LBNO: neutrino oscillations and facility

Etam NOAH (UniGe) - on behalf of the LBNO collaboration

December 5, 2012

- 4 回 2 - 4 □ 2 - 4 □

Etam NOAH (UniGe) - on behalf of the LBNO collaboration LBNO: neutrino oscillations and facility

Introduction to LBNO

Motivation Site Status

Oscillations LBNO estimates Comparing facilities

LBNO facility

Site selection The far detector complex The near detector complex Beam considerations

< ≣⇒

A ■

- < ≣ →

æ

Motivation Site Status

LBNO motivation — the background

- Discovery of the Higgs confirms/reinforces the Standard Model;
- Neutrino masses and oscillations are the only experimental evidence of physics Beyond the Standard Model (BSM);
- Neutrinos are the only fermions whose properties remain largely unknown.. and these are sought to further our knowledge of the SM;
- Past quests and recent results have significantly clarified the picture and help focus our efforts towards the future precision measurements required.

イロン イヨン イヨン イヨン

Motivation Site Status

LBNO motivation

- Next generation long baseline experiment aiming at significantly better sensitivity than achievable at combined T2K, NOvA and reactor experiments;
- LBNO will explicitly observe MH induced matter effects and CP-violation - c.f. extraction of hierarchy or δ_{CP} from global fits of all available data;
- Extend nucleon decay searches, a unique probe for BSM up to the Grand Unification Scale,
- Perform very compelling and complementary atmospheric and astrophysical neutrino detection programmes, accessible since detector is deep underground.

イロン イヨン イヨン イヨン

Moscov

Protvino

o Zaporoz

- Oulu 165 km
 - Jvväskylä 180 km
 - Helsinki 450 km
- Distance to CERN 2300 km
- Good traffic connections
 - the main highway: Helsinki – Jyväskylä – Oulu – ...
 - the second busiest airport in Oulu
 - rail yard at the mine
 - Inhabitants: ~6000

Being extensively investigated in LAGUNA DS since 2008

2300 km baseline is suitable for Neutrino Factory

イロト イヨト イヨト イヨト

Estonia

Latvia

Belarus

Moldova

Bulgaria

Ukraine

Ankara

Turkey

ithuania

Romania

Greece

Athens

2100 km from BAL, 1500 km from

DESY, and 1160 km from Protvino.

CONTRO CO

aland

na Slovakia

Czech Rep

Austria Hungary

Croatia

Denmark

DESY

Belgium Germany

United

Kingdom

RAL

France

CERN

and

Igal

1

- 2010: Site selection;
- 2012: Submission of LBNO Eol to CERN;
- ► 2014: Technical design;
- ▶ 2015: Critical decision;
- 2016-2021:
 Excavation-construction;
- ▶ 2023: LBL physics start.

イロト イヨト イヨト イヨト

Etam NOAH (UniGe) - on behalf of the LBNO collaboration LBNO: neutrino oscillations and facility

¹Timescale pending approval and funding

Motivation Site Status

イロン イヨン イヨン イヨン

LBNO EOI

- Expression of Interest for a very long baseline neutrino oscillation experiment (LBNO) - SPSC-EOI-007-LBNO: submitted June 2012;
- Presentation to the SPS committee 26 June 2012;
- SPSC favourable:
 - Encouraged collaboration to prepare a TDR.

