

Precision weak boson production cross section measurements at LHCb

Colin Barschel
on behalf of the LHCb collaboration

La Thuile 2013

Outline

LHCb detector

LHCb explored kinematics

Collision between proton A and B with partons a and b

 $Q^2 = M^2$ $x_{1,2} = (M/Vs) e^{\pm y}$

$$\sigma_{AB}(x,Q^2) = \int dx_a dx_b \ f_{a/A}(x_a,Q^2) f_{b/B}(x_b,Q^2) \ \sigma_{ab}(x_a,x_b,Q^2)$$

Hadronic cross-section

Proton structure parameterized with the PDFs PDFs: **O(2-8%)**

Partonic cross-section NNLO: O(2-8%) in forward region

LHCb probes 2 regions:

High x: PDFs are well known

Low x: PDFs are essentially unknown

Z/W Q² (10

Q² (10'000 GeV²)

Low mass DY y*

 Q^2 (25 GeV^2)

 $x = 8 \times 10^{-6}$

 $x = 1.7 \times 10^{-4}$

PDF uncertainties are large (5-8%) at large rapidities 2<y<5 accessible to LHCb

LHCb electroweak measurements provide valuable input for the PDF fits

Low mass + high rapidity \rightarrow low x

Cross-section measurement

What are the major ingredients:

$$\sigma = \frac{\rho}{\int L \, dt} \sum_{i=1}^{Nevents} \frac{1}{efficiencies}$$

Purity ρ = the number of signal events / total number of events

Experimental **efficiencies** (tracking, identification, trigger) are calculated per event: as function of η and p_{T} of the two leptons -> mostly determined from data

Luminosity is measured in dedicated fills with 2 independent methods: "van der Meer scan" (VDM) and Beam-Gas Imaging (BGI)
Present uncertainty is 3.5% (LHCB-PAPER-2011-015)

+ Acceptance; final state radiation corrections

$W\rightarrow \mu\nu$ cross-section

K, π decay in flight (shape from data)

Z/γ* with 1 muon in acceptance (shape from simulation)

Uncertainties:

$$W^+ \rightarrow \mu^+ \nu \quad W^- \rightarrow \mu^- \bar{\nu}$$

statistical 1.1% 1.2%

systematic 3.2% 2.9%

luminosity 3.5% 3.5%

$$N_{W+} = 14660$$

 $\rho_{W+} = 78.8\%$

$$N_{W_{-}} = 11618$$

 $\rho_{W_{-}} = 78.4\%$

W analysis already limited by luminosity with 2010 data only

$W \rightarrow \mu \nu$ cross-section

Published in: LHCb-PAPER-2012-008 JHEP06 (2012) 058 (arXiv:1204.1620)

Reduce luminosity uncertainty: valuable input to PDFs

Ratio: most systematic uncertainties cancel

→ Precise measurement
1.7%

$Z \rightarrow \mu\mu$ cross section

Data: single μ with $p_T > 10 \text{ GeV/c}$

Selection: two muons

 $p_{T\mu}$ >20 GeV/c; 2.0< η_{μ} <4.5

 $60 < M(\mu\mu) < 120 \text{ GeV/c}^2$

 $Z \rightarrow \mu\mu$ signal

Low background:

 $Z \rightarrow \tau \tau$; W-pair; Top-pair; QCD

 N_7 = 1966

Bkg $=4.8\pm1.0$

= 99.7% ρ_{z}

Uncertainties:

 $Z \rightarrow \mu\mu$

statistical 2.2%

systematic

4.3%

luminosity 3.5% Dominated by efficiencies

Determined from data -> of statistical nature

$Z \rightarrow ee$ cross section

Z→ee

statistical 1.1%

3.1% systematic

luminosity 3.5% Detector characteristics prevent a sharp Z peak Calorimeter saturates; good momentum measurement but energies are underestimated due to bremsstrahlung. Still possible to select Z→ee with high purity

Z→dilepton cross section

NNLO with DYNNLO; PDF uncertainties at 68% CL

Other measurements not shown here:

