Oscillation Research with Cosmics in the Abyss

ORCA overview

Antoine Kouchner (APC) Catania, 05/12/2012

[ALL PRELIMINARY]

Outline

- What is it about?
 - Introduction
 - Akhmedov et al. paper
- First achievements with ANTARES
- Organization of ORCA
- Working lines
 - Systematics and sensitivity studies (Veronique)
 - First simulation chains
 - Algorithmic Aspects (direction and energy) (Agata, Apostolos)
 - Global fit approach (Aart)

Outlook

M. C. Gonzalez-Garcia et al., 1209.3023

All parameters are measured to fair • precision except for the mass hierarchy and the CP phase.

 m_3^2

Long baseline experiments

• « Standard approach » :probe $v_{\mu} \leftrightarrow v_{e}$ governed by Δm_{13}^{2}

$$P_{\mu e} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{13}^2 L}{4E}\right) + \text{ "subleading"}$$

- Insensitive to the sign of Δm_{13}^2 at leading order.
- Matter effects (MSW) come to the rescue
- Earth density variations also affect the oscillations
- Different effect for neutrinos and antineutrinos
- Atmospheric neutrinos: effect measurable $\sigma(v) \approx 2 \sigma(\overline{v})$

(Constant density) Matter effects

Earth density profile

For v_{μ} appearance: - $\rho \sim 4.7$ g/cm³ (Earth's mantle): $E_{res} \sim 7$ GeV - $\rho \sim 10.8$ g/cm³ (Earth's outer core): $E_{res} \sim 3$ GeV

Akhmedov-Razzaque-Smirnov paper

<u>hep-ph > arXiv:1205.7071</u> (v4)

Uses a large PINGU effective volume

PINGU possible configuration

- Phased IceCube Next-Generation Upgrade
- Add 20 strings in Deep Core region
- Vertical distance between OM~5m
- Expected energy threshold at 1 GeV
- Other configurations under study

ARS: Inverted vs Normal

Perfect resolution

$$S^{tot} = \sqrt{\sum_{ij} S_{ij}^2} = \sqrt{\sum_{ij} \frac{(N_{ij}^{IH} - N_{ij}^{NH})^2}{\sigma_{ij}^2}}$$

 $\sigma_{ij}^2 = N_{ij}^{NH} + (fN_{ij}^{NH})^2$

Uncorrelated systematics

S=45.5σ (f=0%) S=28.9σ (f=5%) S=18.8σ (f=10%)

In 5 years

ARS: Inverted vs Normal

S=16.3σ (f=0%)

S=7.2σ (f=10%)

 $S=11\sigma$ (f=5%) $S=7\sigma$ (f=5%)

S=10.4σ (f=0%)

S=4.5σ (f=10%)

 $\sigma E=4$ GeV, $\sigma \theta=22.5^{\circ}$

S=7.2σ (f=0%) S=4.5σ (f=5%) S=3.0σ (f=10%)

5 years

Mass hierarchy measurements

From J. Brunner

Project	Neutrino source	Detector	Goal	Problem
NOvA	LBL 810 km	14 kt tracking calorimeter	2σ for some values of δ ; 2020	Parameter degeneracy
Daya Bay II Reno II	Reactor 60 km	50 kt liquid scintillator	3 σ in 2023	E _v resolution & absolute scale
PINGU / ORCA	Atmosphere	1-10 Mt	3-5 σ in ?	E _v resolution Systematics
INO	Atmosphere	50 kt magnetized iron calorimeter	3 σ in 2030	Low statistics 10 years needed
T2 Hyper Kamiokande	LBL 295 km	1 Mt water	3 σ in 2030	Parameter degeneracy
LBNE	LBL 1300 km	10 kt Liquid Argon	2-5 σ in 2030	Parameter degeneracy
LAGUNA Glacier	LBL 2300 km	20 kt Liquid Argon	5 σ in 2030	Beam line from CERN
LAGUNA LENA	LBL 2300 km	50 kt Liquid scintillator	5 σ in 2030	Beam line from CERN

The ANTARES Site & Infrastructure

The ANTARES detector

Oscillations with Atmospheric Neutrinos

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^2 2\theta_{32} \sin^2 \left(\frac{1.27\Delta m_{32}^2 L}{E_{\nu}}\right) = 1 - \sin^2 2\theta_{32} \sin^2 \left(\frac{16200 \,\Delta m_{32}^2 \cos\Theta}{E_{\nu}}\right)$$