Motivation Status

LBNO Collaboration

~230 authors, 51 institutions

A. Stahl,¹ C. Wiehusch,¹ A. M. Guler,² M. Kamistiozhu,² R. Sever,² A.U. Yilmaner,³ C. Gunes Personalus 5 V. Berardi 6 F. Cafarna 6 M.G. Catanni 6 L. Massletti 8 A. Meradonte 6 M. Ouinto,6 E. Radicioni,6 A. Ereditato,7 I. Kreala,7 C. Pistillo,7 M. Weber,7 A. Arina,7 T. Arina,7 T. Stream 7 M. Berbeher 7, J. Kanada 7, C. Hay 7, S. Haye 7, A. Jine 7, J. Lawren 7, A. Cardini 9, A. Lai,⁹ R. Oldeman,¹⁰ M. Thomson,¹¹ A. Blake,¹¹ M. Prest,¹² A. Auld,¹³ J. Elliot,¹³ J. Lambard,¹³ C. Thompson,15 Y.A. Gormahkin,14 S. Pascoli,15 R. Collins,16 M. Haworth,16 J. Thompson,16 G Benzisseni ¹⁷ D Denenizi ¹⁷ A Lonzhin ¹⁷ A Blandel ¹⁸ A Broom ¹⁸ F Defect ¹⁸ V Karadolov ¹⁸ A. Korseney, ¹⁸ E. Nash, ¹⁸ M. Baymel, ¹⁸ M. Rayner, ¹⁸ R. Asfandinarov, ¹⁸ A. Haesler, ¹⁸ T. Kalliokoski,22 J. Kumpulainen,22 K. Loo,22 J. Maalampi,22 M. Manninen,22 I. Moore,22 M. Murdoch,²⁴ N. McCauley,²⁴ D. Pavne,²⁴ P. Jonsson,²⁵ A. Kaboth,²⁵ K. Long,²⁵ M. Malek,²⁵ M Sents ²⁵ Y Uzbida ²⁵ M O Warder ²⁵ F Di Ledwirer ²⁶ J R. Wilson ²⁶ B. Still ²⁶ R. Sarra ²⁶ A. Khotjantsev, 28 Y. Kudenko, 28 V. Matveev, 28 O. Mineev, 28 N. Yershov, 28 V. Palladina, 29 J. Evans, 30 S. Söldner, Berchold ²⁰ U.K. Yang ²⁰ M. Benezini ²¹ T. Philaionieni ²² M. Warlstein, ²² K. Marsula,³² T. Enovist,³² P. Kuzziniemi,³² T. Riihi,³² J. Sarkamo,³² M. Shuperki,³² J. Hissa,³² E. Keikko,³² M. Aittola,³² G. Barr,³³ M.D. Haigh,³³ J. de Jong,³³ H. O'Keeffe,³⁵ A. Vacheret,³³ A. Weber, ^{33,34} G. Galvanin, ³⁵ M. Teraussi, ³⁵ O. Cavetta, ³⁴ T. Davenne, ³⁴ C. Densham, ³⁴ J. Eie, ³⁴ P. Lowridge, ³⁴ J. Odell, ³⁴ D. Wark, ³⁴ A. Bobert, ³⁶ B. Andrieu, ³⁶ B. Popov, ^{36, 34} C. Giganti, ³⁶ J.-M. Levy,²⁰ J. Dumarchez,²⁰ M. Buizza-Avanzini,²⁷ A. Cabrera,²⁷ J. Duwson,²⁷ D. Franco,²⁷ D. Kryn,³⁷ M. Obolensky,³⁷ T. Patzuk,³⁷ A. Tonazzo,³⁷ F. Vagueri,³⁷ D. Orestano,³⁸ R. Di Micco,³⁸ L. Tortora,³⁰ O. Bósida,⁴⁰ A. Delbart,⁴⁰ S. Emery,⁴⁰ V. Galymov,⁴⁰ E. Mazzocato,⁴⁰ G. Vasseur,⁴⁰ M. Zito,⁴⁰ V.A. Kudrravtsev,⁴¹ L.F. Thompson,⁴¹ R. Tsenov,⁴² D. Kolev,⁴² I. Rusinov,⁴² M. Bownilov, ⁴² G. Varkon, ⁴⁰ R. Matey, ⁴² A. Vordsey, ⁴⁵ Yu. Neelkov, ⁴³ S. Kowanesko, ⁴³ V. Suvorov,⁴³ G. Gavrilov,⁴³ E. Banssan,⁴⁴ M. Dracos,⁴⁴ C. Jollet,⁴⁴ A. Meregadia,⁴⁴ E. Vallazza,⁴⁵

E. Rondio, ⁴⁴ J. Landa, ⁴⁶ J. Zalinska, ⁵⁸ P. Przewiszki, ⁴⁶ K. Grzelak, ⁴⁰ G. J. Barker, ⁵⁰ S. Bord, ⁵⁰ P.F. Barrison, ⁵³ R.P. Litchfield,⁵⁰ Y. Bamachers,⁵⁰ A. Badertscher,⁵¹ A. Curioni,³¹ U. Deganda,⁵¹ L. Ennrocht,⁵¹ A. Genekotti,⁵¹ L. Kneeht,⁵¹ S. DiLaise,⁵¹ S. Harikana,⁵¹ D. Lossi,⁵¹ S. Marnho,⁵¹