Z→ττ ∫L 1028 pb⁻¹

Precision (%): 5.0 (stat) 3.9 (sys) 3.5 (lumi)

LHCb-PAPER-2012-029 arXiv:1210.6289 (JHEP)

 $\gamma^* \rightarrow \mu\mu \int L 37 \text{ pb}^{-1} \quad 5 \leq M\mu\mu \leq 120 \text{ GeV/c}^2$

With $\int L \, 1 \, \text{fb}^{-1}$ analysis will be limited by luminosity in higher mass bins

LHCb-CONF-2012-013

With the full 2011 and 2012 data set

Uncertainties on electroweak cross sections are now mostly dominated by systematic uncertainties

- -Most systematic uncertainties are of statistical nature -> will improve with more data
- -Ideally the major electroweak cross section measurements should be limited by the detector performance

Measurements should not be dominated by luminosity uncertainty (now 3.5%)

-Precision on integrated luminosity of 2% (or less) is therefore necessary

Precision EW measurements are only possible together with a precision luminosity measurement

- •Bunch intensity (N_1N_2) measured by LHC instrumentation. Uncertainties: 2.8% in 2010; O(0.3%) in 2011, 2012
- •Overlap integral depends on beams properties (e.g. beam width, position, angle, shape) Determined with 2 independent methods:
 - 1. Classic "van der Meer scan" (VDM) used by all 4 LHC experiments
 - 2. Beam-gas imaging (BGI): **new method exclusive to LHCb**

Beam-Gas Imaging (BGI) $L = f \cdot N_1 N_2 \cdot Overlap$

$$Overlap = \int \rho_1(x, y, z, t) \rho_2(x, y, z, t) dx dy dz dt$$

Single bunch density function of colliding bunch pair (e.g. double Gaussian profile)

Overlap integral depends on:

- Single bunch profiles (X,Y width, shape)
- Beam crossing angle
- Offset (head-on or displaced)

All parameters are measured using interactions between beam and residual gas

Measuring the shape of the bunches

Global fit

Measurement per 20 minutes and per bunch pair ($\approx 10^5$ beam gas and 10^6 beam beam vertices)

- -Fit single beams and beam spot in one global fit
- -Free parameters are: beam widths (double Gaussian, weight), position, angle (only amplitudes are free parameters for beam spot -> strong fit constrain)

Shape and position of beam spot is fully predicted by single beam parameters

Vertex resolution

Beam gas vertices are measured with the VErtex LOcator (VELO) detector -Geometry and proximity to the beam permits to achieve high precision in vertex position

Knowledge of the resolution is important:

Measured beam width is a convolution of true beam widths with the resolution Resolution depends on:

- •Z position of vertex
- Number of tracks
- •Beam gas or beam beam events have different track distributions
 - → Additional parameterization needed for beam gas events and Z position

Gas injection to increase beam gas rate

- •To increase the accuracy of the beam gas method a larger beam gas rate is necessary
- •In 2012 a gas injection system (called SMOG) has been used in dedicated fills
- •By injecting neon at the Interaction Point (IP), the vacuum is degraded: from $\approx 10^{-9}$ mbar to $\approx 10^{-7}$ mbar

Higher fit accuracy and better shape description

Additionally:

- •Measure single bunch relative intensity in a statistical way (independent of LHC devices)
- •Measure charges outside nominal filled LHC bunches (so-called "ghost charges", not seen by LHC instrument)
- •Measure beam size evolution over time

LHCb provides this data to the other experiments and to the LHC

Luminosity uncertainties

Final analysis is underway

Statistical and fit uncertainty O(1%) per bunch pair

≈1000 measurements in 2012

Knowledge of the vertex resolution

Affects beam width

X/Y factorizability* O(1%)

Crossing angle correction

Resolution uncertainty of 5% and 10 m β^{\ast}

optics: O(1-2%) on cross section

O(170)

O(0.2%)

*VDM method used by other experiments assumes "factorizable beams" i.e. X shape does not depend on Y position.