 E_{ν} from muon range

Oscillations maximal at 24 GeV for vertical neutrinos (muon range~120m)

Larger effect on single-line (low energy) than multi-line (higher energy) events

Neutrino Oscillations: Track Selection

Special low energy fit for single-line events (>7storeys, do not fit azimuth)

Select pure sample of atmospheric neutrinos (<5% muon contamination)

Zenith angle resolution: 0.8 degrees for multi-line events 3 degrees for single-line events

Neutrino Oscillations: Result

Assuming maximal mixing: $\Delta m^2 = (3.1 \pm 0.9) 10^{-3} \text{ eV}^2$ Published in Phys. Lett. B 714 (2012) 224.

ORCA : organization

- Work performed within the KM3NeT collaboration (phase I) + a few other interested neutrino physics colleagues
- Coordination: A.Kouchner & A. Tsirigotis
- Mailing list: <u>orca-l@in2p3.fr</u>
- Wiki page : https://sbgorcawiki.in2p3.fr/doku.php

	Logged in as: Antoine Kouchner (kouchner)	L Update Profile	() Logout	
ORCA Wiki			Q,	
	Recent chang	es Media Manager	Sitemap	
Trace: • erlangen_group • start				
			start	
Table of Contents			v	
Oscillation Possarch with Cosmi	ice in the Abves			
Oscillation Research with Costill	ics in the Abyss			\odot
		h tha Eanth in tha	0.11	S
range. This particular energy range is also suitable for other studies,	as seen on the following plot.	n the Earth in the	Gev	1

ORCA: organization

ORCA	Go to parent category iCal export View -	
Project ORCA Managers: Kouchner, A.; Tsirigotis, A.		
December 2012		
05 Dec ORCA workshop (protected) (New!		
November 2012		
06 Nov ORCA-PINGU common call		
October 2012		
25 Oct ORCA videoconference (protected)		
05 Oct ORCA get-together (protected)		
September 2012		
 18 sep ORCA videoconference (protected) 06 sep ORCA kick-off meeting (protected) 	 Working lines Systematics and sensitivity stu Eirst simulation chains 	ıdies

- Algorithmic Aspects
- Global fit approach

Next meeting in Marseilles January 29-31, 2012

Definition of Inverted Hierarchy

Reading Ohlsson & Snellman: flipping Δm_{32}^2 seems 'natural'

Definition of Inverted Hierarchy

• A most reasonable choice:

flip the sign of	$\Delta m_{large}^2 = m_3^2 - (m^2)$	$\frac{1}{2} + m_{1}^{2} / 2$

Parameter	Central value	1σ allowed range
$\delta m^2/10^{-5} { m eV}$ (NH or IH)	7.54	7.32-7.8
$\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)	3.07	2.91-3-25
$\Delta m^2 / 10^{-3} eV$ (NH)	2.43	2.33-2.49
$\Delta m^2 / 10^{-3} eV$ (IH)	2.42	2.31-2.49
$\sin^2 \theta_{13} / 10^{-2} (\text{NH})$	2.41	2.16-2.66
$\sin^2 \theta_{13} / 10^{-2}$ (IH)	2.44	2.19-2.67
$\sin^2 \theta_{23} / 10^{-1} (\text{NH})$	3.86	3.65-4.10
$\sin^2 \theta_{23} / 10^{-1}$ (IH)	3.92	3.7-4.31
<i>δ/π</i> (NH)	1.08	0.77-1.36
<i>δ/π</i> (IH)	1.09	0.83-1.47

Table 1: Result of the global 3v oscillation analysis. Remember that $\Delta m^2 = m_3^2 - (m_1^2 + m_2^2)/2$ with $+\Delta m^2$ for NH and $-\Delta m^2$ for IH. Taken from [12]

Plots with uncertainties

Plots with uncertainties

Oscillation parameter uncertainties

25% energy resolution and kinematics included

Atmospheric neutrino fluxes

The fluxes used here are not the latest ones for each model. But today 20% uncertainties still remain from one group to another.

Fluxes as systematics

Fluxes as systematics

Impact of the atmospheric neutrino flux is reduced. Probability to misidentify the mass hierarchy because of the differences of the neutrino spectrum shape is small (modulo normalization!)