G. Natterer,⁵¹ F. Petrolo,⁵¹ L. Periale,⁵¹ A. Rubbia,^{51, *} F. Sergiampietri,⁵¹ and T. Viant⁵

- Middle East Technical University (METUL Ankara, Turkey
- LAPP, Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France
- Institute of Nuclear Technology-Recision Protection, National Centre for Scientific Research "Demokritos", Athens, Greece
- University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), Bern
- Faculty of Physics, University of Bucharest, Bucharest, Romania
- INFN Secone d Caglan, Caglan, Italy
- INFN Secone di Cagliari and Università di Cagliari, Cagliari, Italy
- University of Cambridge, Combridge, United Kingdom
- Universita' dell'Insubria, sede di Como/ INFN Milano Biococa, Como, Italy

- Institute for Particle Physics Phenomenology, Durham University, United Kinodom
- INFN Laboratori Nazionali di Francati, Françati, Italy
- University of Geneva, Section de Physique, DPNC, Geneva, Switzerland
- University of Glasgow, Glasgow, United Kingdom

- Physics Department, Lancaster University, Lancaster, United Kingdom
- University of Liverpool, Department of Physics, Liverpool, United Kingdom
- Imperial College, London, United Kingdom
- Queen Mary University of London, School of Physics, London, United Kinadom
- Dept. of Physics and Astronomy, University College London, London, United Kingdom
- INFN Sectore di Nanoii and Liziventità di Nanoii. Dinartimento di Finica. Nanoi, Italy
- University of Manchester, Manchester, United Kingdon
- INFN Miano Ricogga Miano, Italy
- Oxford University, Department of Physics, Oxford, United Kingdom
- - UPWC Università Parte Eldenti, CMESSINDES L'abvestrire de President Nordiales et de Hautes Francies (LPM-F). Parte
 - APC, AstroParticula et Cosmiticale, Université Paris Didente, CNRS/MJP3, CEA/Irlu, Observatoire de Paris, Sortionne Paris Cèlè Paris, France

 - INFU. CEA Saclex, Gr-sur-Yvette, France
 - University of Sheffield, Department of Physics and Astronomy, Sheffield, United Kingdom
 - Department of Atomic Physics, Faculty of Physics, St Kiment Ohriddel University of Sofe, BG-1164, Sofe, Bulgaria
 - Patersburg Nuclear Physics Institute (PNPI), St Petersburg, Russia
 - 17HC, Université de Drasbourg, CN/IG/NDPO, Strasbourg, France
 - INFN Trieste, Trieste, Italy

 - Université de Luce, Université Claude Remard Luce 1, IPN Luce (IN2PS), Vileurbanne, France
 - Institute of Experimental Physics, Warsow University (IFD UW), Warsow, Poland
 - University of Warwick, Department of Physics, Coventry, United Kingdon

イロト イヨト イヨト イヨト 2

Etam NOAH (UniGe) - on behalf of the LBNO collaboration

- 42.

LBNO estimates Comparing facilities

Normal mass hierarchy: spectral information: $\nu_{\mu} \rightarrow \nu_{e}$

Etam NOAH (UniGe) - on behalf of the LBNO collaboration

LBNO estimates Comparing facilities

Inverted mass hierarchy: spectral information: $\nu_{\mu} \rightarrow \nu_{e}$

Etam NOAH (UniGe) - on behalf of the LBNO collaboration

LBNO: neutrino oscillations and facility

LBNO estimates Comparing facilities

Inverted mass hierarchy: spectral information: $\nu_{\mu} \rightarrow \nu_{e}$

Etam NOAH (UniGe) - on behalf of the LBNO collaboration

LBNO: neutrino oscillations and facility

LBNO estimates Comparing facilities

Э.

Beam composition

LBNO estimates Comparing facilities

▲□→ < □→</p>

< ∃⇒

μ -like CC sample

LBNO estimates Comparing facilities

・ロト ・回ト ・ヨト

< ≣⇒

e-like CC sample

LBNO estimates Comparing facilities

$\nu/\overline{\nu}$ and MH

Etam NOAH (UniGe) - on behalf of the LBNO collaboration

LBNO: neutrino oscillations and facility

LBNO estimates Comparing facilities

MH sensitivity

- Nominal beam power scenarios (700kW);
- MH: 100% coverage above 5σ in a few years of running.