→ Not true! Can be seen and measured with beam gas at LHCb

Luminosity uncertainties not related to beam gas method

Stability of luminosity counters over full O(0.5%)

dataset

Beam total intensity scale O(0.3%) (was 2.8% in 2010!) (LHC device)

Single bunch intensity O(0.2%)

(measured by LHCb or LHC device)

Ghost charges correction O(0.1%) — Measured by LHCb for all experiments

Conclusion and outlook

Luminosity: (LHCB-PAPER-2011-015)

- •High accuracy of beam gas method possible in 2012 with gas injections (SMOG)
- •No gas injection in 2011 but beam gas method still possible with less accuracy
- •Uncertainty on beam intensity absolute scale is now reduced by x10 for 2011 and 2012
- •Combine van der Meer and beam gas methods (independent methods → strong constrain)
- → Ideally no measurement should be limited by the luminosity uncertainty

LHCb electroweak measurements

- 1 fb⁻¹ in 2011 (Vs 7 TeV)
 - •W/Z production
 - •Low mass Drell-Yan γ*→μμ
 - •Z→ee

will improve using full dataset (≈30× more data)

In some cases limited by present luminosity uncertainty

limited by present luminosity uncertainty

- 2 fb⁻¹ in 2012 (Vs 8 TeV)
 - New kinematics
 - •Twice the data
 - High precision luminosity

References

- Inclusive W and Z production in the forward region at sV = 7 TeV, LHCb Collaboration, 2012,
 High Energy Phys. 06 (2012) 058, LHCB-PAPER-2012-008
- 2. Measurement of the cross-section for Z→e+e− production in pp collisions at sV=7 TeV, LHCb Collaboration, 2012, LHCB-PAPER-2012-036
- Inclusive low mass Drell-Yan production in the forward region at s√ = 7 TeV, LHCb Collaboration,
 2012, LHCb-CONF-2012-013
- 4. A study of the Z production cross-section in pp collisions at s√ = 7 TeV using tau final states, LHCb Collaboration, 2012, LHCB-PAPER-2012-029
- 5. "Absolute luminosity measurements with the LHCb detector at the LHC", LHCb Collaboration, 2012 LHCB-PAPER-2011-015, *J. Instrum.* 7 (2012) P01010
- 6. Results of the LHC DCCT Calibration Studies, C. Barschel et al. ,2012, CERN-ATS-Note-2012-026
- 7. "LHC Bunch Current Normalisation for the April-May 2010 Luminosity Calibration Measurements" G. Anders et al. (BCNWG note1), <a href="https://center.ncbi.nlm.ncbi
- 8. "LHC Bunch Current Normalisation for the October 2010 Luminosity Calibration Measurements" A. Alici et al. (BCNWG note2), CERN-ATS-Note-2011-016 PERF
- 9. "Study of the Relative LHC Bunch Populations for Luminosity Calibration", G. Anders et al. (BCNWG note3), CERN-ATS-Note-2012-028 PERF.
- 10. "Study of the LHC Ghost Charge and Satellite Bunches for Luminosity Calibration", A. Alici et al. (BCNWG note4), CERN-ATS-Note-2012-029 PERF

Backup slides

Low mass Drell-Yan production cross-section $\gamma^* \rightarrow \mu\mu$

Results compared to NLO calculations (data not corrected for FSR)

Theoretical errors include the NLO prediction uncertainties and PDFs uncertainties (at 68% C.L.)

Bins $M_{uu} > 40 \text{ GeV/c}^2$ have a cut of $p_T > 15 \text{ GeV/c}$ (for both data and predictions)

Cross-section in Z bin compatible with previous Z cross-section measurement LHCb-PAPER-2012-008

With more data: result in higher mass bin will be limited by present luminosity precision

PYTHIA cross-section normalized to highest mass bin

Drell-Yan production cross-section (in mass bins)

Results vs. different PDF sets with NLO from FEWZ (data not corrected for FSR) Only PDF uncertainties at 68% C.L. are shown Bins $M_{uu} > 40$ GeV/c² have a cut of $p_T > 15$ GeV/c (for both data and predictions)