Statistical method for MH discrimination

Probability to reach 5 σ

Results for different resolutions

Possible ORCA detector

ORCA detector:

50 strings 20m spaced20 DOM/string spaced 6m

Instrumented volume:

 $\Pi \times 70^2 \times 114 = 1.75 \text{ Mt}$

- Multi-PMT DOM
- 31 small PMTs
- Almost uniform coverage
- Photon counting
- All electronics inside

Simulation chain

Neutrino Interactions

ANTARES tool Genhen

has all three incorporated

- Shifted energy region of interest
 - ANTARES : 50 GeV 1 PeV
 - ORCA : 1 GeV 50 GeV
- Three main contribution
 - Quasi-elastic
 - Resonant
 - Deep inelastic

Genhen vs Genie (generation level)

Bartol Flux ν_{μ} + anti- ν_{μ} (Kamioka Solar Minimum), 1 year

Simulation chain

Effective volumes at trigger level

All events in can (edge effect)

Alternative: work only with contained events Ex: Detector 6x6 strings, spacing 20m 20 Oms per srting, spacing 6 m Fiducial volume 1Mton

acceptance for at least 15 hits

What do we want to reconstruct?

Events from the SKAT bubble chamber (2-30 GeV target CF₃Br)

First reconstruction attempts (not optimized)

Promising, but what energy resolution for these events?

Observable E/cosθ (ANTARES-Bbfit analys.)

• sub-optimal but easier to get feeling for size of the effect

Resolution in energy and direction are key parameters !

- Optimal path length resolution $\sigma(L)$ from $\Delta L/\sqrt{12}$ to $\Delta L => \sigma(E) \approx 1 \cdot 3 \text{ GeV}$
- Reconstruction of associated hadronic shower will improve. To be quantified.

First improvements (gridfit)

Hit selection:

Correlated hits between neighboured stories/next-to neighboured stories

Some reconstruction ideas

- Select events with little hadronic activity
 - Enhances anti-neutrino sample
 - Enhances QE and RES contributions
 - Muons aligned to neutrinos (kinematics)

First look with GRIDFIT

Global fit strategy

Dealing with oscillation parameter uncertainties

■ For determining the MH, the angles and mass differences are nuisance parameters. → use ratio of *maximum* likelihoods

$$\Delta \log(L^{\max}) = \sum_{\text{bins}} \log P(\text{data}|\hat{\theta}^{\text{NH}}, \text{NH}) - \log P(\text{data}|\hat{\theta}^{\text{IH}}, \text{IH})$$

$$\hat{\theta}^{\mathrm{H}} =$$
 maximum-likelihood estimates for the Δm^2 's and angles using both data and constraints from global fit.
nb: constraints are different for H=IH and H=NH

So this means fitting the mixing parameters to the data, twice, before computing the test-statistic.

	pick a true hierarchy Htrue
Δm_{21} and θ_{21} fixed to central values. Others are fitted.	vary model parameters within allowed range(Htrue)
Zenith angle resolution : true muon direction	(assuming no correlations, since they are not published(?))
	and generate toy experiment
Energy resolution 25%	constraint fit of 3 non-fixed model parameters to experiment
No background - No other flavours – No other syst.	assuming both NH and IH \rightarrow two sets of parameters
	$\theta^{\rm NH}$ and $\theta^{\rm IH}$
	Ikelihood ratio

Fit sensitivity

1 Mton*year (NHtrue, NHfit)

Decreasing the current errors is already an important achievement !

Current results

Median expected significance

Conclusions & outlook

- Fruitful exchange of ideas with PINGU
 - Agreement to cross check each others significance calculation
- Full simulation & reconstruction chain being put into place
- Modifications in simulations planned
- Challenges in Event Reconstruction and Energy Resolution
- Large effort to prove feasibility of mass hierarchy measurement with neutrino telescopes just started.
- ORCA could reduce current uncertainties on oscillations parameters. But too early to draw conclusions on the mass hierarchy discrimination.
- Need ~ one more year
 - Finalize systematic studies (started)
 - Improved reconstruction (started)
 - Optimize geometry (just started)
 - Background rejection (consider veto?) (just started)
 - Study other flavours (not started)
 - •

Welcome if you want to join our efforts!