イロト イヨト イヨト イヨト

æ

LBNO estimates Comparing facilities

CPV sensitivity

- Nominal beam power scenarios (700 kW);
- CPV: 60% coverage and evidence for maximal CP (π/2, 3π/2) at 2.9σ in 10 years;
- Reduce systematics with near detector, hadron prod. meas...;
- sensitivity also improved by:
 - higher beam power;
 - larger far detector;

LBNO estimates Comparing facilities

Incremental approach with conventional beams

Etam NOAH (UniGe) - on behalf of the LBNO collaboration LBNO: neutrino oscillations and facility

LBNO estimates Comparing facilities

・ロト ・回ト ・ヨト ・ヨト

3

Facilities compared in P. Huber et al. arXiV 1209.5973

	Setup	$E_{ u}^{ m peak}$	L	OA	Detector	\mathbf{kt}	MW	Decays/yr	$(t_ u,t_{ar u})$
Benchmark	BB350	1.2	650	-	WC	500	_	$1.1(2.8) \times 10^{18}$	(5,5)
	NF10	5.0	2000	-	MIND	100	_	7×10^{20}	(10,10)
	WBB	4.5	2 300	_	LAr	100	0.8	_	(5,5)
	T2HK	0.6	295	2.5°	WC	560	1.66	_	(1.5, 3.5)
Alternative	BB100	0.3	130	_	WC	500	_	$1.1(2.8) \times 10^{18}$	(5,5)
	+ SPL	0.5		_			4	_	(2,8)
	NF5	2.5	1 290	_	MIND	100	_	7×10^{20}	(10,10)
	LBNE _{mini}	4.0	1290	_	LAr	10	0.7	_	(5,5)
	$NO\nu A^+$	2.0	810	0.8°	LAr	30	0.7	_	(5,5)
2020	T2K	0.6	295	2.5°	WC	22.5	0.75	-	(5,5)
	ΝΟνΑ	2.0	810	0.8°	TASD	15	0.7	_	(4,4)

Etam NOAH (UniGe) - on behalf of the LBNO collaboration LBNO: neutrino oscillations and facility

LBNO estimates Comparing facilities

Systematics: arXiV 1209.5973

		SB			BB			NF	
Systematics	Opt.	Def.	Cons.	Opt.	Def.	Cons.	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%	0.2%	0.5%	1%	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%
(incl. near-far extrap.)									
Flux error signal ν	5%	7.5%	10%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background ν	10%	15%	20%	correlated		correlated			
Flux error signal $\bar{\nu}$	10%	15%	20%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background $\bar{\nu}$	20%	30%	40%	correlated		correlated			
Background uncertainty	5%	7.5%	10%	5%	7.5%	10%	10%	15%	20%
Cross secs \times eff. QE [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. RES [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%	5%	7.5%	10%	5%	7.5%	10%
Effec. ratio $\nu_e/\nu_\mu \ QE^{\star}$	3.5%	11%	_	3.5%	11%	_	-	_	_
Effec. ratio ν_e/ν_μ RES [*]	2.7%	5.4%	_	2.7%	5.4%	_	-	_	_
Effec. ratio ν_e/ν_μ DIS [*]	2.5%	5.1%	_	2.5%	5.1%	_	-	_	_
Matter density	1%	2%	5%	1%	2%	5%	1%	2%	5%

・ロン ・回と ・ヨン ・ヨン

LBNO estimates Comparing facilities

A 3 3

"Fraction of δ " as performance indicator: arXiV 1209.5973

LBNO estimates Comparing facilities

Comparing facilities: arXiV 1209.5973

LBNO estimates Comparing facilities

Varying systematics: arXiV 1209.5973

Etam NOAH (UniGe) - on behalf of the LBNO collaboration LBNO: neutrino oscillations and facility

LBNO estimates Comparing facilities

"Switching off" systematics: arXiV 1209.5973

Etam NOAH (UniGe) - on behalf of the LBNO collaboration

æ

Site selection The far detector complex The near detector complex Beam considerations

