CB}(GeV)$	FWHM (GeV)	Observed	N_{S}	NB	N_S/N_B
Unconv. central, low p_{Tt}	1.47	3.45	569	29	538	0.053
Unconv. central, high p_{Tt}	1.37	3.22	25	4.2	25	0.168
Unconv. rest, low p_{Tt}	1.59	3.75	2773	61	2610	0.023
Unconv. rest, high p_{Tt}	1.52	3.59	148	8.7	138	0.063
Conv. central, low p_{Tt}	1.64	3.86	446	18	417	0.044
Conv. central, high p_{Tt}	1.49	3.51	18	2.8	17	0.163
Conv. rest, low p_{Tt}	1.83	4.32	2898	54	2763	0.019
Conv. rest, high p_{Tt}	1.7	4.00	144	7.4	138	0.053
Conv. transition	2.35	5.57	1872	25	1825	0.014
High Mass two-jet	1.55	3.65	47	6.8	33	0.204
Low Mass two-jet	1.46	3.45	62	4.2	45	0.093
One-lepton	1.63	3.85	18	1.7	16	0.108
Inclusive	1.64	3.87	8802	223	8284	0.027

Systematics

× Systematic uncertainties impact on the signal yield for the analysis of the 8 TeV data.

Systematic uncertainties		Constraint		
Luminosity				
Trigger				
Photon ID		±5	5.3	Log-normal
Isolation		.0		
Photon Energy Scale		±0).4	
Branching ratio	±5.9% -	Asymmetric Log-normal		
Scale	ggH: +7.2 8 ZH: +1.6 5	VBF: +0.2 -0.2 ttH: +3.8 -9.3	WH: +0.2 -0.6	Asymmetric Log-normal
$Pdf+\alpha_s$	ggH: ^{+7.5} -6.9 WH: ±3.5	VBF: +2.6 2.7 ZH: ±3.6	ttH: ±7.8	Asymmetric Log-normal
Theory cross section on ggF	High Mass	two-jet: 25	Low Mass two-jet: 30	Log-normal

Statistical procedure

× Signal and Background modelling

```
. Signal = Crystal
Ball + Gaussian (MC
samples)
```

```
. Background =
Exponential or
Bernstein 4 (depends
on the category)
```

```
× μ = the parameter of
interest.
Profile likelihood ratio
used to test different
values.
```


Signal strength per category

Photon energy calibration

× MC based calibration + additional corrections (material mismodelling, calorimeter non-uniformity) from $Z \rightarrow ee$ in data. × Independent calibration for converted and unconverted photons. × Energy scale at m_z known to 0.3%, uniformity (constant term) 1% in barrel, 1.2 to 2.1% in endcap.

Mass measurement

× Mass in $H \rightarrow \gamma \gamma$ and $H \rightarrow 41$

- . $H \rightarrow \gamma \gamma$: $M_{\mu}=126.6 \pm 0.3(\text{stat}) \pm 0.7(\text{syst}) \text{ GeV}$
- . $H \rightarrow 41$: m_{μ} =123.5 ± 0.8(stat) ± 0.3(syst) GeV
- . combination : $M_{\mu}=125.2 \pm 0.3(\text{stat}) \pm 0.6(\text{syst}) \text{ GeV}$

Difference: $3.0\pm0.8(\text{stat})^{+0.7}$ (syst)GeV $\rightarrow 2.7\sigma$ (~0.8% probability)

Systematics dominated so far by photon energy scale.

Mass resolution in yy

- × Inclusive mass resolution: 1.64 GeV
- × Pile-up robust
- × Main systematic: energy calorimeter scale (12%)

Contour plots

 $_{\rm X}$ Vary $\mu_{_{\rm i}}$, fixe $~\mu_{_{\rm f}}$ to unity

$$n_{\text{signal}}^{k} = \left(\sum_{i} \mu_{i} \sigma_{i,\text{SM}} \times A_{i}^{k} \times \varepsilon_{if}^{k}\right) \times \mu_{f} \times B_{f,\text{SM}} \times \mathcal{L}^{k}$$

- . A : detector acceptance
- . L : integrated luminosity
- . E : reconstruction efficiency

.
$$\mu_{i} = \sigma_{i} / \sigma_{i,SM}$$
 and $\mu_{f} = B_{f} / B_{f,SM}$

Coupling fits

 \times Observed yields can be parametrized as: SM x coupling scale factors κ

$$\boldsymbol{\sigma} \cdot BR(ii \to H \to ff) = \boldsymbol{\sigma}_{SM} \cdot BR_{SM} \frac{\boldsymbol{\kappa}_i^2 \cdot \boldsymbol{\kappa}_f^2}{\boldsymbol{\kappa}_H^2} \quad \sim \boldsymbol{\Gamma}_{\mathbf{i}} \cdot \boldsymbol{\Gamma}_{\mathbf{f}} / \boldsymbol{\Gamma}_{\mathbf{H}}$$

. $\kappa_{_{\rm H}}: {\tt total}$ Higgs width ~ 4 MeV, not accessible at LHC

Event display

 \times Event display of a diphoton with two jets event candidate where both photon candidates are converted. The event number is 24947130 and it was recorded during run 204769 at sqrt(s) = 8 TeV

New contribution to yy loop

 \times $\mu=1.80+0.42-0.36$ \rightarrow new particle in the loop H $\rightarrow \gamma\gamma$ or gg –> H loop (stop, stau) ?

Agreement with SM expectations better than 2 σ