Etam NOAH (UniGe) - on behalf of the LBNO collaboration

LBNO: neutrino oscillations and facility

Outline Site Introduction to LBNO The Oscillations The LBNO facility Bea

Site selection The far detector complex The near detector complex Beam considerations

- 4 回 2 - 4 回 2 - 4 回 2

2540 km – bimagic value 7250 km – magic value

T /	CEDN	IDADO	E '11
Location	CERN	J-PARC	Fermilab
Baseline (km)	2540	7250	7250
Pyhäsalmi	2290 (90%)	7090~(98%)	6630~(91%)
Boulby	1050~(41%)	8480~(117%)	5980~(82%)
Canfranc	650~(26%)	9280~(128%)	6550~(90%)
Frejus	130~(5%)	8900~(123%)	6840~(94%)
Sieroszowice	940~(37%)	8180~(113%)	6960~(96%)
Slanic	1540~(61%)	8150 (112%)	7780~(107%)
Umbria	670~(26%)	8850 (122%)	7300~(101%)

Site selection The far detector complex The near detector complex Beam considerations

LAGUNA-LBNO study cases

CN2PY L=2288 km, CERN SPS 400 GeV 3 main options + new beam line 0.75 MW selected for + near detector infrastructure LAGUNA-LBNO Longer term: 2MW with LP-SPL+HPPS accelerator study and/or Neutrino Factory CN2FR L=130 km. HP-SPL 5 GeV 4 MW LINAC + **CNGS-Umbria** accumulator ring + MMW target + horn L=658 km, Ideg OA CERN SPS 400 GeV + near detector infrastructure presently operating 0.3 MW Longer term: beta-beam (0.5 MW max) no near detector infrastructure 1823 km

Etam NOAH (UniGe) - on behalf of the LBNO collaboration

LBNO: neutrino oscillations and facility

Site selection The far detector complex The near detector complex Beam considerations

Current status of the Pyhäsalmi mine (Inmet Mining Ltd., Canada)

- Produces Cu, Zn, and FeS₂;
- The deepest mine in Europe:
 - depths down to 1400 m (4000 m.w.e.).
- The most efficient mine of its size and type;
- Very modern infrastructure:
 - lift down to 1400 m: 3 minutes;
 - 11-km long decline: 40 minutes by truck;
 - good communication systems.
- Operation time still 7-8 years with currently known ore reserves (until 2018);
- Compact mine, small foot print.

Site selection The far detector complex The near detector complex Beam considerations

イロト イヨト イヨト イヨト

Unique features of Pyhäsalmi

- Many optimal conditions satisfied simultaneously:
 - Infrastructure is ultra modern and in perfect state since mine is still operational;
 - Very little environmental water;
 - Could be dedicated to science when mine closes in 2018.
- One of the deepest locations in Europe (4000 m.w.e);
- Lowest reactor neutrino background in Europe, relevant for ν. low MeV ν;
- Extensive site investigation planned 2012-2014 (Finnish contribution).

Site selection

The far detector complex The near detector complex Beam considerations

CERN to Pyhäsalmi

- Distance CERN Pyhäsalmi = 2288 km;
- Deepest point = 103.8 km;
- Abundant geophysical data about crust and upper mantle available;
- Remaining uncertainty has small effect on neutrino oscillations (assumed equivalent to ±4% global change in matter density).

Site selection The far detector complex The near detector complex Beam considerations

Layout of the LAGUNA-LBNO observatory at Pyhäsalmi

Etam NOAH (UniGe) - on behalf of the LBNO collaboration

LBNO: neutrino oscillations and facility

Site selection The far detector complex The near detector complex Beam considerations

イロン イヨン イヨン イヨン

æ

Dome excavation simulations by ROCKPLAN

Site selection The far detector complex The near detector complex Beam considerations

Top view of far detector cavern

Site selection The far detector complex The near detector complex Beam considerations

GLACIER detector parameters

		20 KT	50 KT	100 KT		
Liquid argon density at 1.2 bar	1.38346					
Liquid argon volume height	22					
Active liquid argon height	[m]	20				
Pressure on the bottom due to LAr	[T/ m²]	30.4 (= 0.3 MPa = 3 bar)				
Inner vessel diameter	[m]	37	55	76		
Inner vessel base surface	[m²]	1075.2	2375.8	4536.5		
Liquid argon volume	[m³]	23654.6	52268.2	99802.1		
Total liquid argon mass	[1]	32525.6	71869.8	137229.9		
Active LAr area (percentage)	[m²]	824 (76.6%)	1854 (78%)	3634 (80.1%)		
Active (instrumented) mass	[KT]	22.799	51.299	100.550		
Charge readout square panels (1m×1m)		804	1824	3596		
Charge readout triangular panels (1m×1m)		40	60	72		
Number of signal feedthroughs (666 channels/FT)		416	1028	1872		
Number of readout channels		277056	660672	1246752		
Number of PMT (area for 1 PMT)		804 (1m×1m)	1288 (1.2m×1.2m)	909 (2m×2m)		
Number of field shaping electrode supports (with suspension SS ropes linked to the outer deck)		44	64	92		

Etam NOAH (UniGe) - on behalf of the LBNO collaboration

LBNO: neutrino oscillations and facility

Site selection The far detector complex The near detector complex Beam considerations

Liquid argon pros

- High density, cheap medium;
- Quasi free *e* from ionising tracks are drifted in LAr (87K, 1bar) by *E*_{drift}
- e drift velocity 2 mm/µs at 1 kV/cm;
- e cloud diffusion is small:
 - $\sigma = \sqrt{2Dx/v_{drift}}$ after several meters;
- High scintillation light yield (at 128 nm) can be used for;

イロン イヨン イヨン イヨン

2

T₀, trigger,....

Site selection The far detector complex The near detector complex Beam considerations

Liquid argon challenges

- Long drift requires ultra high purity, Goal:
 - $\blacktriangleright~\ll$ 100 ppt O_2 equiv....
- Large wire chambers at cryogenic T;
- No charge amplification in liquid: fC sens. preamp;
- Large number of readout channels;
- Large cryogenic systems.

▲□→ < □→</p>

Site selection The far detector complex The near detector complex Beam considerations

・ロン ・回と ・ヨン ・ヨン

æ

Future LAr detectors

Project LAr mass (tons)		Goal	Baseline (km)	Where	Status
MicroBOONE	AicroBOONE 170 (70 fid.)		short baseline 0.47		Under construction
LAr1 ≈1'000		2 nd detector for short baseline ≈0.7		FNAL BNB	Proposal submitted
ICARUS-NESSIE	150 + 478	two-detectors short baseline	0.3 + 1.6	CERN + new SBL beam	Proposal submitted
MODULAr	5'000 unit	shallow depth far detector	730	Italy, new lab nearby LNGS	plan
GLADE	5000	surface	810	NUMI off-axis	Letter of Intent
LBNE LAr (*)	2x17'000(*)	underground(*) far detector	1300(*)	Homestake(*) + new FNAL beam(*)	CD-0
GLACIER LAGUNA-LBNO	initially 20'000 (incremental)	underground far detector	2300	Finland + new CERN LBL beam	Expression of interest in preparation
GLACIER Okinoshima	up to 100'000	underground far detector	665	Japan + JPARC neutrino beam	R&D proposal at JPARC

Etam NOAH (UniGe) - on behalf of the LBNO collaboration LBNO: neutrino oscillations and facility

Site selection The far detector complex The near detector complex Beam considerations

Magnetised Iron Neutrino Detector (MIND)

- μ momentum and charge identification;
- 35 kton;
- B = 1.5 to 2.5 T;
- 3 cm Fe plates;
- 1 × 0.7 cm² scintillator bars;

40m

イロン イヨン イヨン イヨン

Magnetized Iron Neutrino Detector (MIND)

Site selection The far detector complex The near detector complex Beam considerations

MIND readout with scintillator bars

- Extruded scintillator slabs produced by Uniplast;
- Polysterene, 1.5% paraterphenyl (PTP), 0.01% POPOP;
- Used in T2K SMRD detector;
- Surface etched with chemical agent to create 30-100 μm layer that works as diffusive reflector;
- Grooves milled for wavelength shifting fibres;
- Photosensor is silicon photomultiplier.

Site selection The far detector complex **The near detector complex** Beam considerations

< **₩** ► < **⇒** ►

.⊒ .⊳

Near detector - motivation I: 5% syst. requirement

Site selection The far detector complex **The near detector complex** Beam considerations

イロン イヨン イヨン イヨン

æ

Near detector - motivation II: 10-40% xsec uncertainties

Site selection The far detector complex **The near detector complex** Beam considerations

Near detector sketch

Etam NOAH (UniGe) - on behalf of the LBNO collaboration LBNO: neutrino oscillations and facility

Site selection The far detector complex The near detector complex Beam considerations

Near detector argon gas TPC: vertex detector

liquid Ar

Etam NOAH (UniGe) - on behalf of the LBNO collaboration

LBNO: neutrino oscillations and facility

Site selection The far detector complex The near detector complex Beam considerations

イロン イヨン イヨン イヨン

CN2PY beam

Phase 1: use proton beam extracted from the SPS:

- ▶ 400 GeV;
- max. 7.0 \times 10¹³ protons per pulse;
- ▶ 10 µs pulse;
- ▶ 0.167 Hz;
- 750 kW beam power.
- Phase 2: use proton beam from new HP-PS:
 - ▶ 50(30) GeV;
 - ▶ 1.9 × 10¹⁴ ppp;
 - ▶ 4 µs pulse;
 - ▶ 1.33 Hz;
 - 2 MW beam power.

Site selection The far detector complex The near detector complex Beam considerations

Beam layout: surface

Site selection The far detector complex The near detector complex Beam considerations

・ロト ・日本 ・モート ・モート

Beam layout: underground

Site selection The far detector complex The near detector complex Beam considerations

Beam line optimisation

- Maximise π⁺ production in energy range of interest;
- Optimize their collection via magnetic horns;
- ν energies of interest:
 - $1^{s}t$ peak: $3 \Rightarrow 6$ GeV;
 - 2nd peak: $1.2 \Rightarrow 1.8$ GeV;
- Maximise the total:
 - peak 1+ peak 2;
 - ▶ peak 1/total ~ 0.5;

イロト イヨト イヨト イヨト

Site selection The far detector complex The near detector complex Beam considerations

イロン イヨン イヨン イヨン

π^+ production

Site selection The far detector complex The near detector complex Beam considerations

Produced ν_{μ} at ND and FD

Ebeam=400GeV (4E13), DP L=350m, R=2m, DUMP=35m (nu mu)

Etam NOAH (UniGe) - on behalf of the LBNO collaboration

Site selection The far detector complex The near detector complex Beam considerations

Summary

- LBNO, to be located underground at Pyhäsalmi 2300 km from CERN, has truly unique scientific opportunities;
- One experiment for all transitions (e/μ/τ), can measure separately for ν and ν
 :
 - in appearance: $\nu_{\mu} \rightarrow \nu_{e}$
 - in disappearance: $\nu_{\mu} \rightarrow \nu_{\mu}$
- Will test three generation mixing paradigm by direct measurement of oscillation probabilities as a function of energy (L/E) - covering 1st and 2nd maxima;
- ► The direct observation of the energy dependence of the oscillation probabilities induced by matter effects and CP-phase terms, independently for *v* and *v* will break parameter degeneracy between MH and CP phase and allow a direct determination of mass hierarchy and test of CPV in the lepton sector, different approach to global fits *P* < 2 > <2 > <2</p>

Site selection The far detector complex The near detector complex Beam considerations

・ロト ・回ト ・ヨト ・ヨト

Summary - cont'd

- LBNO, is an underground facility geared towards a broad programme;
- detection of several astrophysical sources (SN), and fresh new look at atmph. ν with high granularity and resolution (atm τ app., atm MH, ...);
- ×10 better sensitivity in nucleon decay channels, competitive with HK Lol;
- LBNO defines a clear upgrade path to fully explore CPV. E.g., a three fold exposure yields 75% CPV coverage at 3σ CL, comparable to T2HK Lol - LBNO is a possible first step towards Neutrino Factory.

Site selection The far detector complex The near detector complex Beam considerations

イロト イポト イヨト イヨト

Acknowledgements

- FP7 Research Infrastructure "Design Studies" LAGUNA (Grant Agreement No. 212343 FP7-INFRA-2007-1) and LAGUNA-LBNO (Grant Agreement No. 284518 FP7-INFRA-2011-1);
- CERN for supporting the LAGUNA-LBNO Design Study;
- For slides material: A. Rubbia, A. Blondel, Y. Kudenko, A. Curiani, I. Efthymiopoulos, M. Calviani, G. Nuijten, and more...